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Abstract - In this paper, a 3D mathematical model of a 
helicopter attached to a robotic landing gear is proposed to 
investigate into helicopter landing on uneven terrain. The 
landing gear consists of four articulated legs connected to the 
helicopter fuselage. Each leg has two revolute joints governed 
by PID joint controllers to generate motion with two degrees 
of freedom (DoF). A combination of Lagrange and Newton-
Euler techniques is used to model the system dynamics, its 
motion and joint torques. A contact model is introduced to 
simulate ground interaction forces and a level controller that 
uses a PI algorithm to maintain the main body desired attitude 
when landing in two-axes slopes. Simulation results are 
compared to a second model designed using the SimMechanics 
toolbox for validation purpose. 

Keywords—PID control, robotic landing gear, nonlinear 
dynamic model, contact model, level controller, simulations 

I.  INTRODUCTION 
Helicopters are widely used in search and rescue 

missions, disaster areas or mountainous environments 
because of their ability to access remote or unprepared areas 
that are not accessible by any other means. This is due 
mainly to their ability to perform hovering and vertical 
landing/take-off manoeuvres. However, they usually 
incorporate fixed landing gear systems like skids or wheels, 
which limit their ability to land on irregular terrain. 

A number of early publications suggested several 
solutions to cope with the problem of landing on sloped 
surfaces using hydraulic or mechanical systems to adapt the 
position of wheels/legs to the ground conditions [1], [2], [3], 
but with limited study available since then. A recent 
example of robotic landing gear was developed by the 
Georgia Institute of Technology under the DARPA’s 
Mission Adaptive Rotor (MAR) program [4] consisting of 
four articulated robotic legs to ensure the helicopter stays 
level during landing. A practical demonstration was 
reported in [5].  

Dynamics modelling techniques are generally 
divided into two main categories, the ones that are based in 
Newton-Euler equations, and the ones based on analytical 
mechanics approaches, like Lagrange method [6]. When 
modelling multibody systems, a common practice is to use 
an abstract, simplified model of the robot to reduce the 
model’s complexity. A mixed approach is found in [7] and 
[8] where the authors use a modelling technique for 
quadruped robot locomotion based on decoupling the body 
and legs. For body position and attitude, a point-mass model 
of the CoM is analysed and the external forces are 
computed. Then the joint torques are calculated using a 
single leg dynamics model. The whole body model is 
constructed by coupling the equations of the floating-base 
body and each of the legs attached to it. 

In this paper, a nonlinear dynamic model of a 
landing gear with four articulated legs and the control 
strategy to keep the helicopter’s main body stable when 
landing on irregular terrain is presented. In Section II, the 
position and attitude of the main body are computed 
applying the Newton-Euler equations to obtain the CoM 
dynamics. In Section III, a kinematic and dynamic model of 
a single leg are derived using the Lagrange method. The 
entire model is built by coupling the CoM dynamics and the 
geometry of the main body with four single-leg models. 

In Section IV, a level controller is designed to adapt 
the position of the legs to the ground conditions and 
maintain the desired attitude of the helicopter body. In 
Section V, a contact model to simulate a two-directional 
slope and the ground-leg reaction and friction forces is 
presented. Finally, in Sections VI and VII, a second model 
of the landing gear is built using the SimMechanics toolbox 
for multibody simulation and the results of both models are 
compared. 

II. CENTER OF MASS DYNAMICS 
The complete landing gear-helicopter model, is a 

multibody system formed by four robotic legs connected to 
the helicopter body. All four legs actuate parallel to the XY 
plane of the helicopter body-fixed frame and are situated 
two on each side of the landing gear as shown in Figure 1. 
The main body has a size and mass proportional to the 
dimensions and mass of the legs. 

The position of the main body is defined by the 
distance of its CoM to the ground in the x, y and z directions 
and its attitude by the roll (θz), pitch (θx) and yaw (θy) 
angles. A point-mass model of the landing gear is used, to 
calculate the effect produced by the different forces in the 
motion of the system’s centre of mass. All the different 
bodies that form the system are reduced to a single point 
that has a rotational inertia, I, and a total mass, m, which 
emulate those of the whole system and is located at the CoM 
of the whole system. For simplification purposes, the CoM 
is considered to be at the centre of the main body, as the 
mass of the legs is negligible compared to the mass of the 
body. 

The forces considered for the calculations include 
the gravity acceleration, a thrust force model to control the 
descent rate and the ground reaction forces acting on the 
feet when they make contact with the ground. Newton-
Euler equations are used to calculate the CoM both linear 
and angular motion. 
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Figure 1. Sketch of the landing gear. The eight joints are Left Front Hip 
and Knee (LFH, LFK), Left Back Hip and Knee (LBH, LBK), Right Front Hip 
and Knee (RFH, RFK), and Right Back Hip and Knee (RBH, RBK). It shows 
the inertial frame (x,y,z), the body-fixed frame (xb,yb,xb) and the ground 
slope frame (p,n,t) 

The linear motion in each of the x, y and z directions 
of the inertial frame is governed by Newton’s second law: 

𝑚𝑚�̈�𝑥𝐶𝐶𝐶𝐶𝐶𝐶 = �𝐹𝐹𝑥𝑥𝑖𝑖 (1) 

𝑚𝑚�̈�𝑦𝐶𝐶𝐶𝐶𝐶𝐶 =�𝐹𝐹𝑦𝑦𝑖𝑖 +𝐹𝐹𝑡𝑡ℎ −𝑚𝑚𝑚𝑚 (2) 

𝑚𝑚�̈�𝑧𝐶𝐶𝐶𝐶𝐶𝐶 = �𝐹𝐹𝑧𝑧𝑖𝑖 (3) 

where m is the system’s total mass, g is the gravity 
acceleration, Fth is the thrust controller force, and 𝐹𝐹𝑥𝑥𝑖𝑖, 𝐹𝐹𝑦𝑦𝑖𝑖 
and 𝐹𝐹𝑧𝑧𝑖𝑖 are the resultant ground reaction forces in each foot 
in the respective directions. 

The angular motion on the respective axes is 
computed using Euler’s equations of motion 

�𝑀𝑀𝑥𝑥 = 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝜔𝑥𝑥− (𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧)𝜔𝜔𝑦𝑦𝜔𝜔𝑧𝑧 (4) 

�𝑀𝑀𝑦𝑦 = 𝐼𝐼𝑦𝑦𝑦𝑦�̇�𝜔𝑦𝑦 − (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)𝜔𝜔𝑥𝑥𝜔𝜔𝑧𝑧 (5) 

�𝑀𝑀𝑧𝑧 = 𝐼𝐼𝑧𝑧𝑧𝑧�̇�𝜔𝑧𝑧 − (𝐼𝐼𝑥𝑥𝑥𝑥− 𝐼𝐼𝑦𝑦𝑦𝑦)𝜔𝜔𝑥𝑥𝜔𝜔𝑦𝑦 (6) 

where Ixx, Iyy, and Izz, are the system’s moments of inertia on 
each axis, and ωx, ωy, ωz, are angular velocity terms of the 
body-fixed frame. 

The sum of moments on each axis is calculated as 
follows 

�𝑀𝑀𝑥𝑥 =�(𝐹𝐹𝑦𝑦𝑖𝑖 ∙ 𝑧𝑧𝑖𝑖) +�(𝐹𝐹𝑧𝑧𝑖𝑖 ∙ 𝑦𝑦𝑖𝑖) (7) 

�𝑀𝑀𝑦𝑦 = �(𝐹𝐹𝑥𝑥𝑖𝑖 ∙ 𝑧𝑧𝑖𝑖) +�(𝐹𝐹𝑧𝑧𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖) (8) 

�𝑀𝑀𝑧𝑧 =�(𝐹𝐹𝑥𝑥𝑖𝑖 ∙ 𝑦𝑦𝑖𝑖) + �(𝐹𝐹𝑦𝑦𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖) (9) 

xi, yi and zi are the distances from the CoM to each foot in 
the x, y and z directions of the body-fixed frame. 

