Abstract:
Physical intelligence (PI) is an emerging research field using new multi-functional smart materials in mechatronic designs. On the microscopic scale, PI principles give r...Show MoreMetadata
Abstract:
Physical intelligence (PI) is an emerging research field using new multi-functional smart materials in mechatronic designs. On the microscopic scale, PI principles give rise to unconventional transducers, which are especially useful for micro/nano-robot design with size and resource constrains. Since it is not easy to directly observe nanoscale multi-physics phenomenon, understanding their principles can be challenging. In this work, we bring PI principles into the metaverse to bridge this gap by developing two mixed reality scale models. The first example is a virtual reality (VR) 2D material twistronics visualizer to demonstrate the novel intelligent 2D materials with tunable properties as a rising field in condensed matter physics. Users can interactively control the cross-coupling multi-physics phenomena and observe the visualized material responses. The second example is centered around an Atomic Force Microscope (AFM) to illustrate its imaging and probe principles. For interaction, users can control the twist angle using atomic lattice models and feel the AFM cantilever force using custom haptic devices. We believe these tools can help precision mechatronic engineers understand and make better use of physical intelligence building blocks to design micro-electromechanical systems.
Date of Conference: 11-15 July 2022
Date Added to IEEE Xplore: 25 August 2022
ISBN Information: