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Abstract— We introduce an approach for the real-time (2Hz)
creation of a dense map and alignment of a moving robotic
agent within that map by rendering using a Graphics Processing
Unit (GPU). This is done by recasting the scan alignment part
of the dense mapping process as a rendering task. Alignment
errors are computed from rendering the scene, comparing with
range data from the sensors, and minimized by an optimizer.
The proposed approach takes advantage of the advances in
rendering techniques for computer graphics and GPU hardware
to accelerate the algorithm. Moreover, it allows one to exploit
information not used in classic dense mapping algorithms such
as Iterative Closest Point (ICP) by rendering interfaces between
the free space, occupied space and the unknown. The proposed
approach leverages directly the rendering capabilities of the
GPU, in contrast to other GPU-based approaches that deploy
the GPU as a general purpose parallel computation platform.

We argue that the proposed concept is a general consequence
of treating perception problems as inverse problems of render-
ing. Many perception problems can be recast into a form where
much of the computation is replaced by render operations. This
is not only efficient since rendering is fast, but also simpler to
implement and will naturally benefit from future advancements
in GPU speed and rendering techniques. Furthermore, this
general concept can go beyond addressing perception problems
and can be used for other problem domains such as path
planning.

I. INTRODUCTION

We explore using the native rendering pipeline of a GPU
to solve perception problems, such as the generation of a
dense map suitable for planning and localization of a moving
agent within the dense map. Instead of using the GPU as
a general parallel computing platform, i.e., general purpose
GPU (GPGPU) computing. We aim to exploit computer
graphics rendering pipelines and take advantage of the vast
amount of work already invested in improving this pipeline
for simulation, video-gaming, movie, and many other indus-
tries.

We argue that, rather than the utility of rendering being
serendipitous, it is a product of a more fundamental premise:
Perception is the inverse of rendering. Perception is the act
of constructing a model of the environment from sensory
data whilst rendering is simulating the sensory data given
a known environment. As such, many perception problems
such as localization and mapping can be directly solved by
repeatedly rendering the perceived environment and mini-
mizing alignment errors within the rendering environment.

In order to use the computer graphics rendering pipeline
directly to solve perception problems, we recast perception

1Julian Ryde is with United Technologies Research Center (UTRC).
julian.ryde@utrc.utc.com

2Xuchu (Dennis) Ding is with Exyn Technologies Inc.
xding@exyntechnologies.com

problems to make them expressible as direct GPU rendering
problems. In particular, we focus on the real-time creation
of high resolution textured polygon meshes from moving
Lidar and RGB-D sensors, such as the Kinect or Asus Xtion
Pro, and compute the alignment with respect to these meshes
to localize a moving autonomous agent. Such maps of the
environment are vital for the navigation and control of mobile
autonomous platforms, as well as useful for inspection tasks
and monitoring.

The advantages of this approach are twofold: faster com-
putation time and a reduced implementation burden. The
computer graphics industry exploits many sophisticated tech-
niques to maximize utility of the rendering hardware to
generate a scene. Comparing to solving perception problems
on a CPU or using GPGPU, an algorithm accelerated by
rendering requires less code and will automatically benefit
from improvements that will be made to the speed and
accuracy of rendering techniques.

Moreover, this approach allows us to take advantage of
rendering techniques to exploit information either tradition-
ally disregarded or difficult to utilize without specialized
data structures. As such the proposed algorithm exploits the
complete information from sensors capable of outputting a
point cloud such as a Lidar or a RGB-D sensor. In the case
of computing alignments for the pose of a moving agent
within a dense map, we are able to utilize not only the
information of "occupied space" such as point clouds, but
also information of the implied "free space" between the
occupied space and the unknown. This is done by rendering
interfaces between the free, occupied and unknown space as
polygonal meshes and using them during alignments. Note
that computer graphics is particularly efficient and highly
advanced for rendering polygonal meshes. We argue that
comparing to traditional point-based approaches, such as
the ICP algorithm [1], the proposed algorithm is inherently
capable of better accuracy and robustness since it utilizes
information that is not available to ICP algorithms (i.e., not
only the range data directly observed, but also range data
derived from the known and observed free space).