The thrust controller is a simplified version of the 
one used in [5] where the only aim is to control the descent 
rate 

𝐹𝐹𝑡𝑡ℎ = 𝐶𝐶 ∙ ��̇�𝑦𝑟𝑟𝑟𝑟𝑟𝑟 − �̇�𝑦�+ 𝑚𝑚𝑚𝑚 (10) 

where �̇�𝑦𝑟𝑟𝑟𝑟𝑟𝑟 is the desired descent rate and C is a constant. 

III. SINGLE-LEG MODEL 
This section presents the mathematical model of a 

single robot leg. Every leg used in the landing gear has the 
same structure. It has 2 links and two revolute joints at the 
hip and knee with its axes of rotation perpendicular to the 
XY body-fixed plane, therefore the leg-system has 2-DoF. 
The hip and knee angles of the leg i are represented by 𝜃𝜃ℎ𝑖𝑖 
and 𝜃𝜃𝑘𝑘𝑖𝑖  respectively with its origin as shown in Figure 2 and 
positive in the anti-clockwise direction. The length of the 
upper and lower links is represented by 𝑙𝑙𝑈𝑈𝑖𝑖 and 𝑙𝑙𝐿𝐿𝑖𝑖 
respectively and their masses are 𝑚𝑚𝑈𝑈𝑖𝑖  and 𝑚𝑚𝐿𝐿𝑖𝑖. For 
simplification, the masses are considered to be concentrated 
at the end of each link.  

 
Figure 2. Sketch of a robotic leg with relevant parameters. It shows 
dimensions and masses of links, joint angles and torques and external 
forces. 

The equations of motion of the single leg are derived 
using the Lagrange-Euler formulation as it presents a more 
systematic derivation and provides a closed-form 
expression [9].  

The equations of motion are obtained by solving the 
Euler-Lagrange equation: 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕ℒ
𝜕𝜕�̇�𝜃𝑛𝑛

�−  
𝜕𝜕ℒ
𝜕𝜕𝜃𝜃𝑛𝑛

= 𝜏𝜏𝑖𝑖 (11) 

where θn is the joint angle of the link n, andτi represents 
the torque applied to the joint i. 

The net torque acting on the hip and knee joints is 
given by the expressions [10]: 



𝜏𝜏𝑇𝑇ℎ = �(𝑚𝑚𝑈𝑈 +𝑚𝑚𝐿𝐿)𝑙𝑙𝑈𝑈2 +𝑚𝑚𝐿𝐿𝑙𝑙𝐿𝐿2

+ 2𝑚𝑚𝐿𝐿𝑙𝑙𝑈𝑈𝑙𝑙𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘��̈�𝜃ℎ
+ (𝑚𝑚𝐿𝐿𝑙𝑙𝐿𝐿2+𝑚𝑚𝐿𝐿𝑙𝑙𝑈𝑈𝑙𝑙𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘)�̈�𝜃𝑘𝑘
−𝑚𝑚𝐿𝐿𝑙𝑙𝑈𝑈𝑙𝑙𝐿𝐿�2�̇�𝜃ℎ�̇�𝜃𝑘𝑘+ �̇�𝜃𝑘𝑘2�𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘
+ (𝑚𝑚𝑈𝑈−𝑚𝑚𝐿𝐿)𝑚𝑚𝑙𝑙𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃ℎ
+𝑚𝑚𝐿𝐿𝑚𝑚𝑙𝑙𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃ℎ + 𝜃𝜃𝑘𝑘) 

(12) 

𝜏𝜏𝑇𝑇𝑘𝑘 = 𝑚𝑚𝐿𝐿𝑙𝑙𝐿𝐿2�̈�𝜃𝑘𝑘 + (𝑚𝑚𝐿𝐿𝑙𝑙𝐿𝐿2 +𝑚𝑚𝐿𝐿𝑙𝑙𝑈𝑈𝑙𝑙𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘)�̈�𝜃ℎ
+𝑚𝑚𝐿𝐿𝑙𝑙𝑈𝑈𝑙𝑙𝐿𝐿�̇�𝜃ℎ2𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘
+𝑚𝑚𝐿𝐿𝑚𝑚𝑙𝑙𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃ℎ + 𝜃𝜃𝑘𝑘) 

(13) 

The total joint torque, τTn, is the sum of the torque 
induced by the external forces acting on the leg, Fext, and 
the joint actuator torque, τn, produced by a PID joint 
controller. The external forces that are considered here are 
the ground reaction and friction forces. The torque induced 
in the joints by the external forces is computed using the 
transpose of the Jacobian matrix, JT. 

𝜏𝜏𝑇𝑇𝑛𝑛 = 𝜏𝜏𝑛𝑛 + 𝐽𝐽𝑇𝑇 ∙ 𝐹𝐹𝑟𝑟𝑥𝑥𝑡𝑡  (14) 

The inverse kinematics equations provide the 
reference joint angles for the joint controllers 

𝜃𝜃ℎ𝑟𝑟 = 𝑑𝑑𝑡𝑡𝑠𝑠−1�
𝑥𝑥
𝑦𝑦
�+ 𝑐𝑐𝑐𝑐𝑐𝑐−1�

𝑙𝑙𝑈𝑈2 + 𝑙𝑙2 − 𝑙𝑙𝐿𝐿2

2𝑙𝑙𝑈𝑈𝑙𝑙
�−  90° (15) 

𝜃𝜃𝑘𝑘𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐−1�
𝑙𝑙𝑈𝑈2 + 𝑙𝑙𝐿𝐿2− 𝑙𝑙2

2𝑙𝑙𝑈𝑈𝑙𝑙𝐿𝐿
�−  180° (16) 

𝑙𝑙 =
𝑦𝑦

cos (𝑑𝑑𝑡𝑡𝑠𝑠−1�𝑥𝑥𝑦𝑦�)
 (17) 

where the value of x is fixed, and the value of y has a fixed 
part and a variable part depending on the level controller 
output. This way, the terrain slope is overcome by adjusting 
the vertical position of the foot while maintaining the 
horizontal distance. 

The hip-foot distance is calculated using forward 
kinematics, based on the measured joint angles 

𝑥𝑥ℎ−𝑟𝑟 = 𝑙𝑙𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃ℎ + 𝑙𝑙𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃ℎ + 𝜃𝜃𝑘𝑘) (18) 

𝑦𝑦ℎ−𝑟𝑟 = 𝑙𝑙𝑈𝑈𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃ℎ + 𝑙𝑙𝐿𝐿𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃ℎ + 𝜃𝜃𝑘𝑘) (19) 

The foot position with respect to the ground is 
calculated using the CoM position and the hip-foot distance. 

IV. LEVEL CONTROLLER 
The level controller (LC) adjusts the position of the 

legs to maintain the main body in a stable position even 
when landing on a sloped terrain. It takes the roll and pitch 
angles as inputs and generates a signal to increase/decrease 
the height (y coordinate) of all legs in order to level the 
system (𝜃𝜃𝑥𝑥 = 𝜃𝜃𝑧𝑧 = 0).  

A proportional-integral (PI) controller is chosen to 
control the height of the legs. 

