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Abstract—Visual-inertial odometry (VIO) systems traditionally
rely on filtering or optimization-based techniques for egomotion
estimation. While these methods are accurate under nominal
conditions, they are prone to failure during severe illumina-
tion changes, rapid camera motions, or on low-texture image
sequences. Learning-based systems have the potential to out-
perform classical implementations in challenging environments,
but, currently, do not perform as well as classical methods
in nominal settings. Herein, we introduce a framework for
training a hybrid VIO system that leverages the advantages
of learning and standard filtering-based state estimation. Our
approach is built upon a differentiable Kalman filter, with an
IMU-driven process model and a robust, neural network-derived
relative pose measurement model. The use of the Kalman filter
framework enables the principled treatment of uncertainty at
training time and at test time. We show that our self-supervised
loss formulation outperforms a similar, supervised method, while
also enabling online retraining. We evaluate our system on a
visually degraded version of the EuRoC dataset and find that our
estimator operates without a significant reduction in accuracy in
cases where classical estimators consistently diverge. Finally, by
properly utilizing the metric information contained in the IMU
measurements, our system is able to recover metric scene scale,
while other self-supervised monocular VIO approaches cannot.

I. INTRODUCTION

Maintaining an accurate estimate of a robot’s egomotion
(i.e., position, velocity, and orientation) in challenging envi-
ronments remains a difficult problem. A common method of
egomotion estimation is visual-inertial odometry (VIO), which
fuses camera and inertial measurement unit (IMU) data to
determine the metric pose change between sequential camera
frames [1]. Traditionally, VIO approaches rely on classical
filtering or optimization-based back-ends to estimate the pose
change that best explains the relative motion of tracked visual
features. However, these classical VIO feature trackers are
often “brittle” in challenging scenes and under rapid motion
(due to, e.g., motion blur). Recent work has explored data-
driven replacements for classical estimators.

In data-driven systems, neural networks are trained via
supervised [2]–[4] or self-supervised [5], [6] learning to model
the complex relationship between sensor measurements and
robot egomotion. While neural networks are increasing in
popularity and accuracy, they still have limitations. Networks
trained using supervised loss functions struggle to generalize
beyond the initial training set. Generalization improves with
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Fig. 1: Overview of our hybrid method that combines an IMU-
based process model with a learned relative pose measurement
model through a robocentric extended Kalman filter (EKF). Our self-
supervised formulation can train this system end-to-end by minimiz-
ing a photometric reconstruction loss. Unlike basic self-supervised
VO or VIO systems that directly use the egomotion prediction for
view synthesis, we use the a posteriori egomotion estimate produced
by the EKF, which refines the network output by incorporating inertial
measurements.

the inclusion of more data, but labelling these data is costly.
Consequently, self-supervised loss formulations, which do not
require data labelling, are replacing supervised learning in
many areas. However, despite many advances [5], [6], self-
supervised approaches do not typically leverage knowledge
from the domain of sensor fusion, so network-based methods
provide no notion of uncertainty with their predictions. Fur-
thermore, for VIO, these approaches may not properly utilize
scale information contained within the IMU measurements,
which is fundamental in classical sensor fusion.

Herein, we propose a novel hybrid system that leverages
the benefits—and mitigates the limitations—of classical and
learning-based VIO systems. Our sensor fusion scheme (il-
lustrated in Figure 1) uses a differentiable filter (DF) [7] to
incorporate network-based egomotion measurements into an
uncertainty-aware state estimator. We rely on IMU measure-
ments to propagate the state between camera frames. Our work
builds upon that of Li et al. [8], who used supervised pose
labels to train an end-to-end system. We relax these training re-
quirements by replacing the supervised loss with a pixel-based
reconstruction loss that is fully self-supervised. Notably, our
approach is the first self-supervised, monocular method that
produces metrically scaled predictions. These predictions are
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uncertainty-aware: we incorporate a learned heteroscedastic
uncertainty model, allowing for principled fusion of the mea-
surements within the filter. Our experiments demonstrate the
robustness of our algorithm to visually degraded environments,
relative to the performance of classical systems.

