
An Access Control Model Based on Distributed Knowledge Management

Alexandr Seleznyov Stephen Hailes
Department of Computer Science, University College London

Gower Street, London WC1E 6BT, UK
{A.Seleznyov, S.Hailes}@cs.ucl.ac.uk

Abstract

The conceptual architecture of the access control
system described here is based on automatic distributed
acquisition and processing of knowledge about users and
devices in computer networks. It uses autonomous agents
for distributed knowledge management. Agents grouped
into distributed communities act as mediators between
users/devices and network resources. Communicating
with each other, they make decisions about whether a
certain user or device can be given access to a requested
resource. In other words, agents in our system perform
user/device authentication, authorisation, and
maintenance of user credentials.
1. Introduction

Many approaches to access control and trust
management have been developed and implemented over
the years. Initially, the approach taken meant that each
assertion from the space of trust metrics was evaluated
independently – the so-called scalar assumption [1], [2].
Levien [3] extended the notion of trust metrics by
introducing the concept of group trust metrics. He claimed
that group trust metrics have significantly better attack
resistance properties than trust metrics formed under the
scalar assumption. However, much research and
development work remains in order to make such
proposals a reality.

Although the trust management problem has been
extensively discussed and many definitions have been
proposed [4, 5, 6], it has not been properly addressed by
contemporary solutions [3]. Firstly, most current solutions
rely on ad hoc and inflexible mechanisms to reach trust
decisions. Secondly, they do not take into account concept
drift, and assume that trust relations do not change over
time, an oversimplification for any environment deployed
over the long term.

Local trust decisions are based on shared trust
resources. Even in relatively homogeneous environments,
the precise semantics attached to given statements about
trustworthiness will gradually drift apart in different
administrative domains in the light of innovation or
change, whether in technology, applications or

management practices. Having no control over these
changes, a trust management system must recognise this
ontological uncertainty in a first class way, thus allowing
for adaptation over time. This is a radical departure from
existing approaches, in which trust decisions are hard-
coded, and explicitly recognises the need to move away
from simple, unachievable, certainties to best-effort
flexibility in which systems automatically adapt to
changes in their domain of operation and modify their
behaviour accordingly.

In this paper we propose a holistic approach to building
a resilient, dependable and fault-tolerant trust-
management system to manage access control to network
resources. Placed between network and application layers,
it thus forms an application-independent middleware
component, enabling us to create a scalable and flexible
approach for managing distributed environments, and
providing the possibility of handling issues such as
concept drift and uncertainty through observation of and
changes to the operational environment. Distributed
knowledge acquisition and management is used to
authenticate users and aid in reasoning about their
credibility when establishing appropriate trust levels
authorising (or declining) access to requested resources.
We use a distributed multi-agent architecture for a
flexible, general-purpose management of the security of
resources in networks. The distributed architecture allows
the system to query different information sources
dispersed over a network (or networks) to build
comprehensive knowledge about users. In view of its self-
organising and self-protecting nature, it is, by definition,
autonomic.

The reminder of the paper organised as follows:
Section 2 defines the notion of trust, discussing attributes
of trust relationships. In Section 3 we outline the
conceptual architecture of our Autonomic Distributed
Authorisation Middleware (ADAM). Finally, Section 4
concludes this paper with final remarks.
2. Premises

Many definitions of trust have been given to date and
we do not intend to add to this list; instead we concentrate
on the management of trust relationships by building an

efficient system that controls the entire lifecycle of a trust
relationship, from its establishment to its revocation.

We adapt a definition of trust in a way that treats trust
as a measure of the willingness of a responder to satisfy
an inquiry of a requestor for an action that may place all
involved parties at risk of harm. This measure is based on
an assessment of the risks and reputations associated with
the parties involved in a given transaction. As can be seen
from the definition, all parties involved in a transaction
may be harmed as a result of the transaction. A resource
may be harmed since a requestor may perform some
malicious activities within the given access. Third parties
that are connected with the responder by trust
relationships that have already been established may be
implicitly affected as well. Finally, the principal is also at
risk since obtaining incorrect or contradictory information
compromises the integrity of its knowledge base. All the
above situations might be the result of intentional
malicious actions or by mistakes: software bugs, network
failures, and user errors.

As a consequence of these risks, it is imperative that
participants undertake a process of risk assessment before
permitting a transaction to proceed. Likewise, it is most
sensible to employ dynamic mechanisms for object
manipulation tracking, which perform accounting and
detect unusual patterns of behaviour or resource usage.

The risk assessment process involves the collection and
collation of information about behaviour. There are three
main sources that are usually used to collect relevant
information to assess an entity’s trustworthiness: (i) direct
observations, which are formed by recording outcomes of
previous interactions. (ii) recommendations from trusted
entities that provide the possibility for trust even regarding
unknown/unseen entities to be propagated. (iii) reputation,
which is knowledge about an entity’s behaviour derived
from the history of its previous behaviour and/or past
transactions. The process of forming reputation is lossy, in
the sense that information from different sources is
analysed, combined, and summarised in building a
reputation. Most importantly, the binding between the
identities of recommenders and their recommendations is
lost.

