
Design and Analysis of Modular Pipe Climber-III
with a Multi-Output Differential Mechanism

Vishnu Kumar∗, Saharsh Agarwal∗, Rama Vadapalli∗, Nagamanikandan Govindan∗, K Madhava Krishna∗

Abstract—This paper presents the design of an in-pipe climb-
ing robot that operates using a novel ‘Three-output open
differential’(3-OOD) mechanism to traverse complex networks
of pipes. Conventional wheeled/tracked in-pipe climbing robots
are prone to slip and drag while traversing in pipe bends.
The 3-OOD mechanism helps in achieving the novel result of
eliminating slip and drag in the robot tracks during motion.
The proposed differential realizes the functional abilities of the
traditional two-output differential, which is achieved the first
time for a differential with three outputs. The 3-OOD mechanism
mechanically modulates the track speeds of the robot based on
the forces exerted on each track inside the pipe network, by
eliminating the need for any active control. The simulation of
the robot traversing in the pipe network in different orientations
and in pipe-bends without slip shows the proposed design’s
effectiveness.

Index Terms—Three-Output Open Differential (3-OOD),
Mechanism, Design, Pipe climber

I. INTRODUCTION

Pipe networks are omnipresent, primarily used to transport
liquids and gases in industries and urban cities. Most often,
the pipes are concealed to comply with the safety guidelines
and to avoid risks. This makes inspection and maintenance of
pipes very difficult. Buried pipes are highly prone to clogging,
corrosion, scale formation, and crack initiation, resulting in
leaks or damages that may lead to catastrophic incidents.

Various In-Pipe Inspection Robots (IPIRs) [1] were pro-
posed in the past to conduct regular preventive inspections
to avoid accidents. Wall-pressed IPIRs with single, multiple
and hybrid locomotion systems [2], Pipe Inspection Gauges
(PIGs) [3], actively controlled IPIRs with articulated joints
and differential drive units [4] were also extensively stud-
ied. Furthermore, bio-inspired robots with crawler, inchworm,
walking mechanisms [5], and screw-drive [6] mechanisms
were also shown to be suitable for different requirements.
However, most of them use active controlling methods to steer
and manoeuvre inside the pipe. Dependence upon the robot’s
orientation inside the pipe added to the challenges, also leaving
the robot vulnerable to slip if traction control methods are
not involved. The Theseus [7], PipeTron [8], and PIRATE
[9] robot series use separate segments for driving and driven
modules that are interconnected by different linkage types.
Each segments align or change the orientation for negotiating
turns. Additionally, robust active steering makes such robots
reliant on sensor data and heavy computation.
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Pipe climbing robots with three symmetrical modules are
more stable and provide better mobility. Our earlier proposed
modular pipe climbers [10], [11] have used three driving tracks
arranged symmetrically to each other, similar to MRINSPECT
series of robots [12]–[14]. In such robots, to actively control
the three tracks, their velocities were pre-defined for the pipe-
bends. This posed a limitation for the robot to negotiate
pipe-bends only at a particular orientation corresponding to
the pre-defined velocities [10]–[14]. In real applications, the
robot’s orientation change if it experiences slip in the tracks
during motion. This limitation can be solved by using a
passively operated differential mechanism to control the robot.
MRINSPECT-VI [15], [16] uses a multi-axial differential
gear mechanism to control the speeds of the three modules.
However, for the division of the driving torque and speed to
the three modules, the layout of the differential shown in Fig.
1(a) is used. This strategy made the first output (Z) to rotate
faster than the other two outputs (X and Y), making output
Z easily affected by slip [15]. This is caused because the
outputs of the differential does not share equivalent kinetics
with the input. Other previously proposed solutions for Three-
output differentials (3-OD’s) [17], [18] also followed a similar
differential layout, as shown in Fig. 1(a).

(a) (b)

Fig. 1. (a) Layout of the previous Three-output differentials(3-OD’s) (b)
Layout for Three-Output Open Differential (3-OOD)

Our ‘Three-Output Open Differential’ eliminates the men-
tioned limitation by realizing equivalent output to input kinetic
relations [19]. In the devised layout all the three outputs
are equally affected by the input, shown in Fig. 1(b). This
contributes for the robot to eliminate slip and drag in any
orientation of the robot during its motion. Additionally, the
differential mechanism in the pipe climber enhances the ease
of use by reducing the dependency on the active controls to
manoeuvre through the pipe networks.