II. RELATED WORK

In this section, we separate existing approaches to VIO into
three categories: classical, learned, and hybrid, referring to the
amount of (or the lack of) machine learning involved in each
case.

A. Classical Approaches to VIO

Generally, VIO algorithms incorporate a front-end and a
back-end. The front-end detects and tracks features across
images. The back-end estimates the 3D locations of tracked
features and the camera trajectory. The formulation can be
either loosely-coupled or tightly-coupled. Loosely coupled
methods estimate the system state with each sensor modality
independently and then combine the estimates in a final stage.
Conversely, tightly-coupled methods incorporate each modal-
ity within a joint estimation framework. To determine the
motion, the reprojection error between predicted and observed
feature locations is minimized. The reprojection error may be
expressed indirectly in terms of pixel coordinates, or directly
in terms of a photometric (pixel intensity) loss.

One well-known filter-based VIO algorithm is the multi-
state constraint Kalman Filter (MSCKF) [9], but its world-
centric formulation can be inconsistent [10]. Robot-centric
formulations such as ROVIO [11] and R-VIO [12] largely
avoid inconsistency. Optimization-based algorithms such as
VINS-Mono [13] and OK-VIS [14] optimize over a win-
dow of poses, while relying on IMU preintegration [15] for
computational efficiency. Although more compute-intensive,
optimization methods tend to be more accurate than their
filter-based counterparts. Herein, we demonstrate how several
classical methods (namely VINS-Mono, ROVIO, and R-VIO)
are prone to failure in visually degraded scenes.

B. Learning-Based Approaches to VIO

Recent neural network-based visual-inertial fusion schemes
[2]–[6] all adopt a similar “feature fusion” procedure, where
the neural network learns to map the raw (visual and inertial)
measurements to a 6-DOF egomotion prediction in an end-
to-end manner. Internally, the network extracts and combines
sensor-specific features (e.g., through concatenation of the two
feature vectors). The resulting multimodal features are then fed
into a final network block that predicts the egomotion. This
scheme exists in both supervised [2]–[4] and self-supervised
[5], [6] settings. In the self-supervised setting [16], a pixel-
based reconstruction loss is minimized to jointly train a depth
and an egomotion network. The training process leverages
the depth and egomotion predictions to project pixels from
a nearby source image into a target frame, in a process known
as view synthesis. The pixel-based reconstruction loss is the
per-pixel photometric difference between the projected image

and an image taken in the target frame. Since view synthesis
generates a more realistic projected image as the depth and
egomotion estimates improve, the networks can be trained by
minimizing the pixel-based loss.

While end-to-end approaches are effective, they do not uti-
lize the canonical relationship between inertial measurements
and robot dynamics. Ignoring this relationship burdens the
network with learning well-modelled kinematics from scratch
and prevents the network from utilizing the metric information
in the inertial data. For example, to utilize the IMU linear
acceleration effectively, the network must learn implicitly to
track the robot’s velocity. To remove the gravity component
from the acceleration measurements, the network must also
learn to track the global IMU orientation. Finally, metric
information available from inertial measurements cannot easily
be utilized because reconstruction-based losses do not account
for absolute scale. Consequently, the depth and egomotion
predictions are only accurate up to a scale factor. Our aim
is to resolve these issues with our hybrid approach that, in
contrast to the feature-fusion approach, combines visual and
inertial information in a probabilistic manner.