The contributions of this paper are threefold. First, we
propose a localization and mapping pipeline that can rely on
graphics rendering to efficiently generate a dense occupancy
map and compute alignments within that map. This pipeline
is modular and both the alignment step and map-update
step can be accelerated by rendering. Second, we propose
a render-accelerated alignment strategy via optimizing a
carefully crafted cost function computed from rendering the
scene and interfaces between free space, occupied space, and
the unknown. Third, we show that the concept of perception
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as the inverse of rendering is general, and can be applied
to existing algorithms, such as ICP. As such we propose a
render accelerated ICP strategy for alignment.

The focus of this paper is to present the process of
recasting the scan alignment part of dense mapping process
as rendering tasks, with steps required to set up the proper
rendering environment such as meshification. Each iteration
of the scan alignment corresponds to a render of the scene
in a candidate pose. We use standard approaches for other
aspects of the mapping process (i.e., voxelization, map-
update and loop closure). We believe that it is possible
to recast the other parts of the process also as rendering
problems, but will leave them as future work.

We note that there may be other robotics problems that
can be cast as a rendering task and thus take advantage of
rendering capabilities of the GPU. Discussions on possible
future applications of the proposed ideas to other problems
can be found in Sec. VII.

II. BACKGROUND AND RELATED WORK

Simultaneous Localization and Mapping (SLAM) has
widely been used to solve the chicken-and-egg problem
of localization and mapping in an unknown map. SLAM
includes approaches based on Particle Filters [2], extended
Kalman Filters (EKF) [3], Probabilistic Hypothesis Density
(PHD) [4], and many others. For a survey, see [5].

However, many approaches, such as the aforementioned
ones, focus on producing localizations and maps with respect
to a sparse set of features. In this paper, we instead focus
on 3D dense map (i.e., occupancy maps that represent the
environment) construction from point-cloud data collected by
a ranging sensor such as a RGB-D sensor or a Lidar, because
we are interested in path planning and other tasks that can
be performed on dense maps. For dense map construction,
ICP [1] or Probabilistic methods [6] have been commonly
used for pose alignment between scans of point-cloud, and
Bayesian occupancy-grid [7] is a common approach to
represent and update the map. Some existing work exploits
general purpose computing on the GPU for mapping smaller
volumes, [8], [9], and more recently with OpenCL [10] rather
than directly using the GPU rendering functionality. [11] uses
the GPU for quick ray triangle intersections to process laser
range data, [12] tackles Lidar scan matching on the GPU,
and [13] exploits the fragment and vertex shaders.

Texture mapping for robotics applications has received
some attention [14], which mainly focuses on techniques
to enhance the compression of textures. The process of
generating the mesh for texturing in [15] is a modified
marching cubes followed by mesh reduction and filtering
and region growing of planes with texturing.

Random ball cover [16] is a data structure optimized for
parallel processing for nearest neighbor search in dimensions
21-78. It has proved successful for the low dimension 3D
nearest neighbor search on multi-core systems. When porting
algorithms to the GPU there are numerous performance
considerations. GPUs have many cores, but each core has
only fast access to a small subset of limited memory, global
memory access is comparatively slow, as such, communica-
tion between cores should be minimized.

The state-of-the-art for GPU mapping is perhaps [16]
and others have achieved interactive frame rates [17]–[20].
[16] note 1-2ms per ICP iteration and ICP convergence
times of 20ms for scan-to-scan matching. [16] comments
that the nearest neighbor search dominates the run time so
optimization should focus on this part of the procedure.

The closest approaches involving the direct comparison
of the z-buffer are [21], [22]. Others [23] employ a low
fidelity prior 3D model of the area of operation consisting of
large planar sections and compare both color and depth for
Monte Carlo based localization. For considering the surface
elements of a scene, [24] implement surfels rather than a
mesh to represent the map.