�
𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟
𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖ℎ

�=

⎣
⎢
⎢
⎢
⎡𝐾𝐾𝑃𝑃𝑒𝑒𝑧𝑧 +𝐾𝐾𝐼𝐼� 𝑒𝑒𝑧𝑧𝑑𝑑𝑑𝑑

𝑡𝑡

0

𝐾𝐾𝑃𝑃𝑒𝑒𝑥𝑥+𝐾𝐾𝐼𝐼� 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑
𝑡𝑡

0 ⎦
⎥
⎥
⎥
⎤
 (20) 

where yinc is the variation of the leg height (during roll and 
pitch motion), ei is the error in the respective angle between 
the desired value and the measured one (𝑒𝑒𝑖𝑖 = 𝜃𝜃𝑑𝑑− 𝜃𝜃) and 
KP, and KI are proportional and integral gains respectively. 

The height of each leg is adjusted by 
adding/subtracting the LC outputs to the initial height of 
each leg: 

𝑦𝑦𝐿𝐿𝐿𝐿 = 𝑦𝑦0 + 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟 + 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖ℎ (21) 

𝑦𝑦𝐿𝐿𝐿𝐿 = 𝑦𝑦0 + 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟 −  𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖ℎ (22) 

𝑦𝑦𝑅𝑅𝐿𝐿 = 𝑦𝑦0 −  𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟 −  𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖ℎ (23) 

𝑦𝑦𝑅𝑅𝐿𝐿 = 𝑦𝑦0 −  𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟 + 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖 𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖ℎ (24) 

Overall, the simulation starts with the legs in initial 
position and the CoM at the initial height (Figure 3). The 
aircraft descends at a controlled speed and the position and 
attitude of the body are computed. Using kinematics, the 
feet position are determined and when ground contact is 
made, the ground contact forces are simulated. As the 
landing gear tilts in the direction of the slope, the level 
controller measures the pitch and roll angles and corrects 
the desired position of each leg. With the inverse kinematics 
the reference joint angles are calculated and the PID joint 
controllers move the legs to the desired position. 

V. GROUND CONTACT MODEL 
A. Terrain definition 

The ground modelled in this simulation consists on 
a slope defined by two parameters: αAZ, which is the 
azimuth angle or rotation about y-axis, and αSL, which is the 
inclination of the slope (Figure 1). The azimuth parameter 
is introduced in order to create a 2-axes slope which 
direction is not aligned with the axes of the body-fixed 
frame. 

The ground slope coordinate system is defined by 
the Cartesian system formed by the normal direction to the 
ground, n, the parallel direction to the slope, p, and the 
transversal direction to the slope, t. To calculate ground 
reaction forces, the foot coordinates need to be referred in 
the ground slope coordinate system. The conversion from 
XYZ coordinates to the Parallel-Normal-Transversal (PNT) 
system is given by the expression:  

(𝑝𝑝, 𝑠𝑠, 𝑑𝑑)𝑇𝑇 = 𝑅𝑅(𝑧𝑧,𝛼𝛼𝑆𝑆𝐿𝐿) ∙ 𝑅𝑅(𝑦𝑦,𝛼𝛼𝐴𝐴𝐴𝐴) ∙ (𝑥𝑥, 𝑦𝑦,𝑧𝑧)𝑇𝑇 (25) 

where R(u,α) is a 3x3 rotation matrix of an angle α, around 
the axis u. 
B. Normal Force 

To simulate the ground contact forces during 
landing, a compliant contact model composed by a spring-
damper system has been used. The main advantages of this 
approach are its good performance and straightforward 
implementation. Numerous implementations of this 
technique have been reported [11], [12], [13]. 

Equation (26) represents the normal force to the 
ground when a foot lands. The ground reaction force resists 
the leg tip penetrating the ground surface and it is 
proportional to the amount of ground penetration (spring

 



 
Figure 3. System Block Diagram of a single leg. Initially, the rotorcraft starts at height, h0, and the legs in initial position (x0, y0). The thrust controller 
regulates the rate of descent and the roll and pitch level controllers adjust the position of the legs. The joint angles are calculated using inverse kinematics 
and PID joint controllers control the position of the legs. The ground reaction forces on each leg are calculated and fed back into the CoM equations of 
motion and the single-leg models. 

component) and the rate of penetration (damper 
component). 