II. DESIGN OF THE MODULAR PIPE CLIMBER-III

A. Structure of the Robot

The CAD model of the proposed robot, Modular Pipe
Climber-III, is shown in Fig. 2(a). The differential mechanism
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(3-OOD) is positioned inside the robot’s central chassis and it
drives each track individually through their respective driving
sprockets. The output velocity of the 3-OOD mechanism is
translated to the driving sprockets through a bevel gear setup.
The detailed view of the 3-OOD mechanism is shown in Fig.3
(a). An irregular nonagon central chassis of the robot houses
three modules (A, B, C) circumferentially 120◦ apart from
each other, illustrated in Fig. 2(b). Each module houses a
track to encompass the driving and driven sprockets, and a
spring-loaded mechanism to attach with the chassis. The linear
springs supported with a guiding rod (Linkage) between the
modules and the chassis push the modules radially outwards
when they are compressed. The stoppers restrict the radial
extension of the modules within the permissible limits. When
the robot is deployed inside the pipe, the spring-loaded tracks
undergo deflection and press against the pipe’s inner walls,
providing them the necessary traction to move or hold position.
Each module in the robot can also compress asymmetrically,
as detailed in section III.

Fig. 2. (a) Robot structure (b) Top view of the robot

B. Three-Output Open Differential (3-ODD)

The Three-Output Open Differential (3-OOD) is the prin-
cipal constituent of the proposed robot, Fig. 3(a). The 3-
OOD mechanism comprises a single input (U), three two-
output open differentials (2 − OD1−3), three two-input open
differentials (2 − ID1−3) and three outputs (O1−3). The
differential’s input (U) is located at the central axis of the
robot chassis. The three 2 − OD1−3, shown in Fig. 3(c) are
arranged symmetrically around the input (U), with an angle
of 120◦ between any two. The 2 − ID1−3, shown in Fig.
3(b) are fitted radially in-between 2 − OD1−3. The single
output of 2 − ID1−3 form the three outputs (O1−3) of the
3-OOD. 2−OD1−3 comprises of gear elements such as ring
gears (R1−3), bevel gears (B1−6) and side gears (S1−6), while
2−ID1−3 include ring gears (R4−6), bevel gears (B7−12) and
side gears (S7−12). The side gears (S1−6) of 2 − OD1−3 is
meshed with their adjacent side gears (S7−12) of 2−ID1−3, to
transfer the torque and speed from 2−OD1−3 to it’s adjacent
2− ID1−3. The input (U) of the worm gear provide motion
to 2 − OD1−3 simuntaneously. Each two-output differential
(2 − OD1−3) then transfer received motion to its adjacent
two-input differentials (2 − ID1−3), depending on the load
conditions experienced by its respective side gears (S1−6).
The motion received by the side gears (S7−12) of 2− ID1−3

further translates them to the three outputs (O1−3). The six

differentials (2 − OD1−3 and 2 − ID1−3) work together to
translate motion from the input to the three outputs (O1−3).

Fig. 3. (a) 3-OOD mechanism (Isometric view) (b) Two-output differential
(2−OD1−3) (c) Two-input differential (2− ID1−3)

When O1−3 experience different loads, the side gears
(S7−12) in 2 − ID1−3 transfers different loads to the side
gears (S1−6) of 2−OD1−3. Under this condition, 2−OD1−3

translates differential speed to its adjacent 2− ID1−3. When
O1−3 experience equal load or no load, all the side gears
experience the same load making them rotate at the same speed
and torque.

As outlined in Fig. 1(b), all the outputs (O1, O2, O3) share
equal kinetics with the input. In addition, the outputs also share
identical kinetics with each other. This results in the change
of loads in one of the outputs imposing an equal effect on the
other two outputs that are undisturbed. The outputs operate
with equal speeds when there is no load or equal load acting
on all the outputs. The 3-OOD mechanism operates its outputs
with differential speed when the outputs are under varied
loads. When one of the outputs is operating at a different
speed while the other two outputs are experiencing the same
load, then the two outputs with the same loads will operate
with equal speeds.