III. RENDERMAP

We propose an alignment and mapping framework based
on rendering that addresses the following issues:

1) Able to construct a dense map: existing feature-based
SLAM implementations as discussed in Sec. II would
not be sufficient;

2) Work with a large variety of operating environments:
existing methods, such as ICP would fail in environ-
ments with long edges such as an oblique wall;

3) Easily integrate between different sensor modalities:
difficult for existing methods such as ICP to fuse
several different sensor data for alignment such as
RGB and depth data;

4) Efficient in processing speed: bottleneck of ICP meth-
ods is the nearest neighbor search, which does not scale
well with large point-cloud data; and

5) Efficient in memory requirement: bottleneck of
Occupancy-grid methods for map-update is the size
and resolution of the grid, which does not scale well
with large environment.

The rest of the paper will discuss how issues (1)-(5) will
be addressed in the proposed framework. An overview of
the proposed framework is shown in Fig. 1. Note that the
proposed framework is modular and both the map alignment
module and the map update module can be render accelerated
or not. In this paper, we focus on two render accelerated
scan-to-map alignment strategies. The first is a direct numer-
ical optimization on the per-pixel error metric between the
z-buffers. The second is an approximated version of point-
to-plane ICP modified to benefit from GPU renders of the
scene. These are described in detail in the section IV and V
respectively. In this paper, we assume the use of traditional
occupancy grids for map-updating. Full render accelerated
mapping pipeline, including render accelerated map-update
which will be examined as future work.

IV. OPTIMIZATION-BASED Z-BUFFER ALIGNMENT IN
RENDERED ENVIRONMENT

There is strong motivation for direct optimization based
alignment techniques [25] mainly because there are some
fundamental limitations with ICP and other point based
approaches. For ICP, although very effective in certain situ-
ations, complications arise predominantly when establishing
the association or correspondence among points.

2



Polygon
Mesh

Map
Render

Render accelerated
 Aligner

Depth
Image

Render accelerated
 Map-updater

Voxel
Cloud

Voxels

Scan
Renderer

Depth
Image

Point
Cloud

Pose

RGBD Velodyne

IMU

Pose

Fig. 1. Overview of the full render-based dense-mapping system. Render
accelerated alignment will be discussed in Sec. IV (optimization-based) and
Sec. V (ICP-based). In this paper, we assume map-updater is standard, and
will leave render-accelerated map-updater as future work (thus in shades).
IMU input is optional and can provide better initial estimates

Fast determination of the closest point is a major bottle-
neck in the processing speed of ICP. The closest point prob-
lem can be alleviated to some degree by sophisticated spatial
data structures and proximity approximations (approximate
or projective nearest neighbour).

As mentioned in Sec. III, there are more fundamental
problems with range alignment based on ICP which arise
from its neglect of free space. Rays emanating from a
range sensor terminate with a distance measurement and
the terminated points are fed into ICP alignment algorithms.
However, this is an approximation of the full ray and there
is no information derived from rays as the fact that there is
free space until the terminated point is useful information.
Moreover, if the rays do not return due to the lack of
terminating points, they still contain valuable information
as to the absence of obstacles that should included in the
alignment process. These are ignored in ICP algorithms.

This omission of information can cause problems in com-
mon scenarios such as observing the corner of the surface
of a table or viewing the edge of building where only the
ground plane and a obelisk wall and its edge are visible. As
an example, consider the relatively common case of using
RGBD sensors to match an observed corner of a table surface
to a table (see Fig. 2). Some practical examples of these
types of failures will be shown in Sec. VI. This may be
addressed with an occupancy grid approach, but optimizing
over a potential large span of the grid can be infeasible or
not scalable and can be difficult to implement.

In this section we propose an alignment strategy based on
using the Z-buffer obtained from each pixel after rendering

Sensor FOV

True map

Unknown

Free

Occupied

Unknown

Free

Occupied

Considering points only gives valid 
alignment anywhere along edge

Misalignment along edge clear
from free space consideration

Fig. 2. Diagram showing why methods that only consider points, such
as ICP, fail to correctly align in certain situations. Consider a sensor field-
of-view as shown in the top-left figure. Top-right figure shows that the
alignment will have an error if only considering the points, as they can
misalign anywhere along the edge of the wall. Now consider aligning with
all provided information including free space as shown in the bottom-left
figure. Bottom-right figure shows that misalignment will not occur in this
case.

the scene appropriately by the GPU. Z-buffer (also called
depth-buffer) computation is an essential step of the GPU
rendering pipeline to determine what to render for each pixel,
and Z-buffer images can be obtained as the output of the
rendering process. The Z-buffer image is similar to a depth
image where each pixel indicates the distance between the
camera and the rendered object.

Alignment between scan-to-scan or scan-to-map can be
seen as the problem of minimizing the Z-buffer misalignment
error. As such, we carefully craft a cost function that can be
evaluated in a rendered environment. Instead of using a grid-
type approach, we simply render the partitions between oc-
cupied, free and unknown space as polygonal mesh surfaces.
Therefore, this approach can take into account all observed
information when aligning to the map. The challenge of this
approach is to design the cost function carefully to consider
all cases where each pixel may land on free, occupied or
unknown space.

Although we focus on range-only alignment in results
shown this paper, another advantage of direct render based
optimization is the ease with which color information can be
incorporated into the cost function and hence factored into
the alignment optimization.

A. Meshification and Rendering
The space in the environment can be partitioned into

three volumes: free, unknown, and occupied space. Between
these three volumes there are three partitions or interfaces:
free-unknown, free-occupied, and unknown-occupied. An
example of such volumes and partitions is shown in Fig. 3.
Converting the volumetric representation of the space into its
partitioning interfaces enables representation of the volumes
on the graphics card, which is particularly designed to render
surfaces (textured polygon meshes) quickly. By rendering a
depth image and comparing with sensor range image we can
analyze each pixel as a measurement ray emanating from
within the sensor field-of-view towards the scene, and reward
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Fig. 3. 2D example illustrating the free, occupied and unknown space and
interfaces between these volumes for a particular scan of a range sensor.

Fig. 4. Render of polygonal mesh space-partitioning interfaces for a single
range image in a synthetic scene. The ceiling has been removed from the
scene to aid visualization. Green surfaces represent the interface between
free space and unknown space. Gray surfaces represent the interface between
free and occupied space. White is the background color, indicating area with
no space information data.

or penalize based on if the ray landed inside the free space,
the occupied space or unknown space.

An example of the mesh generated from a single range
image is rendered in Fig. 4. Note that the interface between
occupied and unknown space are usually "behind the view-
port", therefore hidden and not needed to be rendered. The
mesh is generated from a range image or other structured
range data by generating quadrilaterals between adjacent 2
by 2 pixels in the range image. Pixels for which there was
no range readings are assumed to indicate free space up to a
sensor dependent maximum. For example, maximal range of
4 meters is used for structured light RGB-D sensors such
as the Mcrosoft Kinect and ASUS Xtion Pro. No-return
pixel quadrilaterals are drawn at this maximal distance and
colored green. Quadrilaterals that are too large (> 0.1m) and
span range discontinuities are also colored green to denote
the free-unknown interface. The remaining quadrilaterals
approximate the observed free-occupied interface and are
colored gray. Space with no information (i.e. space beyond
all the surfaces) are colored with a background color (we
used white). This process in 2D is summarized in Fig. 5.

From Fig. 5, we can see how the full space information
taken from each scan can be used for alignment. Alignment
error can be determined by rendering the scan to be aligned
at a candidate pose, e.g., if the space is supposed to free
but now observed from Z-buffer value of the pixel that it is
occupied or unknown, then there is an alignment error.

B. Cost Function

After rendering the scene with all the interfaces between
free, occupied and unknown space, we aim to design an
objective function to have both a large region of convergence
and a unique extremum at or very close to the true pose. Due

Terminated ray

Un-terminated ray

Free-unknown

Free-occupied

Terminated ray

Un-terminated ray

Free-unknown

Free-occupied

Fig. 5. 2D diagram of meshification of surfaces. Left: range measurement
rays from two consecutive scans (left is first scan and right is the second).
Right: 2D surfaces created from the first scan, which will be used for
alignment to compute the pose of the second scan. In this case, the free-
unknown interface created by the first scan is "seen" by the second scan.
This can be useful for alignment - if the alignment is such that the free-
unknown interface is not seen, then there is an error as it does not agree
with the space information given from the first scan.

to the separations of the range measurements, corresponding
rays from two scans will hit slightly different points. This
issue is mostly addressed by the meshification rendering
process as discussed in the previous sub-section, since we
are rendering surfaces instead of points. But due to errors
from the sensor and the fact that the range measurements
may not be sufficiently dense, the rendered surfaces will
always be an approximation of the actual environment. Thus,
the objective function would not be guaranteed to have an
extremum exactly at the true pose and our goal is to design
the cost function to have the unique extremum as close as
possible to the true pose.

Consider the problem of computing the relative pose from
the current scan to the previous scan or the map. Denoting
the pose as X = (x, y, z, θx, θy, θz), we propose the error
function

E(X) = C(R(T (X)), Zs), (1)

where R(Y ) is the Z-buffer image of the GPU render of the
previous scan at a particular camera pose Y , T transforms
the pose X of the observer to the pose Y of the camera,
the Z-buffer image of the meshes rendered from the current
scan is denoted as Zs, and C(Z1, Z2) is a function that
compares two Z-buffer images at each pixel in the image
and produces a scalar output. Note that this error function is
defined the same way for scan-to-scan alignments and scan-
to-map alignments (in this case, consider R(Y ) as output of
rendering of the map at camera pose Y ).

The key is to design the function C to be a good metric
for alignment error. Denote Zr = R(T (X)) as the Z-buffer
of the map rendered at a candidate pose X , note that each
pixel of Zr can either land at free-occupied surface, free-
unknown surface or unknown-occupied surface and the depth
value corresponds to the distance to the surface, or the value
can be a NaN (not a number) which indicates that the ray
emanating from the pixel does not hit any rendered surfaces
(i.e., it reached an area with no space information). Similarly,
each pixel of the Zs can be either on the free-occupied or
free-unknown surface, created from the points in the current
scan. By definition, this Z-buffer image will not contain any
pixels on the unknown-occupied space (as they cannot be
seen). It also should not contain any NaN unless there are
dead pixels in the depth image.
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TABLE I
TABLE FOR COMPUTING THE ERROR E(X), AS DETERMINED BY THE DEPTH VALUE OF EACH PIXEL d(ps) IN CURRENT SCAN Zs AND THE DEPTH

VALUE d(pr) OF THE CORRESPONDING PIXEL IN THE MAP OR THE PREVIOUS SCAN Zr , SUMMED OVER ALL PIXELS. ∆z = d(pr)− d(ps) AND

ε = 0.1m IS THE INLIER-OUTLIER REJECTION THRESHOLD . THE N/A IN THE TABLE INDICATE SITUATIONS THAT DO NOT ARISE. THE "IGNORE"
CELLS IN THE TABLE INDICATES SITUATIONS WHERE THERE IS INSUFFICIENT INFORMATION TO DETERMINE A REWARD OR A COST.

Pixel ps of current Scan Zs

Free-occupied Free-unknown Unknown-occupied NaN

Pixel pr of
Map/Previous

Scan Zr

Free-occupied Penalize (+1) if |∆z| > ε
Reward (-1) if |∆z| ≤ ε

Penalize (+1) if ∆z ≤ 0
Reward (-1) if ∆z > 0

N/A ignore

Free-unknown Penalize (+1) if ∆z > 0
Reward (-1) if ∆z ≤ 0

ignore N/A ignore

Unknown-occupied ignore ignore N/A ignore
NaN ignore ignore N/A ignore

Fig. 6. Example images showing pixel classifications colored based on
Table I. Green in the top images represents the free-unknown interface.
Top-left: rendering of the current scan. Top-right: rendering of the previous
scan at the initial pose. Bottom: each pixel is labeled with color for
their comparison classification. Cyan: penalized outliers on free-occupied
interface and when |∆z| > ε; Blue: rewarded inliers on free-occupied
interface; Yellow and Orange: unterminated rays in either current scan or
map render; Red: both are on the free-unknown interface.