𝐹𝐹𝑛𝑛�
−𝑠𝑠𝑖𝑖 ∙ 𝑘𝑘 −  �̇�𝑠𝑖𝑖 ∙ 𝑏𝑏             𝑠𝑠𝑖𝑖 𝑠𝑠𝑖𝑖 ≤ 0
0                                         𝑠𝑠𝑖𝑖 𝑠𝑠𝑖𝑖 > 0 (26) 

Where ni is the coordinate on the ith foot in the n 
direction), k  is the spring elastic constant, and b is the 
damping ratio. The normal force is zero before the impact 
and starts to make effect at the moment of touchdown, when 
ni≤0. To avoid ‘sticking forces’ only positive values of Fn 
are allowed.   
C. Friction force 

For the model, friction force exists between the foot 
and the slope surface (p and t axis) after touchdown. A 
number of frictional force models have been reviewed and 
considered [11], [13]. The frictional model used in this 
paper is a variation of the Coulomb friction model for its 
simplicity. 

Friction force has opposite direction to the sliding 
velocity, and is a non-linear function of the relative velocity 
and position of the two contacting surfaces. At the moment 
of touchdown, the friction force is in the “sticking” region, 
and it is modelled as a spring-damper system. It is 
proportional to the velocity and displacement of the foot in 
each direction. If the velocity and displacement keep 
growing until the friction force exceeds the maximum static 
friction force, 𝐹𝐹𝑟𝑟𝑆𝑆 , then the contact model switches to “slip” 
mode and the friction force is equal to the dynamic friction 
force, 𝐹𝐹𝑟𝑟𝐷𝐷 . 

𝐹𝐹𝑝𝑝�
−(𝑝𝑝𝑖𝑖 − 𝑝𝑝0𝑖𝑖) ∙ 𝑘𝑘 −  �̇�𝑝𝑖𝑖 ∙ 𝑏𝑏               𝑠𝑠𝑖𝑖 𝐹𝐹𝑝𝑝 < 𝐹𝐹𝑟𝑟𝑆𝑆
𝐹𝐹𝑟𝑟𝐷𝐷                                                       𝑠𝑠𝑖𝑖 𝐹𝐹𝑝𝑝≥ 𝐹𝐹𝑟𝑟𝑆𝑆

 (27) 

𝐹𝐹𝑡𝑡 �
−(𝑑𝑑𝑖𝑖 − 𝑑𝑑0𝑖𝑖) ∙ 𝑘𝑘 −  �̇�𝑑𝑖𝑖 ∙ 𝑏𝑏               𝑠𝑠𝑖𝑖 𝐹𝐹𝑡𝑡 < 𝐹𝐹𝑟𝑟𝑆𝑆
𝐹𝐹𝑟𝑟𝐷𝐷                                                    𝑠𝑠𝑖𝑖 𝐹𝐹𝑡𝑡 ≥ 𝐹𝐹𝑟𝑟𝑆𝑆

 (28) 

𝐹𝐹𝑟𝑟𝑆𝑆 = 𝜇𝜇𝑠𝑠𝐹𝐹𝑛𝑛 (29) 

𝐹𝐹𝑟𝑟𝐷𝐷 = 𝜇𝜇𝐷𝐷𝐹𝐹𝑛𝑛 (30) 

where μS and μD are the static and dynamic friction 
coefficients, and 𝑝𝑝0𝑖𝑖 and 𝑑𝑑0𝑖𝑖  are the p and t coordinates of 
the ith foot at the moment of ground contact. The distances 
(𝑝𝑝𝑖𝑖− 𝑝𝑝0𝑖𝑖) and (𝑑𝑑𝑖𝑖 − 𝑑𝑑0𝑖𝑖) are the displacement of the foot on 
each direction after touchdown. 
D. Resultant Ground Reaction Forces 

The normal and friction forces have been calculated 
with respect to the terrain slope coordinate system (PNT). 

