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Performance Evaluation of an Evolutionary Multiobjective
Optimization Based Area Partitioning and Allocation Approach

Mahdi Hassan and Dikai Liu

Abstract— An Area Partitioning and Allocation (APA) ap-
proach was presented in [1]. The approach focused on op-
timizing the coverage performance of Autonomous Industrial
Robots (AIRs) using multiple conflicting objectives and Voronoi
partitioning. However, questions related to the optimality,
convergence, and consistency of the Pareto solutions were not
studied in details. In this paper, Inverted Generational Distance
(IGD) metric is used to verify the convergence of the Pareto
front towards Pareto optimal front (PF*). The consistency in
obtaining similar Pareto fronts for independent optimization
runs is studied. The computational complexity of the approach
with respect to the size of the coverage area and the number
of AIRs is also discussed. Two application scenarios are used
in this research.

I. INTRODUCTION

The Area Partitioning and Allocation (APA) approach
presented in [1] and [2] is aimed at achieving complete
coverage by simultaneously partitioning and allocating the
overlapped areas amongst multiple Autonomous Industrial
Robots (AIRs). As shown in Fig. 1, each AIR can cover
an area of a surface, and there is an overlap of areas that
the two AIRs can cover. Overlapped areas are the areas
of a surface that more than one AIR can reach. On the
other hand, specific areas of an AIR are the areas that are
reachable by that particular AIR only. The APA approach
considers complete coverage of surfaces that may be non-
planar, complex in shape and separated (unconnected) from
each other. To aim for optimal coverage, the APA approach
optimizes four objectives. These objectives are in conflict
with each other. That is, optimizing one of the objectives
can only be done at a cost to another objective (or a subset
of the objectives).
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Fig. 1: Overlapped areas of two AIRs.

In real-world applications, many problems are multiob-
jective optimization problems (MOPs) in essence [3]. Thus,
devising and improving multiobjective optimization algo-
rithms are critical. Over the past two decades, the use of
Evolutionary Multiobjective Optimization (EMO) is ever
more popular since “Evolutionary Algorithms (EAs) proved
to be capable of finding a good approximation to the Pareto
optimal front (PF*) in Multi-objective Optimization Prob-
lems (MOPs) where there exist two or more conflicting
objective functions” [4]. In this paper, the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [5] which is one of
the most popular EMOs is used to optimize the conflicting
objectives in the APA approach.

Many approaches to complete coverage problems utilize
gradient ascent based optimization to find a solution [6]–
[8]. However, many real-world problems are non-convex
in nature, and such approaches can only provide a locally
optimum solution. In [9], a coverage control for multi-robot
teams with heterogeneous sensing capabilities is presented.
The work stated that even for the case of homogeneous
sensing, knowing whether or not the achieved solution is
locally optimum remains an open issue. The work in [8]
notes that the camera coverage is a non-convex problem;
thus gradient controllers can only achieve locally optimum
solutions. In such approaches, often only one objective is
considered or multiple objectives are combined together to
form one objective. These approaches can be sufficient for
some applications, e.g., for online camera coverage. How-
ever, for complex applications, e.g., those that account for
multiple conflicting objectives or those that require coverage
of objects with complex geometric shapes, finding a locally
optimum solution may not be sufficient. This is the case for
multiple AIRs operating on objects with complex geometric
shapes.

The works in [1] and [2] presented the APA approach;
however, questions related to the optimality, convergence,
and consistency of the Pareto solutions were not studied in
details. Thus, this paper investigates the following questions:
(1) can the EMO-based APA approach provide Pareto fronts
(explained in Section II-B) that are close to the PF*?, (2)
for independent optimization runs, are the Pareto fronts con-
sistently similar?, and (3) for an optimization run, how well
does the Pareto front evolve over the generations (i.e., how
good is the convergence)?. The computational complexity
of the APA approach with respect to the size of the search
space, the number of AIRs, and the size of the overlapped
areas are also discussed.



II. BACKGROUND

A. The APA approach

The APA approach utilizes Voronoi partitioning to par-
tition objects’ surfaces [1], [2]. As shown in Fig. 2, for
n AIRs, Voronoi partitioning creates n Voronoi cells on
the overlapped areas. Each Voronoi cell is allocated to an
AIR. The size and shape of each cell are dependent on the
location of the Voronoi graph’s seed points, ps
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(as shown in Fig. 2). Note that the overlapped areas to be
covered by the AIRs is fixed in size and Voronoi partitioning
simply partitions this fixed area into n cells. That is, the
total area covered by the Voronoi cells remains fixed in size.
Thus, an advantage of utilizing Voronoi partitioning is that
an additional objective function is not needed to maximize
coverage. This partitioning strategy also prevents missed-
coverage or coverage overlaps by the AIRs.