The complete logic to determine the cost function is
summarized in Table I. This table is created from desired
behaviors of a correct alignment. For example, if a pixel in
the map/previous scan lands on the free-unknown surface
and the pixel in the current scan lands on the free-occupied,
then ∆z > 0 indicates an alignment error, since there is now
occupied space in area which was cleared previously.

The algorithm to compute E(X) is as follows. Every
ray from the sensor either terminates on a surface and
is a line segment or continues indefinitely and is a ray.
We first determine the classification of the pixel (which
surface does it terminates on?), then the per-pixel-error error
value is derived based on Table I. The total error E(X)
is computed by summing the per-pixel error for all pixels.
Fig. 6 shows the process running on an RGB-D dataset
(fr3/long_office_household dataset [26] at scan 400). We also
plot the cost function around the true pose at the same scan
in Fig. 7.

C. Optimization
The objective function is vital for effective optimization.

Ideally, the objective function should be smooth, have low
noise, and have a large region of convergence with a unique
minimum near the true-pose. However, similarly to ICP and
other optimization-based approaches, the issue of multiple
local-minima is generally possible and should be addressed.
The cost function as discussed in the previous section is
designed so that the region of convergence is sufficiently
large. There is at least one local minimum outside of the
region of convergence, in the case where the camera pose
is pointing away from the map (in this case, all pixel in Zr

are NaNs). In the relevant pose-space of interest (i.e., about
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Fig. 7. Cost function E(X) plotted near the true pose (red dot) for the
scan as shown in Fig. 6. Top figure is positional displacement in meters and
bottom figure is angular displacement in radians.

20-30cm around the true pose) and running the data-set as
described in Sec. VI, we have indeed seen the cost function
to exhibit a unique global minimum very close to the true
pose (as shown in Fig. 7) in all scans. However, this is only
supported by empirical evidence and the cost function may
exhibit multiple local minima for some scenes.

We realize that there are opportunities (and more work
to be done) to adjust the shape and characteristics of the
objective function to improve convergence for optimization
and reducing non-ideal local minima, such as adjusting the
per-pixel-error calculation to exclude large changes in value
when changing the pose, post processing the depth images
by Gaussian blurring to reduce noise in the cost function,
and introducing costs and rewards based on colors of corre-
sponding pixels (similar to [27]). Furthermore, adjusting the
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weight for penalties and rewards within the cost function for
different classifications in Table I can help make the descent
sharper and remove the local minimum when the camera is
positioned away from the map.

For the cost function presented in this paper, we use
a number of derivative-free optimization methods such as
Nelder-Mead and Powell’s method [28] aided by initial rapid
gradient-descent. Note that as shown in Fig. 7, the cost
drop-off along some coordinate axes are more rapid than
others. This indicates a Rosenbrock-like function [29] and
as such can be efficiently solved by Coordinate Descent
or Adaptive Coordinate Descent approaches when near the
"valley". In order to minimize the number of evaluations of
the cost function (each requires one render), we use a hybrid
optimizer that combines a number of the above approaches.
The results in this paper are obtained by using an optimizer
with initial gradient-descent, then a number of Nelder-Mead
iterations plus some Coordinate Descent iterations once near
the minimum.

V. RENDER ACCELERATED ICP

We now describe using rendering techniques to speed up
existing algorithms, such as ICP. For point-to-plane ICP,
a set of corresponding points and their associated normals
are needed. To achieve this we recast the ICP algorithm
into a render problem. The most time consuming aspect
of ICP is the point-to-point correspondence. We relax the
nearest point requirement and instead use an approximation
of nearest point along the observer ray, sometimes referred
to as projective correspondence [30]. This distance is usually
a good approximation to the nearest neighbor, improving as
the surface normal aligns with the view direction.

