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Towards Estimating the Stiffness of Soft Fruits using a Piezoresistive
Tactile Sensor and Neural Network Schemes
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Abstract— Measuring the ripeness of fruits is one of the key
challenges to enable optimal and just-in-time strategies across the
fruit supply chain. In this paper, we study the performance of
a tactile sensor to estimate the ground truth of the stiffness of
fruits, with Kiwifruit as a case study. Our sensor configuration is
based on a three-beam cantilever arrangement with piezoresistive
elements, enabling the stable acquisition of sensor readings over
independent trials. Our estimation scheme is based on the com-
pact feed-forward neural networks, allowing us to find effective
nonlinear relationships between instantaneous sensor readings
and the ground truth of stiffness of fruits. Our experiments using
several Kiwifruit specimens show the competitive performance
frontiers of stiffness approximation using 25 compact feed-
forward neural networks, converging to MSE loss at 10~° across
training-validation-testing in most of the cases, and the utmost
predictive performance of a pyramidal class of feed-forward
architectures. Our results pinpoint the potential to realize robust
fruit ripeness measurement with intelligent tactile sensors.

I. INTRODUCTION

About one-third of all fresh fruits are lost along the fruit sup-
ply chain before they are finally consumed. Postharvest losses
occur mainly as a result of rough handling, poor packaging,
lack of temperature management, and lack of public awareness
on the need to maintain quality [1]. Meanwhile, fruits are
harvested when mature and hard to avoid postharvest losses.
The harvested fruits are usually stored and, as a result, ripen
more and lose their stiffness over a short period. However, a
change in color doesn’t guarantee the ripeness of most fruits;
ripeness is often times estimated by touching the fruit and
applying little force with one’s fingers. This method will lead
to a further deterioration of the fruit’s quality (such as taste and
appearance) and hence a change in its mechanical properties
(such as stiffness or hardness).

Kiwifruit is a soft nutritious fruit which suffers mechanical
compression damage easily in many ways, such as during
picking, packaging, transporting, and marketing [2]. Due to
the appearance of kiwifruit, it is often difficult to determine its
ripeness and mechanical properties without having to touch its
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surface and apply some form of pressure. Hence, the market
quality of the fruit is negatively affected, as earlier mentioned.
This has become an issue of concern to farmers and marketers
of fruits. The availability of effective ripeness detection de-
vices, such as tactile sensors, is potential in tackling these
challenges.

The recognition of carrot appearance quality using deep
learning techniques was studied by [3] and [4], where they
proposed a ResNet101 plus Support Vector Machine (SVM),
and an improved dense capsule network model (Modified-
DCNet) respectively. Their techniques, however, had limita-
tions as there were some misclassifications due to the fact
that the carrot surface contained many bent and defected
areas and as a result, many shadows were generated across
the carrot surface (i.e., due to uneven illumination). The use
of tactile sensors to extract the mechanical features of fruits
before training the extracted features with a suitable machine
learning (ML) algorithm is potential to solve the challenges
of misclassifications. Other studies for fruit and plant features
identification based on computer vision and image processing
were conducted by [S]-[7], but these studies are mostly limited
to image recognition techniques and cannot be effectively
employed in detecting the internal mechanical features of fruits
such as stiffness and elastic modulus.

Tactile sensors for contact force estimation have been de-
veloped, and several prototypes have been proposed as in
[8], [9]. However, these sensors have focused more on force
sensing and pressure sensing; just few studies have been
conducted on elasticity sensing, which focuses on the stiff-
ness factor. In [10], the firmness of kiwifruit was effectively
determined by a combination of acoustic vibration sensor and
CARS algorithm, and it was observed that a combination of
sensor signals with machine learning algorithm could well
characterize the firmness of kiwifruit. Other approaches for
stiffness characterization using machine learning algorithms
were studied in [11]-[13]. A similar approach will be utilized
in this paper for accurate measurement of the stiffness of fruits
via a combination of extracted features of our proposed tactile
sensor and a ML algorithm to classify the features and make
accurate estimation of the stiffness of fruits.

On the other hand, some of the concepts applied in tactile
sensing of soft tissue stiffness properties have been published
by [14]-[16]. In [14], [15], a two-tip tactile sensing technique
was developed; but the disadvantage of the two-tip model is
that the sensor’s output is unstable during experiments due to
surface irregularity and large inclination angle of soft tissue
surfaces. In [16], the output of the proposed sensor configu-
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Fig. 1. The sensor model and the basic idea of the indentation principle.

ration was unstable, fluctuating, and infinite at an inclination
angle of 6° during the experimentation of the sensor. An error
rate of 14% was recorded in the sensor’s output, which is large
enough to give inaccurate results during stiffness detection
applications, which could cost lives in medical applications and
economic losses, especially when considering fruits marketing.