C. Hybrid Approaches to VIO

Differentiable filters (DFs) have been proposed as a way
to impose prior knowledge on the network structure by
combining perception (i.e., through a measurement model
that maps sensory observations to the state) and prediction
(i.e., through a process model that determines how the state
changes over time) in a Bayesian manner [7], [17]. Being
fully differentiable, DF’s can be trained end-to-end to pro-
duce uncertainty-aware measurement and process models that
accurately account for sensor noise characteristics. The DF is
particularly useful for replacing (brittle) hand-crafted models
with networks that directly map high dimensional, nonlinear
measurements (e.g., raw images) onto the state. Applications
of this hybrid structure include camera relocalization [18],
object tracking [17], and VIO. Chen et al. [19] use a DF to
learn the noise parameters of an EKF-based VIO system. The
authors of [20] train a visual-inertial measurement model for a
Kalman filter through a feature fusion-scheme with a learned
process model. Li et al. [8] present a DF that combines a
classical IMU-based process model with a learned relative
pose measurement model. Their network is trained end-to-
end by minimizing a pose supervision loss. We extend the
approach of Li et al. [8] by training our network with a
photometric reconstruction loss, which improves the overall
system accuracy by leveraging the data efficiency of self-
supervised learning. To the best of the authors’ knowledge,
we are the first to train a differentiable filter in a fully self-
supervised manner.

III. APPROACH

Our hybrid approach to VIO augments the learned depth
and egomotion estimation system with a robocentric EKF
back-end. By doing so, the photometric reconstruction loss
can be computed with the refined, a posteriori egomotion



estimate, rather than the direct network output. This posterior
estimate, notably, is a function of the inertial measurements
used to propagate the state via the process model. Since
the filter structure is fully differentiable, the whole system
can be trained end-to-end by minimizing the photometric
reconstruction loss.

In Section III-A, we review the notation used throughout
this work. In Section III-B, we discuss our self-supervised
depth and egomotion estimation formulation. In Section III-C,
we review the robocentric EKF for VIO. Finally, in Sec-
tion III-D, we present our end-to-end training scheme that
minimizes the self-supervised reconstruction loss.

A. Notation
We begin by defining four reference frames that are used

throughout Section III. Let F−→i, F−→ck , F−→rk , F−→vτ represent a
static (global) reference frame, the camera reference frame at
time k, the robocentric reference frame at time k, and the IMU
reference frame at time τ , respectively. The scalars k and τ
are the image and IMU time steps (which generally differ).
Ordinary lowercase letters are reserved for scalar quantities.
Bolded lowercase Roman and Greek letters represent vector
quantities. The symbol δ is used to denote a perturbation to
the subsequent quantity. The vector ga ∈ R3 is the gravity
vector expressed in F−→a. The vectors bωk ,bak ∈ R3 are,
respectively, the IMU gyroscope and accelerometer biases
at time step k. The vectors rbaa ,v

ba
a ,ω

ba
a ,a

ba
a ∈ R3 are

the translation, linear velocity, rotational velocity, and linear
acceleration of F−→b with respect to F−→a expressed in F−→a.
A (normally distributed) noise vector is represented using
nj ∼ N

(
0, σ2

j1
)
, where j is an appropriate, context-specific

identifier. Bolded uppercase Roman and Greek letters represent
matrices. We reserve Cab ∈ SO(3) for the matrix that rotates
vectors from F−→b to F−→a. The (known) extrinsic transform
between F−→c and F−→r, which is constant across timesteps,
consists of the rotation matrix Crc and the translation rcrr . The
notation φab ∈ R3 is used to denote the Lie algebra vector
corresponding to Cab. Perturbations of the rotation state are
given by Cab = C̄ab exp(δφ∧ab), where (̄·) is the nominal
rotation matrix. The operator (·)∧ is the skew-symmetric
operator, and the notation (̃·) denotes an output (or prediction)
from one of our networks.

B. Self-Supervised Depth and Egomotion Estimation
We employ a depth network to produce a depth prediction

D̃t for a target image It, and an egomotion network to produce
an egomotion prediction T̃st ∈ SE(3) = {r̃ctcscs , C̃csct ∈
SO(3)} that is an estimate of the 6-DOF pose change between
F−→c at times s and t. Using these predicted quantities, and the
known camera intrinsic matrix K, we can generate (through
view synthesis) an image Is→t that “reconstructs” the target
image using the source image pixels. Specifically, each pixel
coordinate u′ within Is→t is populated with the pixel intensity
of its corresponding location, u, in the nearby source image
Is using a pinhole camera model π:

Is→t(u
′) = Is(u), u = π(T̃stπ

−1(u′)). (1)

The pinhole projection model maps a 3D point p =[
x y z

]>
to its pixel coordinate u through π(p) = K 1

zp.
Note that in practice, the reconstructed image Is→t is produced
using a spatial transformer [21].