The 3-OOD mechanism designed for the Modular Pipe
Climber III, advances its the three tracks with equivalent
speeds when moving inside a straight pipe. But while ma-
noeuvring inside the pipe-bends, the differential modulates
the track speed of the robot such that the track travelling
the longer distance rotates faster than the track travelling the
shorter distance.

III. KINEMATICS AND DYNAMICS

A. Kinematics and Dynamics of the 3-OOD mechanism
Fig. 4(a) represents an illustration of the direction of speed

and torque flow in the differential. The kinematic scheme
shown in Fig. 4(b) illustrates the connectivity of the links
and joints of the 3-OOD mechanism. The Three-Output Open
Differential’s kinematic and dynamic equations are formulated
using the bond graph model shown in Fig. 4(c).

The input angular velocity (ωu) from the motor is equally
distributed to the three ring gears of the two-output differ-
entials as ωr1, ωr2 and ωr3. They rotate at equal angular
velocities and with equal torque i.e. 1/k times ωu and k/3
times τu, where 1/k is the gear ratio of the input to the
ring gears (1/k = 1/20). Moreover, a two-output differential



(a) (b) (c)
Fig. 4. Three-Output Open Differential: (a) Power flow diagram (b) Kinematic scheme (c) Bond Graph Model

dictates that the angular velocity of its ring gear is always the
average of the angular velocities of its two side gears. These
two side gears can rotate at different speeds while maintaining
equal torque [20].

ωu =
k(ω1 + ω2)

2
=
k(ω3 + ω4)

2
=
k(ω5 + ω6)

2
, (1)

The angular velocities ωr1, ωr2 and ωr3 are then translated
to their side gears. Side gears (S1, S7), (S3, S8) and (S5, S11)
are connected such that they do not have any relative motion
between the gears of the same pair, i.e., angular velocities of
side gears of the same pair is always equal (ω1=ω7), (ω3=ω8)
and (ω5=ω11). Substituting in (1)

ω7=ω1=
2(ωi)

k
−ω2, ω8=ω3=

2(ωi)

k
−ω4, ω11=ω5=

2(ωi)

k
−ω6

(2)
Similarly, the output angular velocities ωO1, ωO2, ωO3 are

derived from the velocities ωr4, ωr5, ωr6 of the respective
ring gears R4, R5, and R6. The output to side gear relation
is equated with (2), to attain the angular velocity equation for
the input to the outputs.

ωO1=
2j(ωu)

k
−j(ω2 + ω4)

2
, ωO2=

2j(ωu)

k
−j(ω3 + ω5)

2
,

ωO3=
2j(ωu)

k
−j(ω1 + ω6)

2

(3)

where ωu is the angular velocity of the input (U), j is the gear
ratio of the ring gears (R4−6) to the outputs (j = 2:1), while
ωO1, ωO2 and ωO3 are angular velocities of the output. ω1,
ω2, ω3, ω4, ω5 and ω6 are the respective angular velocities of
the side gears (S1, S2, S3, S4, S5, S6). Therefore, the output
angular velocities (ωO1, ωO2, ωO3) are dependent on the input
angular velocity (ωu) and the side gear outputs (ω2, ω4), (ω3,
ω5) and (ω1, ω6).

Meanwhile, the torques τR4, τR5 and τR6 of the ring
gears (R4, R5 and R6) is the sum of the torques of their
corresponding side gears S7, S8, S9, S10, S11 and S12. Similar
to angular velocity relation for input to outputs, by equating
the ring gears to side gears relation with the output to the ring
gear relation, a relationship between output torques (τO1, τO2,
τO3) to the input torque (τu) is obtained.