In order to tackle the above-mentioned challenges, we pro-

pose the design principles and experimental results of a three-
tip tactile sensor for estimating the stiffness of fruits, using
kiwifruit as a case study. Basically, our contributions are as
follows; we propose:

« a design configuration based on a cantilever arrangement
with piezoresistive elements, enabling the stable acquisi-
tion of sensor readings over independent trials,

o the stiffness estimation scheme based on the compact
feed-forward neural networks (NN) allowing us to find
effective and high-performing nonlinear relationships be-
tween instantaneous sensor readings and the ground truth
of stiffness of fruits, irrespective of the measurement trial
and location,

« the experiments using several kiwifruit specimens and the
study of 25 feed-forward NN, converging to MSE loss
at 1075 across training-validation-testing in most of the
cases, and clarifying the utmost predictive performance of
a pyramidal class of feed-forward architectures.

II. SENSOR STRUCTURE
A. Basic Idea

We propose a tactile sensor based on a cantilever model,
whose configuration considers three linear springs with stift-
ness K and K as shown in Fig. 1-(a). As the sensor receives
the displacement x to contact the fruit, spring forces are
generated in both the high and low stiffness springs, as shown
in Fig. 1-(b). Since both K} and K; are in series with the
stiffness constant of the fruit K, the equivalent stiffness is

KnK;

Ky=-——n2t 1

T K+ Ky M
KKy

Kp = —2 2

YUK+ K 2)

When an inclination angle ® between the sensor tips and
the surface of the specimen occurs, we consider the case where
the inclination angles at the two low stiffness springs are equal
and perpendicular to the fruit surface as shown in Fig. 1-(b).
Thus the sensor output S can be expressed with respect to the
reaction force component 6, as follows:

Fy
5= Fricos0+ Frocosf )
FleFLQ:FL:KL(x—Ltan(I)) 4)

where the output .S is a dimensionless parameter, and L is the
distance between the sensor tips. For ® and L small, Ltan ®
becomes comparatively smaller, and can be neglected:

g— Fy _ Ky _ Kh(Kz+Kf)
2Fpcos  2Kpcosf 2K (Kj,+ Kjy)cosf

Since cos @ gives an approximate value of 1 for 0 < 6 < 6°,
we can approximate (6) and rewrite it as follows

(6)

~ KRpKi(1-2S)

Kr= 5K — K, )

We can also use the indentation principle as shown by Fig.
1-(c) to estimate the stiffness of the fruit specimen [17]:
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T ®
where Ky, v, F,r;,d, h, E¢, and C}, denote the fruit stiffness,
Poisson’s ratio, applied force, indenter radius, indentation
depth, radial height of the fruit, elastic modulus of the fruit,
and the scaling factor, respectively. Here, we assume the fruit
specimens to be isotropic and linearly elastic especially when
indented slightly with an indenter of small area. The Poisson’s
ratio is set to 0.3 [18], and C), = 1 is derived from a finite
element analysis [19]. The indenter was assumed as a cuboid
with side length of 1 mm.

Ky

III. EXPERIMENTS
A. Sensor design

Fig. 2 shows the geometry and the structure of the tactile
sensor, which is realized as a cantilever beam with three-tips,
each of which represents the high and the two low stiffness
springs. Each spring of the sensor was fit with piezoresistive
elements set at nominal resistance of 350 €. The stiffness of
each beam can be estimated as follows:

EWt3
TR ©)

where K, E,I,¢,W, and t denote the beam stiffness, elastic
modulus of the beam material, area moment of inertia about
the centroidal axis of the beam, length of the beam, width
of the beam, and thickness of the beam, respectively. The
material of the sensor prototype was acrylic Perspex whose
elastic modulus Ej, = E; = 3 x 109N /m?.

Also, we computed other dimensions that met the stiffness
values of the springs as ¢, =t; =3 mm, ¢, =4 cm, {; =7.8
cm, Wy = 2.2 cm, and W; = 0.41 cm, in which subscripts h
and [ denote the corresponding high and low stiffness values
as in (9). The geometry of the sensor tips are set as a cuboid
of 1 mm x 1 mm X 3 mm. The fine tuning and study of the
optimal design parameters is out of the scope of this paper.