The APA approach has the advantage of being able to
use the point cloud information that is generated from
sensing the environment. The point cloud information is
used to generate circular disks, called targets [1], [2], on
the surfaces. Each AIR can have different sized targets to
represent the surfaces (Fig. 2). This is because each AIR
can have different capacity, e.g., different end-effector speed
or tool coverage size. The targets in each Voronoi cell are
closest to the seed point of the cell; therefore, Oal
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í
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i is
the set containing the allocated target of the ith AIR, Oi is
the set of targets associated with the ith AIR and represent
the entire overlapped areas, and ps

i is the seed point of the
ith cell allocated to the ith AIR.

The design variables Z used in the multi-objective op-
timization algorithm (NSGA-II) are considered to be the
coordinates of the seed points ps
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for n AIRs). To achieve optimal coverage, the aim of the
optimization is to obtain a Voronoi cell for each AIR such
that the following four objective functions are optimized [1]:
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Fig. 2: Examples of Voronoi partitioning on the overlapped
areas of two AIRs.
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where F1(Z) returns the variance of the completion times of
the AIRs; F2(Z) returns the sum of distances between the
targets and the appropriate centroid, cs

i , of the specific areas;
F3(Z) returns the sum of all the maximum torque ratios of
AIRs’ joints; and F4(Z) returns the sum of manipulability
measures. In Eq. (1), Ti(Z) returns the completion time of
the ith AIR and t̄ is the average of the completion times
of the n AIRs. In Eq. (2), No

i (Z) returns the number of
targets in the Voronoi cell allocated to the ith AIR and oi j
is the jth target in the Voronoi cell of the ith AIR. In Eq.
(3), T Rmax(q f

i j) is the function that calculates the maximum
torque ratio experienced by a joint of the ith AIR at an AIR
pose q f

i j generated to reach the target oi j. In Eq. (4), W(q f
i j)

returns the manipulability measure of the AIR pose q f
i j. The

reader is advised to refer to [1] for more details.

B. Multiobjective Optimization Problem

Multiobjective optimization problems (MOPs) consist of K
objective functions, F(Z) = [F1(Z),F2(Z), . . . ,FK(Z)], and M
constraints. The optimizer aims to minimize the K objective
functions while satisfying the M constraints (M can be zero).
Objective functions, such as those in Eqs. (1) to (4), are
computed over the design variables, Z (also called decision
variables) to measure the performance of a solution.

Let Ω be the space in which the design variables in Z
coexist. Similarly, let Ψ be the K-dimensional objective space
in which objective functions in F(Z) coexist. Therefore, a
point in Ω maps to a point in Ψ. Let x ∈ Ω and y ∈ Ω be
two solution vectors (values of the design variables in Z).
The solution x dominates the solution y (i.e., x � y) if an
only if for all of the objective functions, x doesn’t yield a
value worse than y in Ψ space and it strictly yields a better
value for at least one of the objectives [4].

In MOPs, the objective functions are in conflict with each
other. That is, optimizing one of the objectives can only
be done at a cost to another objective (or a subset of the
objectives). Thus, instead of a single optimal solution, the
aim is to get the Pareto optimal set, P*. The solution vectors
in P* are non-dominated by any other solution vectors in Ω.
Formally [4]:

P* := {x ∈Ω | @ y ∈Ω such that y� x}. (5)

The corresponding Pareto optimal front (PF*) in Ψ space
is:

PF* := {F(x) ∈Ψ, ∀ x ∈ P*}. (6)

For more details of MOPs refer to [10]. Note that in
many real-life applications, the PF* is not know [4]. Thus,
a reference set, PF′ is used to approximate the PF* [4]. A
strategy for obtaining PF′ is explained in Section III-B.



C. Performance Metric

Evolutionary Multiobjective Optimization (EMO) algo-
rithms return a set of solution vectors, P, with the corre-
sponding Pareto front PF. To measure how far PF is from
PF*, the Inverted Generational Distance (IGD) is used in
this paper. IGD has become increasingly popular in recent
years and it is frequently used to evaluate the performance
of EMOs [11].