After view synthesis, the photometric reconstruction loss
can be computed by comparing the reconstructed image with
the known target image through the standard combination of
the L1 loss and the structural similarity (SSIM) loss [22]:

Lphot(Is→t, It) = (1− α) |Is→t − It|+ αLSSIM(Is→t, It).
(2)

We use the minimum reconstruction formulation from Godard
et al. [23], which, for a given target image, builds Lphot with
the minimum per-pixel error values from two adjacent source
images:

min
s∈{t−1,t+1}

Lphot(Is→t, It). (3)

The depth and egomotion network weights are jointly trained
to minimize this reconstruction loss through gradient descent.
In addition to Lphot, we employ two auxiliary losses: a depth
smoothness loss [24] Lsmooth and a geometric consistency
loss Lconsist [25]. The automasking method from [23] and
the self-discovered mask from [25] are applied to remove
unreliable pixels.

We train the tightly-coupled networks from Wagstaff et
al. [26], as they have been shown to significantly boost
egomotion accuracy on challenging indoor datasets. Notably,
the egomotion network relies on multiple forward passes to
iteratively refine the initial egomotion prediction (see [26] for
further details). In Section III-D, we discuss how this network
structure is extended to produce uncertainty-aware predictions
in order to incorporate these measurements into the EKF.

C. Robocentric EKF Formulation

Our robocentric EKF formulation is based on the approach
from Li et al. [27]. An in-depth explanation of the formulation
can be found in [12], [27]. In this formulation, the robocentric
state, represented by x, has the following components (in set
notation to accommodate the rotation matrices) at the latest
IMU measurement time step, τ ,

xτ =
{
Crki, rirkrk , grk |
Crkvτ , rvτrkrk

, vvτ ivτ , bωτ , baτ
}
,

(4)

where the vertical bar separates the robot states, xrki, and the
IMU states, xrkvτ . The error state vector is

δxτ =
[
δφ>rki δrirk>rk

δg>rk |
δφ>rkvτ δrvτrk>rk

δvvτ i>vτ δb>ωτ δb>aτ
]>
.

(5)

1) Process Model and Covariance Propagation: To deter-
mine the error state vector process model, the IMU mea-
surement model and time derivatives of the IMU states are
required. The IMU measurement model is

am,τ =avτ ivτ + Cvτrkgrk + baτ + na,

ωm,τ =ωvτ ivτ + bωτ + nω.
(6)



The time derivatives of the IMU states (again using set
notation) are

ẋrkvτ =
{
Crkvτ (ωvτ ivτ )∧, Crkvτv

vτ i
vτ ,

avτ ivτ − (ωvτ ivτ )∧vvτ ivτ , nbω , nba
}
.

(7)

By applying perturbations to the state, substituting in Equa-
tions 6 and 7, and linearizing the result, the time derivative of
the error state vector is

δẋτ = Fδxτ + Gn, (8)

where n =
[
n>ω n>a n>bω n>ba

]>
is the vector of noise

terms. The matrices F and G can be found in [12].
The process model for the IMU states is used within the pre-

diction step to propagate the state estimate x̂k, expressed with
respect to the most recent robocentric frame F−→rk , forward
from time step k to time step τ using the IMU measurements.
This procedure yields the predicted IMU state, x̌rkvτ ,

Črkvτ =

∫ tτ

tk

Črkvs

(
ωm,s − b̂ωk

)∧
ds, (9)

v̌vτ ivτ = Č
>
rkvτ

(
v̂vkirk

− ĝrk∆t

+

∫ tτ

tk

Črkvs

(
am,s − b̂ak

)
ds

)
,

(10)

řvτrkrk
= v̂vkirk

∆t− 1

2
ĝrk∆t2

+

∫ tτ

tk

∫ s

tk

Črkvµ(am,µ − b̂ak) dµds.

(11)

where ∆t = tτ − tk. Discrete integration of the process model
is performed using Euler’s method. To propagate the state
covariance forward in time, we require the transition matrix
for the error state between IMU time steps,

Φτ+1,τ = exp

 tτ+1∫
tτ

F(s) ds

 ≈ 1 + Fδt, (12)

where 1 is the identity matrix and δt = tτ+1 − tτ . The
predicted state uncertainty is then

Q = diag(σ2
ω1, σ2

a1, σ
2
bω1, σ2

ba1), (13)

P̌τ+1 = Φτ+1,τ P̌τΦ
>
τ+1,τ + GQG>δt. (14)

2) Measurement Update: Our measurements are the rela-
tive pose changes (egomotion) produced by our network. Un-
like current supervised loss formulations, our self-supervised
loss requires the egomotion predictions to be camera-centric
(i.e., expressed in F−→ck ). The measurement residual, εk+1 =[
ε>φ ε>r

]>
, with covariance Rk (and evaluated with the

predicted IMU state at tk+1) therefore is[
εφ
εr

]
=

[
log
(
C̃ckck+1

Č
>
ckck+1

)∨
r̃ck+1ck
ck

− ř
ck+1ck
ck

]
, (15)

where

řck+1ck
ck

= C>rcČrkvk+1
rcrr + C>rc

(
řvk+1rk
rk

− rcrr
)
, (16)

Čckck+1
= C>rcČrkvk+1

Crc. (17)

The measurement Jacobian Hk+1 is found by differentiating
Equation (15) with respect to δx̌k+1:

Hk+1 =

[
03×9 −C>rc J`(−φ̌rkvk+1

) 03×3 03×9

03×9 C>rc Črkvk+1
rcrr
∧ −C>rc 03×9

]
.

(18)

Note that the derivation for Hk+1 uses the Baker-Campbell-
Hausdorff (BCH) formula,

log
(

exp
(
φ2
∧) exp

(
φ1
∧)>)∨ ≈ φ2 − φ1, (19)

which is reasonable for odometry applications. Using the
derived equations, the EKF measurement update is

Kk+1 =P̌k+1H
>
k+1

(
Hk+1P̌k+1H

>
k+1 + Rk+1

)−1
,

P̂k+1 = (1−Kk+1Hk+1) P̌k+1, (20)
δx̂k+1 =Kk+1εk+1.

Finally, the a posteriori state x̂k+1 is produced by injecting
the error-state estimate δx̂k+1 into the nominal state.

3) Composition Step: In the robocentric formulation, the
robot state is shifted forward from F−→rk to F−→rk+1

, following
the measurement update, by compounding the (relative) IMU
pose with the robot pose, and updating the gravity vector
direction. Then, the IMU pose, which is expressed relative
to the robot pose, is reset to the identity:

Ĉrk+1i = Ĉ
>
rkvk+1

Ĉrki, ĝrk+1
= Ĉ

>
rkvk+1

ĝrk ,

r̂irk+1
rk+1

= Ĉ
>
rkvk+1

(
r̂irkrk − r̂vk+1rk

rk

)
, (21)

Ĉrk+1vk+1
= 1, r̂vk+1rk+1

rk+1
= 0.

This process is referred to as the composition step. The state
covariance is accordingly updated using

P̂k+1 = Uk+1P̂k+1U
>
k+1, Uk+1 =

∂δx̂k+1,rk+1

∂δx̂k+1,rk

. (22)

The derivation and value of Uk+1 can be found in [12].

D. End-to-End Training with the Differentiable EKF

Figure 2 visualizes the training procedure of our hybrid
system. We extend the number of frames per sample from
the standard of three (i.e., one target image and two adja-
cent source images) to an arbitrary length N . The longer
sequence length is important for uncertainty learning because
the network must learn to inflate the covariance for erroneous
measurements that negatively impact future state estimates. By
reducing the impact of erroneous (e.g., corrupted or outlier)
measurements, future estimates will be more accurate and the
reconstruction loss will be reduced.