This approximated ICP problem can be solved by con-
sidering the difference between the Z-buffer rendered from
a camera pose and the depth map of the scan. Given these
observed ray correspondences the errors are minimized to
produce the next pose in the iteration. This process is a
follows:

1) Acquire points X0 from laser scan/RGB-D image;
2) Convert X0 to polygon mesh to create a map M ;
3) Convert X1 to a depth map Z1;
4) Render M from initial guess pose P0 to get depth map

ZM of same size as Z1;
5) Compare ZM and Z1 to generate a cost C =∑

ij |ZM − Z1|; and
6) Adjust P1 to minimize C via ICP given the pixel-to-

pixel correspondences in the depth map/z-buffer.
Given two sets of corresponded points we can solve for

the rotation and translation. According to [30] the matching
strategy has the largest effect on the convergence and hence
speed of ICP. This projection-based matching results in a
slightly worse performance per iteration but is faster to
compute versus closest-point (especially for GPU renders),
and it requires the point-to-plane error metric [31].

Every pixel in the depth map can be converted to its
position in space. Only those with a z-difference of less than
a tolerance are considered associated and passed to the ICP
minimization. The values from the Z-buffer zb are converted

to real perpendicular distances from the camera plane as
Z = z0/(1 − zb(1 − z0/z∞)) with z0 and z∞ being the
near and far clip distances. The pixel coordinates for each
range pixel in the render buffer are then converted to their
real world position.

Experimentally, it was determined that point-to-point ICP
does not work well with the projective association. This
becomes apparent when the ICP point-to-point projection
based correspondence lines for a typical alignment are
shown. Point-to-plane ICP works well with the projective
correspondence. Fig. 8 outlines the process for generating
the normals necessary for point-to-plane ICP and how they
are rendered to accelerate the normal lookup.

A. Z-buffer ICP Alignment
In general for the purposes of robot navigation, point-to-

plane ICP is better than point-to-point ICP. This is mainly
because the distribution of Lidar points is not uniform
over the surrounding surfaces. Oblique surfaces create an
anisotropic distribution of Lidar returns. Inspecting the Lidar
returns from the ground plane reveals rings of returns due
to the interaction of the scan pattern and the oblique ground
plane. The rings of returns present significant problems to
point-to-point ICP because they are preferentially aligned.
Since these rings are artifacts of the scan pattern rather
than features of the environment, their alignment does not
contribute to accurate pose. Point-to-plane ICP is not affected
by this because points are aligned to the ground plane rather
than the ring points.

Point-to-plane ICP requires a fast method for calculating
the surface normals directly from a depth image. The method
is similar to shape from shading [32] and more recently to
[33]. The depth image is smoothed with a Gaussian and then
the gradient computed by central differences across and down
the depth image z = f(x, y) to give the partial derivatives
∂z/∂x and ∂z/∂y. These are converted into the surface
normal N(x, y) via the cross product,

N(x, y) =

 0
∂y
∂z

×
∂x0
∂z

 =

 ∂y ∂z
∂z ∂x
−∂y ∂x

 . (2)

Fig. 8 shows an example of surface normals estimated
from a single depth image.

B. Sequential Depth Image Alignment
We now outline the render based sequential depth image

alignment algorithm. Consider a series of range images Di

taken sufficiently quickly that the pose displacement between
each is small. Small means that the pose difference should
be within the convergence region of ICP which is typically
less than 1m and 20 degrees. This algorithm calculates the
pose difference between two sequential depth images Di and
Di+1.

1) Downsample Di by factor of 2 and filter out points
that are too far;

2) Calculate normals Ni of Di via (2);
3) Render the points of Di colored by their normals.

This associates depth image points with those in the
rendered view and their surface normal;
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Fig. 8. First and second, the RGB image and depth image from an RGB-D sensor. Third, the corresponding surface normal image in which the surface
normals are encoded by pixel RGB value. Depth image surface normals are estimated by (2). The normal map enables very fast point-to-plane ICP because
point-to-plane ICP requires pairs of corresponding points and their normals. Coloring by normal means that associated points and their normal can be
quickly looked up by rendering from the estimated sensor point of view.

4) Perform point to plane ICP of points Di+1 to calculate
the relative pose transform matrix between Di and
Di+1; and

5) Move render camera to new pose and repeat from 3.
This is repeated to return the pose differences between
all sequential Di. With any odometry type method, long
term drift is a problem. This error can be reduced by
matching until the pose displacement is significant rather
than matching strictly sequentially.