The IGD metric calculates the average distance from each
point in PF* (Pareto optimal front) to the nearest point in
PF (Pareto front from EMO algorithm). If the number of
points in PF′ (reference set approximating PF*) is large
enough to represent PF*, the IGD metric could measure both
convergence and diversity of PF [3]. The IGD value can be
calculated as [3]:

IGD(PF,PF*) =
1
|PF*|

√
∑

a∈PF*

(
min
b∈PF
‖a−b‖2

)
(7)

where ‖a− b‖ is the Euclidean distance between a ∈ PF*
and b ∈ PF. Note that PF* and PF are normalized using the
maximum and minimum values in PF*. The smaller the value
of IGD, the closer PF is to PF* and the lesser are the regions
of PF* missed by PF. If PF* is not known then PF* = PF′.

III. PERFORMANCE EVALUATION OF EMO-BASED APA
APPROACH

The aim here is to validate the EMO-Based APA approach
with respect to optimality, convergence, and consistency
of the Pareto front. Metaheuristic evolutionary optimization
algorithms are criticized for the randomness in some of their
processes and the lack of guarantee in obtaining the global
optimal. Using detailed study of two test scenarios and a
large number of optimization runs, it is shown in this section
that near-optimal solutions could be obtained and that the
Pareto front is consistently similar despite the randomness
in NSGA-II (chosen EMO algorithm). The convergence of
the Pareto front over generations is also shown. Furthermore,
the computational complexity is discussed with respect to the
size of the search space, the number of AIRs, and the number
of targets representing the overlapped areas.

A. Test Scenarios

1) Scenario 1 - Three AIRs with Different Capabilities:
In this scenario, three AIRs grit-blast or spray paint the flat
surface shown in Fig. 3a. The size of the targets associated
with each AIR is different since the capabilities of the AIRs
are different. Table I shows the end-effector speed (v), the
target size (r) and the distance between adjacent targets along
a path (d) for each AIR. The overlapped areas of the three

TABLE I: Properties of the three AIRs.

AIR 1 AIR 2 AIR 3
v (m/s) 0.2 0.15 0.1
r (m) 0.03 0.04 0.05
d (m) 0.0402 0.0536 0.067

(a) (b)

Fig. 3: Overlapped areas (a) and a sample solution (b).

AIRs are also shown in Fig. 3a. For the sake of a better
graphical representation of the results (e.g., the Pareto front)
only the first two objective functions (Eqs. (1) and (2)) are
considered for this scenario. As an example to illustrate the
output from the APA approach, a solution [1] selected from
the Pareto front of one of the optimization runs is shown in
Fig. 3b. For this solution, the AIRs complete the task almost
simultaneously with a completion time of 13.5 s (AIR 1),
13.6 s (AIR 2) and 13.4 s (AIR 3). As shown in Fig. 3b,
the allocated portion of the overlapped areas for each AIR is
close to the corresponding specific areas of the AIR as would
be expected from the second objective function (Eq. (2)). In
the figure, the green filled circles (ps
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of the seed points and the yellow filled circles (cs
1,c

s
2,c

s
3) are

the centroids of the specific areas.
2) Scenario 2 - Two AIRs Operating on Three Separated

Objects: As shown in Fig. 4, two identical AIRs operate
on objects that are separated from each other, one of which
have a complex geometric shape. In this scenario, All four
objective functions (Eqs. (1) to (4)) are considered. For both
AIRs, the end-effector speeds is v = 0.04 m/s; target size is
r =0.04 m; and the distance between adjacent targets along
a path is d = 0.0563 m. For a graphical representation of a
sample of solutions refer to [1].

B. Obtaining the Pareto Optimal Front (PF*)

At first, the PF* for the test scenarios need to be obtained.
In many real-life applications, the PF* is not know. Thus, a

Fig. 4: Two AIRs operating on three separated objects.



reference set, PF′ is used to approximate PF*. A strategy
for obtaining PF′ is to run the EMO algorithm with a large
population and a large generation number [11]. The EMO
algorithm can then be run several times and the solutions
obtained from each optimization run are merged together
to give a single non-dominated solution set which is the
reference set [11].

To obtain the reference set, henceforth referred to as the
PF*, both the population size and generation number of
NSGA-II is set to 10,000. MATLAB global optimization
toolbox, and specifically the function ‘gamultiobj’ which is
based on NSGA-II, is used as the example EMO algorithm.
The optimization for each scenario is repeated 30 times. The
solutions from independent runs are then merged together
and the non-dominated solutions are obtained to represent the
PF*. Note that the optimization terminates before reaching
the maximum generation number due to the average change
in the spread of the Pareto front being less than the default
tolerance (1e-4) by ‘gamultiobj’ function.