The EKF propagates from the initial state x0 and in-
corporates the learned egomotion measurements. Then, the
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Fig. 2: When applying the minimum reconstruction loss from [23],
two (adjacent) source images are projected into each target frame.
We use the egomotion estimates from a forward and inverse EKF
to produce these two reconstructions. Samples with N frames can
produce N − 2 reprojection losses.

a posteriori IMU pose is used to compute the minimum
reconstruction loss (Equation (3)). This loss requires two
image reconstructions. The first uses the “forward” egomotion
predictions to produce It−1→t. The second uses the “inverse”
predictions (i.e., the source-target image inputs are swapped)
to produce It+1→t. As demonstrated in Figure 2, we employ
two separate EKFs to produce these poses during training.

1) Pose Initialization Scheme: During training, each sample
must be initialized with an accurate estimate of the state
(and state covariance) at the first time step. When using
supervised training, this condition is trivial to enforce: the filter
is initialized with the ground truth first pose. Since ground
truth information is not available in the self-supervised loss
formulation, we initialize the training samples using the most
recent pose estimate from our hybrid VIO system instead. The
pose estimates for all training sequence frames are generated
at the start of every epoch, and remain fixed for each epoch.
As training progresses, the pose estimates improve, so the
initialization accuracy increases. This increase in initialization
accuracy allows the training to converge further.

To ensure a reasonable initialization for the first epoch,
pose estimates are generated using a pretrained unscaled ego-
motion network, which we trained using the self-supervised
losses from Section III-B. To enable a metrically scaled pose
initialization, a scale parameter λ is augmented to the end
of the state vector (similar to [27]). The continuous time
dynamics model for the scale is λ̇ = 0 and error state is
δλ̇ = 0. The scale factor is applied to the IMU translation
state, through λr

vk+1rk
rk , prior to computing εr within the

measurement model. The rotation measurement is unchanged.
The measurement Jacobian becomes

Hk+1 =

[
03×9 −C>rcJ`(−φ̌) 03×3 03×9 01×3

03×9 C>rcČrcrr
∧ −C>rcλ̌ 03×9 −C>rcř

]
,

(23)

where the subscripts of the state variables have been removed
for brevity. Initializing x0 with metric scale in the training

0.00
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r̃ y

0 250 500 750 1000
Timestep

−0.1
0.0
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r̃ z est
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r̃ck+1ck
ck

Pred. Vs. GT

Fig. 3: The raw translation predictions for EuRoC validation sequence
MH05. The scale of the predictions closely matches that of the ground
truth, indicating that the networks are scale-aware.

process allows the depth and egomotion prediction scales
to converge to unity. Figure 3 demonstrates the scale-aware
translation predictions from the trained egomotion network.

2) Uncertainty-Aware Measurement Model: To leverage
the learned egomotion measurements, the iterative egomotion
network [26] estimates a measurement covariance matrix

Rk =

[
Σφk 03×3
03×3 Σrk

]
, (24)

where Σrk and Σφk are diagonal covariance submatrices.
Similar to [8], the dimensionality of the final layer of the
network is increased from 6 to 12. The additional six outputs
wi populate the diagonal of Rk through σ2

i = σ2
010β tanh(wi),

where σ2
0 is a base covariance and β ∈ R>0 is a control

parameter.
Similar to the iterative update of the initial egomotion

network predictions through multiple forward passes, the un-
certainty predictions are iteratively refined. Additional forward
passes improve the alignment of the input images, which
enables the network to observe discrepancies that indicate
prediction errors. The network learns to inflate the predicted
covariance in sequences with high discrepancy levels.

IV. EXPERIMENTS & RESULTS

We trained and evaluated our system on the EuRoC dataset
[28], which includes visual-inertial data collected from an As-
cTec Firefly micro aerial vehicle (MAV). The dataset consists
of 11 sequences that were collected within three different
environments. The MAV underwent rapid movement in each
sequence, inducing motion blur in the image stream and mak-
ing this dataset challenging for odometry estimation. The MAV
was equipped with a global shutter stereo camera operating
at 20 Hz and a Skybotix IMU sensor operating at 200 Hz.
Visual and inertial measurements were synchronized on-board.
Although ground truth is available, we used these data to
evaluate our self-supervised approach only. In our experiments,
the images were undistorted using the provided radial and
tangental camera lens parameters and downsized to 256×448.
The left and right images from all sequences except MH05,
V103, and V203 were used during training. The left and right
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Fig. 4: Top-down view of the trajectory estimate for EuRoC sequence
MH05 after Sim3 alignment.

images were treated as independent sequences because our
method is purely monocular at training and inference time.

A. Training Details

Our system was trained in PyTorch [29] using an Nvidia
Quadro RTX 8000 GPU. We used the depth and egomotion
networks from [26]. Initially, our model was pretrained on
the ScanNet dataset, and then refined on the EuRoC training
sequences. The EuRoC IMU and image data used to train our
system were downsampled by a factor of two to reduce the
per-epoch training time and increase the perspective change
between frames. The training samples consisted of subse-
quences that were one second (10 images at 10 Hz) in length.
Adjacent training samples had an overlap of 0.3 s. The depth
and egomotion networks were trained, in minibatches of six
samples, via gradient descent (using the Adam optimizer [30]
with β1 = 0.9, β2 = 0.999) for 25 epochs with a learning
rate of 1 × 10−4 that was halved every seven epochs. Five
egomotion iterations (i.e., forward passes) were applied at
training time and at test time. For image augmentation during
training, we randomly applied brightness, contrast, saturation,
and hue transformations, in addition to random horizontal
flips (p = 0.5); the same augmentation was applied to every
image within the same training sample.1 For training, we set
α = 0.15, λphoto = 1, λsmooth = 0.05, and λconsist = 0.15.
The constants for uncertainty prediction were β = 4 and
σ2
0 = 1. Our IMU noise parameters were σω = 1 × 10−3,
σa = 0.1, σbω = 1 × 10−5, σba = 0.01, and the covariance
initialization for P0 used during training was σg0 = 0.1,
σv0 = 0.01, σba0 = 10, σbω0

= 0.1, along the main diagonal.

B. EuRoC Dataset Results

Table I reports the average translation RMSE, after Sim3
alignment, for various VIO algorithms operating on the EuRoC
sequences. Similar to other self-supervised methods [5], we
report the training sequence results. We include comparisons

1Since the IMU data cannot be augmented in accordance with the image
flipping, the egomotion predictions were altered, prior to use within the EKF,
to represent the egomotion of the unflipped image.

Fig. 5: Images from the EuRoC dataset validation sequences, and
the resulting image after our applied brightness, blur, and shot noise
corruptions. Despite severe image degradation, the depth network
reasonably estimates the scene depth.

TABLE I: Translation RMSE for the EuRoC sequences (using the
ROVIO and VINS-Mono results reported in [31]). Our self-supervised
system outperforms the supervised variant by a significant margin.

Sequence ROVIO
[11]

VINS-Mono
[13]

SelfVIO
[5]

EKF-VIO
[8] Ours

MH01 0.21 0.27 0.19 1.17 0.51
MH02 0.25 0.12 0.15 1.56 0.78
MH03 0.25 0.13 0.21 1.89 0.69
MH04 0.49 0.23 0.16 2.12 1.00
MH05† 0.52 0.35 0.29 1.96 0.80
V101 0.10 0.07 0.08 2.07 0.43
V102 0.10 0.10 0.09 2.20 0.61
V103† 0.14 0.13 0.10 2.83 0.72
V201 0.12 0.08 0.11 1.49 0.20
V202 0.14 0.08 0.08 2.22 0.81
V203† 0.14 0.21 0.11 — 0.84

† These sequences are within the held-out validation set.

with classical systems (ROVIO and VINS-Mono), a learning-
based system (SelfVIO), and a hybrid system (the differen-
tiable EKF approach from Li et al. [8]). Notably, our system
is significantly more accurate than the (supervised) hybrid
approach from [8], but SelfVIO yields better performance
overall. We tentatively attribute this result to the adversarial
loss applied in SelfVIO, which may lead to more accurate
depth predictions. However, SelfVIO cannot produce metri-
cally scaled predictions and instead relies on Sim3 alignment
to recover scale. Figure 4 visualizes the accuracy of our system
on MH05.