TABLE I
THEORETICAL VELOCITIES OF vA ,vB AND vC IN ELBOW AND

U-SECTION FOR VARIOUS ROBOT ORIENTATIONS (µ)

Robot Orientation

α = 0◦ α = 30◦ α = 60◦

Velocity ratio’s
(vA:vB :vC ) 0.670 : 1.165 : 1.165 0.715 : 1.285 : 1 0.835: 1.329: 0.835

Inner-module velocity
(in mm/sec) vtA = 33.69 vtA = 35.90,

vtC = 50.24 (Center module)

vtA = vtC = 41.96

Outer-module velocity
(in mm/sec) vtB = vtC = 58.51 vtB = 64.57

vtB = 66.78

τO1 =
k(τu)

3j
− (I1ω̇7 + I3ω̇8)

j
, τO2 =

k(τu)

3j
−

(I4ω̇9 + I6ω̇10)

j
, τO3 =

k(τu)

3j
− (I2ω̇12 + I5ω̇11)

j

(4)

where I1,I2,I3,I4,I5,I6 are the inertia exhibited by the side
gears, ω̇7, ω̇8, ω̇9, ω̇10, ω̇11, ω̇12 are the angular acceleration
of the respective side gears and τu is the input torque.

The 3-OOD mechanism has three degrees of freedom in its
output. Equations (3) and (4) validates that the behavior of
each output is impacted by the input (U ) as well as the other
two outputs.

Equal speeds and torque: Identical side gears (S7−12) exhibit
equal inertia (I1 = I2 = I3 = I4 = I5 = I6). The side
gears (S7−12) operate with equal angular velocity (ωn = ωi

k ,
where n ranges from 1 to 12) and angular acceleration when
all three outputs (O1−3) experience equal loads. Substituting
these relations in (3) and (4) we get,

ωO1 = ωO2 = ωO3 =
j(ωu)

k
(5)

τO1 = τO2 = τO3 =
k(τu)

3j
− 2(I1ω̇1)

j
(6)

Equations (5) and (6) presents the novelty of the differential
to provide equal motion characteristics in all three outputs that
experiences equal loads or when left unconstrained. But when
the gear components experience a resistance across a junction,
the angular velocity and the torque changes depending on the
external resistive force.

B. Track Velocity

The output velocity of the differential outputs are equal
to the speed of the driving module sprockets.Therefore, the



Fig. 5. Two-dimensional representation of robot’s orientation in pipe bends

output velocities ωO1, ωO2 and ωO3 of the differential are
translated into track speeds vtA, vtB and vtC . The input speed
for the robot is 120 rpm, thereby translating 12 rpm to the
outputs under equal loading conditions. The sprocket diameter
is constant (Ds= 80 mm) for all the three tracks.

When the robot travels in straight pipes, the tracks experi-
ence equal loads in all three tracks i.e., ωt1=ωt2=ωt3

vtA = vtB = vtC =
π ×Ds × 12

60
= 50.24mm/sec (7)

The average speed of the three tracks are always equal to the
speed of the robot, vR.

vR =
vtA + vtB + vtC

3
= 50.24mm/sec (8)

The speed of the tracks required to negotiate a pipe-bend
depends on the orientation of the robot with respect to the bend
direction. Ho Moon Kim et al. [16], in their paper suggested
a method for calculating the respective velocities of the three
tracks inside pipe bends. Assuming that the robot enters the
pipeline with the configuration shown in Fig. 5, Θ is the angle
of the pipe bend, R is the radius of curvature of the pipe bend
and r is the radius of the pipe. The velocity of the track A is
derived from Fig. 5

vtA = vR(
RA − r cos(µ)

RA
) (9)

In a similar way, the velocities vtB and vtC for their
respective tracks B and C are obtained. The robot is inserted
at different orientation of the modules with respect to OD. The
modulated speeds for the tracks are calculated for bend-pipes
in orientations µ = 0◦, µ = 30◦, µ = 60◦, shown in table I.

C. Asymmetrical Compression

The linear springs in the module provides robot the flex-
ibility to negotiate bends easily. The maximum compression
possible in each module is 16mm. There are additional toler-
ances in the module holes, so that asymmetrical compression
is possible. This helps the robot to overcome obstacles and
irregularities in the pipe network that it may face in real world
applications, shown in Fig. 6(a). In Fig. 6(b), the front end of
the module is compressed completely whereas the rear end
is in its maximum extended state possible inside the pipe.
The maximum asymmetrical compression allowed in a single

module of the robot is shown in Fig. 6(b). Thus, φ is the
maximum angle the module can compress asymmetrically.