Figure 5 shows the PF* for scenario 1. It is clear that the
objective functions are in conflict with each other. For sce-
nario 2, since all four objectives are used (i.e., the objective
space is 4-dimensional), then the Parto front is not plotted.
However, to show the trade-off between the objectives, the
optimization is run for each pair-wise combination of the
objective functions. From Fig. 6, it is again clear that all
pairs of objectives are in conflict with each other. The PF*
for the second scenario contains 17,275 points.

(a)

Fig. 5: PF* for scenario 1.

Fig. 6: Trade-off for all pairwise combinations of the objec-
tives for scenario 2.

C. Convergence Towards the PF*

Optimization is repeated for 50 different population sizes
(from 15 to 750 in steps of 15) for both scenarios. Then, the
distance of the Pareto front from each optimization run is
compared to the PF* using the IGD value (Figure 7). Note
that for each population size, optimization is repeated 30
times and the average of the IGD values is taken.

The results show that the IGD value is very small and
tends to approach zero as population size is increased, which
means that the Pareto front could potentially converge to
PF*. However, after certain population size, the rate of
decrease in IGD value becomes very small, and a much
larger population size would be needed to make a significant
difference to the IGD value which causes substantial increase
in the computation time. For most real-life applications, a
near-optimal result is acceptable in favor of reduced com-
putation time. Figure 8 shows the total number of function
evaluations (number of individuals evaluated in NSGA-II) for
the optimization runs. The number of function evaluations
tends to increase linearly. This is because the growth in
function evaluations is mainly due to the increase in the
population size and not the generation number since the
NSGA-II terminates at approximately 115 generations (on
average) due to the average change in the spread of the Pareto
front being less than the default tolerance.

(a) IGD vs. population size for scenario 1.

(b) IGD vs. population size for scenario 2.

Fig. 7: IGD vs. population size for both scenarios.

(a) Scenario 1. (b) Scenario 2.

Fig. 8: Number of function evaluations for both scenarios.



(a) Scenario 1. (b) Scenario 2.

Fig. 9: Boxplot of the IGD values of the 30 optimization
runs for both scenarios.

D. Consistency of the Solutions

The aim here is to check that the Pareto fronts are
consistently similar for independent optimization runs. First,
a population size needs to be determined. From Fig. 7,
setting the population size to 300 seems reasonable since
the value of IGD doesn’t continue to significantly reduce
after around this population size. Optimization is repeated
30 times for this populations size and the IGD values for
each optimization run is stored. Figure 9 shows the boxplot
of the IGD values for the 30 optimization runs. For scenario
1, the mean and standard deviation of the IGD values is
0.022 and 0.002, respectively. For scenario 2, the mean and
standard deviation of the IGD values is 4.7e-04 and 1.9e-05,
respectively. From the boxplots and the small values of the
standard deviations, it is clear that the solutions obtained are
consistent.

The Pareto front of an optimization run that has the same
IGD value as the above mean IGD value for scenario 1
is selected. The aim is to graphically show (Fig. 10) the
closeness of the Pareto front to the PF* for the population
size of 300. It can be seen that many of the solutions in the
Pareto front are optimal or near-optimal and the solutions
are well spread.

E. Convergence of the Pareto Front for Independent Opti-
mization Runs

The aim here is to show that the Pareto front does converge
over the generations. To provide more accurate results, the
optimization is repeated 30 times for both scenarios and the
IGD values of the Pareto fronts at each generation for all

Fig. 10: PF* vs. Pareto front of an optimization run.

(a) Scenario 1. (b) Scenario 2.

Fig. 11: Convergence of the Pareto fronts for both scenarios.

optimization runs are stored. The average of the IGD values
at each generation is then computed and the plots shown in
Fig. 11 is constructed to validate the convergence over the
generations for both scenarios. Note that at each generation,
the Pareto front is made to contain all of the non-dominated
solutions up to that particular generation. This is different to
how ‘gamultiobj’ function of MATLAB calculates the Pareto
front at each generation since it only keeps a fraction of the
non-dominated solutions from the higher fronts based on the
option ‘ParetoFraction’∈ [0,1] (default 0.35). Hence, the IGD
value in Fig. 11 converges to a slightly lower value than that
shown in Fig. 7 since there are more points in the Pareto
front.

F. Computational Complexity

The computational complexity of the APA approach de-
pends on the size of the search space, the number of AIRs,
and the number of targets representing the overlapped areas.

The fitness function constructed for the NSGA-II cal-
culates the values of the objectives functions for inputted
locations of the seed points (design variables). Figure 8
showed that the number of function evaluations is linear with
respect to the population size. However, the computational
complexity of the fitness function needs to be discussed in
order to examine the computation complexity of the overall
approach.

The fitness function loops through the overlapped targets
of the n AIRs and allocates the targets to the AIRs based
on the closeness of the targets to the seed points. That is,
Oal

i = {o ∈Oi | ‖o−ps
i‖ ≤ ‖o−ps

í
‖, ∀í ∈ {1,2, . . . ,n}\ i} as

mentioned in Section II-A. For details of the fitness function,
refer to [1].

If the AIRs are identical (i.e., have the same capabilities),
then the computation complexity of the fitness function is
O
(
(n+3)m

)
where n is the number of AIRs and m is the to-

tal number of targets representing the overlapped areas. This
is because one set of m equally sized targets can represent the
overlapped areas of all AIRs, and the distance of each target
within this set to the n seed points is checked for allocation
to the Voronoi cell with the closest seed point. The number
3 in O

(
(n+3)m

)
is related to 3 operations for concatenating

each target and its corresponding manipulability measure
and torque ratio to 3 separate sets for later use. Note that



the manipulability measure and torque for each target are
calculated only once prior to the optimization process, e.g.,
based on the lookup table explained in [12]. Hence, for
n number of identical AIRs, the computation complexity
grows linearly with respect to the number of targets m in the
overlapped areas. Similarly, for a fixed number of targets m,
computation complexity is linear in the number of AIRs n.

If the AIRs are not identical, then the computational
complexity becomes O

(
∑

n
i=1(n + 3)mi

)
where mi is the

number of targets associated with the ith AIR and represent
the overlapped areas. This is because each AIR is associated
with a set of targets that can have different size to other
AIRs’ targets. Thus, for n AIRs, n sets of targets represent
the overlapped areas. Similar to the case of identical AIRs,
for n non-identical AIRs, the computation complexity grows
linearly with respect to the number of targets (m = m1 +
m2 + · · ·+mn) in the overlapped areas. However, for a fixed
number of targets m and considering the worst case where no
two AIRs are identical, the computation complexity grows
quadratically with respect to the number of AIRs, n.

The above analysis of the computation complexity con-
siders the worst case. The computation complexity can be
reduced through strategies such as using appropriate data
structures (e.g., k-d tree and Octree). For instance, checking
the distance of octants in an Octree to the seed points instead
of checking every single target. Note that the computation
complexity presented does not consider the special condition
where different pairs of AIRs (for n > 2) can have different
overlapped areas.

The search space is continuous; however, bounded by a
bounding rectangle (or a bounding box for 3D coverage)
that occupies the overlapped areas. Thus, the seed points of
the Voronoi cells are constrained to be within this bounding
rectangle/box. Note that the design variables are the position
coordinates of the seed points ps

1,p
s
2, . . . ,p

s
n. Thus, for n

AIRs, there are 3n design variables. For a planar surface,
one of the coordinates of the seed points will be a constant.

The search space can be discretized to improve compu-
tational efficiency. Suppose that the search space is uni-
formly discretized into G grids. The seed points can then
be constrained to be only at the center of the grids. Thus,
there are G!

(G−n)! permutations for the search space where n
is the number of AIRs. As an example, let the overlapped
area of the planar surface presented in the first scenario be
discretized based on the smallest target size (i.e., AIR 1)
which gives 96 grids (12 × 8). For the worst case where
all AIRs are non-identical, there are 857280 permutations.
Thus, three-dimensional coverage space, larger overlapped
areas, or greater number of AIRs increase the size of the
search space. This may indicate that the optimizer would
require a larger population size for a wider exploration of
the search space.

IV. CONCLUSION

In this work, an evolutionary multiobjective optimization
(EMO) based area partitioning and allocation (APA) ap-
proach was validated with respect to optimality, convergence,

and consistency of the Pareto front. The Non-dominated
Sorting Genetic Algorithm II (NSGA-II) which is one of the
most popular EMOs was used for optimizing the conflicting
objectives in the APA. Using detailed study of two appli-
cation scenarios and a large number of optimization runs,
it was shown that the Pareto front converges to the Pareto
optimal front as the population size in NSGA-II is increased.
It was also illustrated that for a chosen population size, the
Pareto front is consistently similar despite the randomness
in NSGA-II. The convergence of the Pareto front over
generations was also presented. To study these aspects of
the APA approach, the Inverted Generational Distance (IGD)
metric was used. Furthermore, the computational complexity
was provided with respect to the size of the search space,
the number of AIRs, and the number of targets representing
the overlapped areas.
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