They need to be converted to the world coordinate system 
(XYZ) before they can be introduced in the CoM equation of 
motion and the single-leg model 

�𝐹𝐹𝑥𝑥𝑖𝑖 ,𝐹𝐹𝑦𝑦𝑖𝑖 ,𝐹𝐹𝑧𝑧𝑖𝑖�
𝑇𝑇

= 𝑅𝑅(𝑠𝑠,−𝛼𝛼𝐴𝐴𝐴𝐴) ∙ 𝑅𝑅(𝑑𝑑,−𝛼𝛼𝑆𝑆𝐿𝐿)
∙ �𝐹𝐹𝑝𝑝𝑖𝑖 ,𝐹𝐹𝑛𝑛𝑖𝑖 ,𝐹𝐹𝑡𝑡𝑖𝑖�

𝑇𝑇
 

(31) 

VI. SIMMECHANICS MODEL 

Due to the increasing level of complexity of the final 
model derived, a second model has been constructed using 
a multibody system modelling tool to validate the first 
model. 

 
Figure 4. SimMechanics model. Mechanics Explorer view of the system 
landing on a slopped terrain 

The second model of the landing gear is modelled 
and simulated using the SimMechanics toolbox from the 
MATLAB/Simulink package. Using simulation blocks 
representing bodies, joints, constraints, sensors and 
actuators, and forces, it formulates and solves the equations 
of motion for the intended system. The model can also 
interact with control blocks developed in 
MATLAB/Simulink [14]. Figure 4 shows a view of the 
Mechanics Explorer, a part of the SimMechanics toolbox 
that allows the visualisation of the physical system that is 
being modelled so the dynamics and behaviour of the 
system can be easily observed.  

VII. SIMULATION RESULTS AND COMPARISON   

A. Simulation parameters 

The mathematical model is implemented in 
MATLAB/Simulink and the results are compared to a 
second model built in SimMechanics. The weights, 
dimensions and motors’ maximum torque used in the 



simulations have been chosen to match with those of a 
laboratory-built prototype that will be developed in future 
work. The parameters used in the simulations are 
summarised in Table 1. 

 
Table 1. Prototype physical parameters 

Parameter Symbol Value 
Upper/Lower leg mass 𝑚𝑚𝑈𝑈 /𝑚𝑚𝐿𝐿  0.1/0.15 kg 
Total system mass m 3.5 kg 

Upper/Lower leg length 𝑙𝑙𝑈𝑈/𝑙𝑙𝐿𝐿  0.0935/0.1045  m 
Main body dimensions Dx/Dy/Dz 0.1/0.2/0.2 m 
Motor max torque Tmax 18kfg⋅cm / 1.76Nm 
Spring coefficient k 1500 kg/s2 
Damper coefficient b 40 kg/s 
Friction coefficients µS /µD 0.8/0.5 

Descent rate �̇�𝑦𝑅𝑅𝑟𝑟𝑟𝑟 -0.25 m/s 
Terrain slope 𝛼𝛼𝑆𝑆𝐿𝐿/𝛼𝛼𝐴𝐴𝐴𝐴 20°/30° 

 
The PID controllers are tuned manually by trial and 

error to obtain the desired performance. The controller 
parameters are summarised in Table 2. 

 
Table 2. Controllers’ parameters 

Controller 
Gain 

Joint 
controllers 

Roll/Pitch LC 

KP 50 0.14 
KI 30 1.4 
KD 4.5 -- 

B. Simulation results 

The results of the simulations are shown in Figures 
5-9 where both models are tested and compared when 
landing on a slope at 20° of inclination and 30° of azimuth, 
at 0.25 m/s. 

Figure 5 shows the roll and pitch angles of the main 
body. It shows how, during touchdown the main body starts 
to tilt in the roll and pitch direction. Without the level 
controller the system would settle down at an inclination of 
about 19° and 11° respectively due to the slopped terrain. 
But with the level controller the maximum body inclination 
is reduced considerably and quickly settles to 0°. The 
variation of the yaw angle due to the action of the level 
controller is negligible. 

 
Figure 5. Roll and pitch angles of the main body. Blue plots represent the 
Simulink model and red ones represent the SimMechanics one. Dotted line 
without the level controller 

Figure 6 shows the translational movement of the 
CoM. As it can be seen, as the level controller corrects the 
attitude of the body, it also reduces the displacement of the 

CoM, giving more stability to the system.  Both models 
evolve at different paces but settle down at similar 
distances. The remaining displacement is mainly due to the 
displacement of the whole system along the terrain slope. 

 
Figure 6. Centre of Mass displacement in the XZ plane. Blue plots 
represent the Simulink model and red ones represent the SimMechanics  
one. Dotted line without the level controller. 

To correct the inclination of the helicopter body the 
level controller adapts the height of the robotic legs by 
adjusting the joint angles. Figure 7 shows the joint angles in 
all 4 legs where it can be seen how all 4 legs start in the 
same position and how, after touchdown, the right legs 
retract by increasing the hip angle and reducing the knee 
angle and opposite for the left legs. 

 
Figure 7. Joint angles is the Simulink and SimMechanics models 

Figure 8 shows the ground reaction forces. It can be 
seen how the forces at all legs converge to the same value 
as the roll and pitch angles settle back to 0°. 

 
Figure 8. Normal ground reaction force 

Figure 9 shows the joint torques in both models 
where it can be seen how the weight of the system is 



distributed between all four legs after landing. The values 
obtained in both models are very similar. 

 
Figure 9. Joint torques in the SimMechanics (SM) and Simulink (SL) 
models 

C. Results Analisis 

The comparison between the mathematical and 
SimMechanics models shows that both models behave in a 
very similar manner. However there are several factors that 
can affect system performances. For example, when 
deriving the dynamic model of the single leg, it is assumed 
that the mass of each link is situated at the end of the link, 
and for the system’s CoM, it is assumed that is located at 
the centre of the main body. By contrast, SimMechanics 
computes the centre of mass of each individual body. 
Another source of error can come from the system’s total 
inertia, which is not calculated for every link. Despite the 
differences produced in the result comparison in the 
preceding section, both models demonstrate close 
correlation in their performances.  

The level controller can be seen to reduce the peak 
inclination angle of the main body and ensure that the 
system is levelled. In this paper, the system has been tested 
on a slope of 20° of inclination which is beyond what a 
standard helicopter can handle. The maximum inclination 
that the system can handle will depend on the chosen 
parameters like the geometry of the legs and the terrain 
properties. In terms of leg geometry, the length of each leg 
segment and the separation between the feet will determine 
the maximum distance that the legs can extend/retract and 
therefore the maximum terrain slope that it can be 
overcome. Regarding the type of terrain, the friction 
coefficients will determine the maximum inclination before 
the system starts to slide down the slope. By changing these 
coefficients, different terrain types can be modelled for 
further analysis. 

VIII. CONCLUSIONS 

This paper has presented a methodology to obtain 
the dynamic model of multibody systems, in this case, a 

landing gear for helicopters consisting of four robotic legs 
and a main body. Apart from the nonlinear dynamic 
equations, the model also includes the kinematic equations, 
a landing scenario, a controller to regulate the rate of 
descent, a ground contact model to simulate the ground-leg 
interaction, and a level controller to maintain the stability of 
the main body when landing on uneven terrains. The model 
has been designed in MATLAB/Simulink environment and 
its performance has been compared with a SimMechanics 
built model. The results have shown a very similar 
behaviour from the two models. The performance of the 
level controller in both cases provides good correlation and 
maintains the stability of the helicopter while landing on 
slopped terrain. 

The dynamic model presented in this paper 
constitutes a flexible tool that can be used to test different 
landing conditions. 
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