In 4XY Z, Y Z is perpendicular to XZ and ∠ Y XZ is φ,
Thus, the maximum permissible asymmetrical bend is

φ = tan−1(
Y Z

XZ
) = tan−1(

12

150
) = 4.574◦ (10)

Fig. 6. (a) Robot overcoming obstacle (b) Asymmetrical module compression

IV. DYNAMIC SIMULATIONS OF THE PIPE CLIMBER

Simulations were conducted to analyze and validate the
motion capabilities of the robot in various pipe networks.
The same will give us more insights into the dynamics and
behaviour of the developed Modular Pipe Climber-III in real
testing environments. Hence, multi-body dynamic simulations
was performed in MSC Adams by converting the design
parameters into a simplified simulation model. To reduce
the number of moving components in the model and to
decrease the computational load, the tracks were simplified
into roller wheels. Each module houses three roller wheels in
the simplified model. Therefore, the contact patch provided
by the tracks to the pipe walls are reduced from 10 contact
regions to 3 contact regions per module. The simulation
parameters such as the track velocities (vtA, vtB , and vtC)
and the module compression for each track A,B and C were
analyzed. Simulations were performed by inserting the robot
in three different orientations of the module (µ = 0◦, µ =
30◦, µ = 60◦) in both the straight pipes and pipe-bends. The

Fig. 7. (a) Pipe network; Robot orientations: (b) µ=0◦, (c) µ=30◦, (d) µ=60◦

robot is simulated inside a pipe-network designed according
to ASME B16.9 standard NPS 11 and schedule 40. The
simulations were conducted for four test case scenarios in
the pipe network consisting of Vertical section, Elbow section
(90◦ bend), Horizontal section and the U-section (180◦) for
different orientations (µ = 0◦, µ = 30◦, µ = 60◦) of the robot,
refer Fig. 7. The total distance of the pipe structure is Dpipe

= 3,023.49mm. The distance travelled by the robot (DR) in
pipe is calculated from center of the robot body and the track’s



individual distance travelled is calculated from the center roller
wheel mounted in each modules. Therefore, we get the total
robot’s path, by subtracting the robot’s length from Dpipe (i.e.,
DR =Dpipe - (LR) = 2,823.49mm, where LR= 200mm).The
robot’s path in vertical climbing and the last horizontal section
is measured by subtracting LR/2 from their respective section
length. The input (U ) of the 3-OOD is given a constant angular
velocity of 120rpm (ωu= 120rpm) and motion of the robot
including the track velocities (vtA, vtB , and vtC) are studied
in the simulation.

Fig. 8. Simulation of the robot

A. Vertical section and Horizontal section

In the vertical section and horizontal section, the robot
follows a straight path. Therefore, the tracks experience equal
loads on all three modules in both the test cases. As a result,
the differential provides equal velocities for all the three tracks,
equivalent to the robot’s average velocity vR. The observed
track velocities in the simulation for the orientation µ = 0◦, is
vR= vtA= vtB= vtC= 50.03 mm/sec. Similarly, for µ = 30◦,
the velocities are vR= vtA= vtB= vtC= 50.22 mm/sec and for
µ = 60◦, the velocities are vR= vtA= vtB= vtC= 51.36 mm/sec.
Therefore, all the values correspond to the theoretical results
shown in (8), with an absolute percentage error (APE) lesser
than 2.2%. This error quantifies the actual amount of deviation
from the theoretical value [21].

APE = (
Simulation velocity − Theoretical velocity

Theoretical velocity
) × 100%

(11)
To negotiate an initial length of 550 mm (DR = 550 -

(LR/2)= 450 mm) in vertical climbing, the robot takes 0 to
9 seconds. Figures 8(a) and 8(b) represents the robot’s ability
to climb the pipe vertically against gravity. Starting from 24
seconds till 31 seconds, the robot moves a distance of 350
mm in the first horizontal section, shown in Fig. 8(d). In the
smaller horizontal section of distance 150mm (DR = 150 -
(LR/2)= 50 mm), the robot moves from 59 to 60 seconds,
shown in Fig. 8(f).