K =

B. Setup

We used an interface setup as shown in Fig. 3 comprising a
Data Acquisition System (DAQ), Wheatstone bridge circuit (a
quarter bridge and a half bridge using resistors with nominal
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Fig. 3. The circuit interface to the sensor.
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Fig. 4. Experiment setup.

resistance of 330 (2), a LabVIEW-based user interface. Fig.
4 shows the key components in our experiment setup. The
fruit specimen is fixed with a specimen holder which has a
displacement gauge. When the specimen is displaced vertically
downward, contact with the fixed sensor occurs, causing vari-
ation in resistance that is proportional to the induced strain.
The Wheatstone bridge captures the resistance change and
renders voltage signals to the DAQ (NI SCB-68 and NI PXI-
1031). Then, the output voltages are converted to equivalent
forces using the calibration factors of the low and high stiffness
springs. For calibration, we used loads attached to the end of
the sensor tips. The computed forces were mapped to sensor
outputs by (6).

To study the performance of the sensor, we used six kiwifruit
samples with diverse ripeness levels and elastic moduli, and to
obtain readings from the sensor output:

o A displacement against the sensor tips at a maximum
distance of 5 mm was conducted.

o We repeated the above four consecutive times, and by
applying displacement at different points on the surface
of the fruits.

Fig. 5-(a) and Fig. 5-(b) show the results of the calibration of
the sensor tips over four independent trials. By observing the
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Fig. 5. (a, b) Calibration of the sensor and (c) experimental sensor output for kiwifruits of various elastic modulus Ef.

. . . . TABLE I OVERVIEW OF THE ARCHITECTURE OF NEURAL NETWORK MODELS
profiles of Fig. 5-(a) and Fig. 5-(b), we can note the relationship

between voltage and load. For simplicity and without loss of Model Hidden layers | Model Hidden layers
enerality, we used the average over four independent trials to NNL-[5 10] NN14 - 130 20 10]
g Y, erag p : NN2  [105] NNI5  [20 20 20]
map between voltages derived from the sensor’s output to their NN3  [555] NNI6  [10 40 10]
corresponding load metric. NN4 [15] NN17  [15 25 35]
In order to show the performance of the sensor, Fig. 5- Egg Eg %8]] EE:S Sg ;g ;g
((f) shows the sensor o.utput~ as a function of the app.hed NN7 [10 10 10] NN20  [15 45 15]
displacement. By observing Fig. 5-(c), we note the following: NN8 [30] NN21  [20 30 40]
o The sensor readings remain relatively stable across the I\I;lelflgo 551;22} gig E‘g 28 ig}
displacement range with ll.ttle ﬂuctu.atl.ons.. o NNIT (15 15 15] NN24 [20 50 20]

e The sensor readings of different kiwifruits remain dif- NNI2 [535 5] NN25  [25 25 25 25]

ferent, and small (large) values of sensor readings are NN13  [10 20 30]

associated to small (large) values of the elastic modulus
of the kiwifruits.

The above-mentioned imply the possibility to find relation-
ships between the sensor readings and their corresponding true
stiffness/elastic modulus.

set of architecture of hidden layers, as shown by Table 1. As
such, we considered 25 networks with up to 100 nodes in which
the layers were organized in a pyramidal, planar and ascending
distribution. Our key motivation in considering a small number
C. Stiffness approximation of parameters is to achieve the space-efficient and fast learning
We can estimate the stiffness of the fruit based on the Schemes, which is advantageous when deploying in small-
scale embedded systems and resource-constrained computing
environments.
fi8— Ky, (10) For learning and evaluation, we proceeded as follows:

nonlinear relationship:

o Training data used in our experiments consisted of the
union of the instantaneous sensor readings over four
independent trials, each of which was retrieved at different

where f denotes the function approximation scheme, S is the
instantaneous sensor readings, and the K¢ is the corresponding
true st.iffness of the fruit associated tq the true ela.stic modulus positions in the fruit. Naturally, the sensor readings at
E;. Since the above represents a nonlinear regression problem, different locations in the fruit are different among each
we studied the performance of Neural Networks (NN) as a other.

universal function approximation scheme. In the above, « For learning scheme, we used the Levenberg—Marquardt

« S can be obtained from the instantaneous sensor readings. algorithm with loss function set as the Mean Squared
However, it is important to note that the Ky obtained from Error (MSE); and for termination criterion, we used 5000
(7) relates directly with the instantaneous sensor output S epochs with 1000 as the maximum number of validation
and hence, it is affected by the nonlinearity of the sensor; checks before training stopped.

e Ky can be obtained from E; as depicted by (8), and « To evaluate the performance over independent scenarios,
following the key indentation concept of Fig. 1-(c) to we trained all the NN architectures over 10 independent
estimate the ground truth of the stiffness of kiwifruit runs using subsets derived from the ten-fold split scheme,
samples. As such, from compression tests we found the yielding 250 = 25 networks x 10 independent runs
stiffness of kiwifruit samples to be at 2.33 MPa, 2.72 learning scenarios.