C. Visual Degradation Experiments

Next, we investigate how robust our hybrid method is to a
number of realistic visual degradations. For this experiment,
our VIO approach and other VIO approaches were tested on
EuRoC validation sequences but with degraded image streams.
Section IV-C1 and Section IV-C2 describe the image degrada-
tions applied, while Section IV-C3 presents our experimental
results.

1) Image Corruption: Images were corrupted in three ways:
by applying brightness transformations, by applying defocus
blurring, and by adding shot noise. The corruptions were
applied using the ImgAug library2, and a severity level of

2See https://imgaug.readthedocs.io/en/latest/

https://imgaug.readthedocs.io/en/latest/


five was selected. Only one type of corruption at a time was
applied. Figure 5 shows various example corrupted EuRoC
images. For our experiments, we applied each corruption to
all images within a window of 20 s, every 40 s (i.e., half the
images were corrupted).

2) Frame Skipping: To simulate larger perspective changes,
or a reduced camera/IMU frame rate, we downsampled the im-
age and IMU data streams across the full validation sequences.
In our notation, 1:X refers a downsample rate of X, where
only one of X frames is maintained (e.g., 1:2 removes half
of the frames). We tested downsample rates of X ∈ {2, 3, 4}.

3) Degradation Experiment Results: We evaluated our sys-
tem, along with several others, on the degraded data. We tested
the classical estimators VINS-Mono [13], ROVIO [11], and R-
VIO [12], and the tightly-coupled learning-based (vision-only)
system [26] (note that SelfVIO [5] was not publicly avail-
able).3 Table II depicts the experimental results for sequences
MH05 and V103. We observe that degraded conditions caused
the classical estimators to fail for a significant number of
the trials. During these failures, the classical estimators either
lost feature tracking or diverged (resulting in 100+ metres
of error). The most robust classical system was VINS-Mono,
although it could not maintain feature tracking in the frame
skip experiments. On the other hand, our system performed
consistently in most trials. Notably, the extreme 1:4 case
caused little to no increase in error for our system. Figure 6
plots the measurement error and the predicted covariance for
the 1:1 and 1:4 cases. The covariance predictions shown in
Figure 6 inflate as the camera motion becomes more extreme.

D. Ablation Study

Figure 7 shows the relative translation and rotation errors
before and after the inclusion of our iterative egomotion
network and our EKF components. From Figure 7, it is
apparent that integrating the gyroscope measurements in the
EKF is crucial for accurate orientation estimation. The iterative
egomotion network, when paired with the EKF, reduces the
overall translation error also.

Table III lists the mean accuracy for three versions of our
system on the corrupted sequences from Table II. In sequence,
these versions of the system are our proposed hybrid system,
the standalone egomotion network (i.e., our hybrid system with
the EKF removed), and the same egomotion network trained
without the EKF (i.e., the baseline system from [26]). Notably,
the presence of the EKF during training improves the accuracy
of the raw egomotion network output.

V. CONCLUSION

We have demonstrated how a self-supervised, hybrid VIO
system is able to effectively maintain an accurate egomotion
estimate even when operating under significantly degraded
conditions. Our system, which can be trained end-to-end with
a self-supervised reconstruction loss, is able to learn a het-
eroscedastic measurement covariance model that downweights

3For these comparisons, we used the open source implementations, with
their default EuRoC parameters, running on Ubuntu 20.04 with ROS Noetic.
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unreliable visual measurements. Combined with an IMU-based
process model in a differentiable EKF, our principled sensor
fusion scheme increases the overall estimation accuracy and
allows for consistent performance. A noteworthy attribute of
our system is its ability to recover the metric scene scale.

As future work, we intend to improve our depth predictions
to boost the accuracy of the iterative egomotion network. We
plan to do so by incorporating the discriminative loss from [5]
and by investigating how raw depth predictions can be refined
within a differentiable filter.
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