VI. RESULTS

Experiments are performed on sequential alignments of
successive point clouds using RenderMap alignment (Sec.
IV). Although less accurate than aligning each scan to the
entire map, this so called scan-to-scan matching allows for
a more controlled comparison between ICP and RenderMap.
By only considering each scan to a previous scan, the effects
of the map update mechanism and cumulative errors are
avoided and a direct comparison of the localization efficacy
is possible.

ICP is perhaps the most popular scan matching algorithm
and has numerous variants. As such, we benchmark for
accuracy against a standard point-to-point ICP algorithm
with outlier rejection threshold of 0.2m.

For optimum performance, rendering is performed off
screen and all anti-aliasing is disabled. The render window
is 240 by 320 pixels.The GPU for these experiments was an
Nvidia Geforce GTX 765M with render speed of around 300
million points per second. Rendering a scene of a single 240
× 320 RGB-D camera is typically 1ms, this rate might fall
for large scenes but this can be managed by the near and far
culling planes of the view frustum.

Experiments are conducted on the publicly available
Freiburg datasets [26] based on RGB-D sensor mea-
surements. We ran sequential scan matching on one
of the more representative and challenging datasets
fr3/long_office_household. Our optimizer based scan match-
ing achieved an average error of 0.02m per second of data
which is similar to the errors of contemporary scan matching
methods listed in [34]. It is worth noting that alignment
optimizer is running on the depth data alone. On the same
dataset the median error drift rate for our alignment optimizer
was 0.009m/s versus 0.019m/s for ICP.
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Fig. 9. Comparison of the distribution of error drift rates for scan matching
all data in the fr3/long_office_household dataset versus that for ICP. In
RenderMap, about 85% of the time the position error is less than 1cm
whereas for ICP it is only about 28%.

The result is shown in Fig. 9. Note that many scans in this
dataset failed to align with ICP but aligned with RenderMap
approach. The average number of evaluations of the cost
function (each require one rendering) across all sequential
matches is about 700. The average displacement between
scans across all sequential matches is about 0.15m. The time
required to match each scan would depend on the graphics
card. For one such as Nvidia Geforce GTX 765M the render
time is well below 1ms per frame, thus our approach is shown
to be capable of running in real time since we are matching
scans one second apart.

VII. CONCLUSIONS AND FUTURE WORK

We present a number of improvements to dense 3D
mapping. One is changing from representing three volumes
for dense mapping, (occupied, free and unknown) to one that
represents the interfaces between these volume via conver-
sion to a polygon mesh (meshification). Once represented in
this manner, alignment and map updates can be accomplished
via GPU renders and therefore greatly accelerated. This
is different to general purpose GPU (GPGPU) approach
which takes conventional algorithms and leverages parallel
processing to speed up their computation. Second, we devise
a cost function that incorporates, in addition to the standard

7



free-known interfaces the free-space information, the free-
unknown boundaries and information from pixels that have
no range reading. Rather than point based methods such
as ICP we perform optimization on this cost function to
find the pose of the best alignment for each incoming scan
by performing many repeated GPU renders. We tested pro-
posed algorithms on a public range image dataset (Freiburg
[26]) for sequential scan-to-scan matching. These experi-
ments demonstrated superior accuracy and robustness when
compared to ICP. Robustness is particularly important for
many robotics applications where localization reliability is
paramount for reliable continuous operation. We plan to test
the algorithm with additional public datasets in the future to
better benchmark the algorithm with other dense mapping
algorithms.

This work lays the pathway for future work on large scale
3D dense mapping via efficient scan-map matching as well
as the potential for fast render accelerated map updates. We
note that there are many more robotics problems (not limited
to perception) that stand to benefit from GPU rendering,
including point-to-plane ICP, ray traced map updates, ob-
ject detection, nearest neighbor search, path planning, and
collision checking. Thus, the concept proposed in this paper
may be general and can have large impact on a variety of
algorithms used to solve autonomy problems.
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