MPa, 2.02 MPa, 2.35 MPa, 1.40 MPa, and at 0.81 MPa. To portray the learning performance of the neural network

In line with the above notion, we evaluated the feedforward  schemes, Fig. 6 shows the convergence of the loss function
neural networks with varying number of parameters and diverse  over the training, validation and testing phases of 250 learning
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Fig. 6. Convergence of the loss function of Neural Network models using the training data. In each figure, the x-axis shows the number of epochs, and the y-axis is the MSE over
ten independent runs (in log-scale).
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Fig. 7. Statistical pairwise comparison of the performance of Neural Networks by the Wilcoxon test at 5% significance.

scenarios. From Fig. 6, we can note the following: is significantly better than a neural network in the column.
Conversely, a sign [-] implies that a neural network scheme
in the row of the matrix is significantly worse compared to a
neural network in the column. The sign (=) implies there is no
statistical difference between the performances of the neural
network schemes in the row and the column. Furthermore,
numbers in the matrix cells show the computed p-value from
the Wilcoxon test. By observing Fig. 7, we can note the

following facts:

« All neural networks were able to achieve the competitive
learning performances at MSE less than 1.

« It is possible to obtain MSE of 10~° with about 4 x 10*
epochs across the training-validation-testing phases.

o The convergence performance to the basins of the loss
functions can be obtained at 4 x 10* epochs.

o Most neural networks have a tendency to decrease its
loss across the testing phase, implying the feasibility to

minimize the loss out of sample data. o NNI tends to underperform with respect to other neural

In order to portray the performance comparison across the network schemes.

25 neural net schemes, Fig. 7 shows the pairwise statistical
comparisons based on the best training performance and the
Wilcoxon tests with 5% significance. In Fig. 7, a sign [+]
shows that a neural network scheme in the row of the matrix

o Neural network schemes with larger number of parame-
ters, e.g. NN14 - NN25, tend to outperform or perform
similarly compared to other architectures with few number
of parameters.



« It is possible to find architectures with one layer such as
NN4([15]) and NN8([30]) outperforming (or performing
similarly to) 87% of other related architectures.

e It is possible to find architectures with less than 45 nodes
outperforming (or performing similarly to) about 83% of
other architectures. Examples are NN2 ([10 5]), NN6 ([20
10]), NN10 ([25 15 5]) which outperform about 21 neural
models. By observing the arrangement of nodes, one can
see that these architectures show a pyramidal organization
of nodes, implying that a comparatively larger number of
nodes in the first layers are key to allow low-level features
to be aggregated and composed more meaningfully across
the hierarchy.

e It is possible to find neural architectures outperforming
(or performing similarly to) 100 % of their counterparts
such as NN14([30 20 10]), NN18([35 25 15]), NN22([40
30 20]) and NN23([30 30 30]), all of which have more
than 60 nodes. From the above-mentioned architectures,
NNI14, NN18, NN22 have a pyramidal arrangement of
nodes, being in line with the above-mentioned observa-
tions showing that these organization of nodes is key to
allow the meaningful aggregation of low-level features
across the hierarchy.

The above observations portray the performance frontiers
of configurations of feedforward neural networks with small
number of parameters. Also, our observations distinguish the
pyramidal class of feed-forward neural architectures offering
the utmost performance for our problem. Investigating the
performance of deeper architectures and the performance of
symbolic regression frameworks over a large number of ki-
wifruit samples is in our agenda.

IV. CONCLUSION

In this paper we have proposed the design principles and
experimental results of a three-tip tactile sensor for the es-
timation of the stiffness of fruits, using kiwifruit as a case
study. Our experiments using several fruit specimens with a
diverse set of ripeness show (1) the feasibility of obtaining
relatively stable sensor readings over independent trials, (2) the
competitive performance frontiers of stiffness approximation
using 25 compact feedforward neural networks, converging to
MSE at 10~° in most of the cases, and (3) the effectiveness of
a pyramidal class of feed-forward neural architectures offering
the utmost performance. Hence, the results obtained from our
neural networks have proven to solve the nonlinearity problem
of our instantaneous sensor output .S, thereby yielding accurate
predictions of the true stiffness of the fruit. The consideration
of symbolic regression frameworks to elucidate the nonlinear
relationships between sensor readings and stiffness, and inves-
tigating the performance of deeper architectures over a large
number of kiwifruit samples is in our future agenda.
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