B. Elbow section and U-section

In the elbow section (90◦ bend) and U-section (180◦ bend),
the robot moves at a constant distance to the center of
curvature of the pipe. The 3-OOD mechanism modulates the
output speeds of the tracks vtA, vtB and vtC according to
the distance from the center of curvature of the pipe. In all

Fig. 9. Simulation results for (a) µ = 0◦, (b) µ = 30◦, (c) µ = 60◦

three orientations of the robot, the outer module tracks rotates
faster to travel a longer distance, while the inner module
tracks rotates slower to travel the shortest distance than the
radius of curvature of the pipe bend. In pipe bends, the
simulation velocities of each track is averaged seperately to
approximate the observed track velocities without fluctuations.
The approximated velocities of each track is then compared
with their respective theoretical velocities to find the absolute
percentage error (APE), refer (11).

For the orientation µ = 0◦, the outer modules (B and
C) move at an average velocity of (58.7 mm/sec and 57.8
mm/sec), while the inner module (A) move at an average
velocity of 33.62mm/sec, refer Fig. 9(a). These values corre-
spond to the theoretical values vtB = vtC = 58.51 mm/sec and
vtA = 33.69mm/sec with an APE of 1.2%. Similarly, the track
velocities vtA, vtB and vtC for µ = 30◦ presented in Table
I, matches with the average value of the simulation results
(vtC= 50.3 mm/sec, vtB= 63.8 mm/sec, vtA= 37.3 mm/sec)
with an APE of 3.8%, refer Fig. 9(b). Likewise, the track
velocity value for µ = 60◦, correspond to the simulation results
(vtB= 68.5 mm/sec, vtA= 40.2 mm/sec and vtC= 41.3 mm/sec)
with an APE of 2.5%, refer Fig. 9(c). In each orientations of
both the straight and bend sections, the error value is very
minimal and they can be attributed due to external factors
in real-world conditions such as friction. Therefore, minimal
velocity fluctuations occurs in the simulation plot. From 9 to
24 seconds, the robot negotiates the elbow section (90◦ bend)
of distance 657.83 mm, while it takes 31 to 59 seconds to
travel 1315.66 mm in the U-section (180◦ bend). Figures 8(c)
and 8(e) shows the robot’s capability to traverse in pipe-bends.

Eliminating slip and drag: The simulation results for the
track velocities vtA, vtB , vtC and the robot vR in different
orientations (µ = 0◦, µ = 30◦, µ = 60◦), matches with the



theoretical results obtained in section III. It is observed from
the simulation that in 60 seconds, the robot traverses through-
out the pipe network uniformly at the inserted orientation.
The result correspond to our theoretical calculation (DR/v=
3016.49/50.24 = 60.04 sec). This validates that the Three-
Output Open Differential eliminates slip and drag in the tracks
of the pipe climber in all orientations without any motion
losses. In the simulation, the robot is observed without any slip
and drag in all orientations, which further impacts in reduced
stress influence on the robot and increased motion smoothness.

Fig. 10. Linear spring deformation in the modules

Radial flexibility: The track in the modules clamp to the
inner wall of the pipe to provide traction during motion. The
springs are initially pre-loaded by a compression of 1.25 mm
in all three modules equally when inserted in the vertical pipe
section, refer Fig. 10. In straight pipes, the robot moves at
the initial pre-loaded spring length. The deformation length
increases by 1.5 mm for the inner and the outer modules
when the robot is in motion near elbow section and U-section.
This deformation explains the radial flexibility allowed for the
modules to manoeuvre through the changing cross-section of
the pipe diameter in the bends during motion.

V. CONCLUSION AND FUTURE WORKS

The Modular Pipe Climber-III robot is presented with the
novel Three-Output Open Differential to control the robot
mechanically without any active controls. The differential has
an equivalent output to input kinetics, whose performance is
completely analogous to the functionality of the traditional two
output differential. The simulation results validate successful
traversal of complex pipe networks with bends of up to 180◦

in different orientations without slip. Adopting the differential
mechanism in the robot achieves the novel result of eliminating
the slip and drag in all orientations of the robot during the
motion.

At the present, we are developing a prototype to perform
experiments on the proposed design [22]. In the future, we
intend to extend the application of the Three-Output Open
Differential for other use cases.
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