The whole purpose of gathering the above information
is to allow the establishment of a trust relationship, the
attributes of which we define to be: participants, scope
(spatial and temporal restrictions applied to a current trust
relationship), risk (as a degree of potential damage), and
security. The first three properties are related to the trust
relationship itself, describing its features. The last –
security – is related to environment in which the
relationship exists. We combine all of these properties to
allow our system to successfully create and manage trust
relationships in different domains and networks whilst
satisfying all the security restrictions of these domains.

An inevitable observation for systems of this nature is
that the linkage of identity to reputation is a fundamental
precondition for the remainder of the system to function
correctly. We believe that this observation is actually
incorrect; ADAM does indeed support systems that wish
either to have strong guarantees on identity or to support
pseudonymity through, for example, zero knowledge
proofs. However, it also has the flexibility to allow users
to create and use multiple electronic (pseudonymous)
identities and thus to disassociate themselves from
previous, bad, reputation and to start afresh. However,
there is no requirement on resources to accept such weak
forms of identification as authenticating users; the
approach we have adopted merely facilitates this if the
resources are happy to permit it – caveat emptor. Thus,
ADAM is concerned with the authorisation of actions that
users wish to perform on resources, not the authentication
of users themselves.

To conclude this section, we would like to highlight
aspects of the foundations of ADAM that make it different
from other trust management systems: (i) it is designed to
allow automatic trust establishment and maintenance
between entities situated in different network domains,
which provides additional flexibility and allows ADAM to
function in a pervasive and ubiquitous environment; (ii) it
only authorises, it does not authenticate; (iii) the
authentication task is delegated in such a way as to permit
resource-specific authentication, which encompasses
everything between strong authentication and anonymity;
(iv) ADAM authorises transactions (actions), not users.
3. System Architecture

In previous sections, we described the principles on
which our system is founded. Here we discuss ADAM’s
conceptual architecture in more detail, giving practical
considerations about its implementation.

Authorisation decisions in ADAM are produced as
results of negotiations between two agents: user agents
and authorisation agents. The former are implemented as
mobile agents. They are aware of local policy on the user
side and represent user interests in the negotiations. The
user agent contains information about its legal user, secret
keys, and certificates required for the user authentication
(it may include some other information, such as credit
cards numbers, user names and passwords for different
resources, etc). All information is encrypted and, to be
activated, a user agent requires a correct PIN or password
to be entered. PINs constitute parts of decryption keys for
user agents, using which user agents can only be activated
by authorised people. It also denies access to user agents
when they are inactive or travelling. The mobility of
agents allows them to move across networks or between
devices. For, example, for the user’s convenience, an
agent may be resident in the user’s PDA.

The user agents not only simplify users’ lives, they
make network management easier since they automate
certain tasks, such as password and certificate
management. For example, to re-issue a user password,
the user agent is notified. After this, it moves to the
network server responsible for managing users’ profiles,
where the password is changed in a secure environment,
making it unnecessary to transmit sensitive information
over the network. This method has also other benefits.
Since the user does not need to remember her password, it
is possible to choose strong passwords automatically
without requiring any extra activity from users.

Some information is stored in user agents for users’
comfort. It is necessary to remember only one PIN or
password. Once the user agent is activated it can submit
some user information on request: for example, user
names and passwords for other resources, certificates, etc.
However, clearly, some information, such as private keys,
should never leave user agents. There is still a small
probability that a malicious person manages to get
information from an agent. We consider this to be rather
smaller than the risk of finding out some or all of the PINs
used to activate an agent. In [7], it was argued that, when
correctly implemented, this kind of user information
storage does not bring new security risks to those already
present in computer networks.

Client Service
Discovery1

Policy Service
Evaluation4

3

Network

2

5

Request
service

6

Experience
Evaluation

7

17
18

Service

Policy

User
Evaluation 8

9

10

AuditAC
Enforcement

11

13

Fraud
Detection and

Response

12

14

Experience
Evaluation

1516

Client Side Service Side

User Agent Authorisation Agent
Figure 1 Authorisation process in ADAM

Authorisation agents are meant to protect network
resources by ensuring that only valid users obtain access
to them. Agents are aware of local policy on the resource
side and enforce policy rules and procedures. Also, after
the authorisation procedure, agents enforce access control
restrictions and monitor usage of resources in support of
reactive security.

Consider the negotiation process in detail. Figure 1
shows the main phases through which ADAM has to go to
process each request. Initially, there are two interested
parties that are potentially willing to cooperate: client and
service. The former is looking for a service or resource to
use for her needs. The latter is willing to provide this
service. Firstly, the client needs to locate an appropriate
server. Secondly, in order to cooperate, they must

convince each other that they are sufficiently trustworthy
to perform this transaction. These actions take place in a
number of steps:

Each user has to activate her user agent by giving the
correct PIN/password (1), as discussed above. A secure
channel is established between the user terminal and the
agent. If no agent with this user’s information is found, a
new agent is created and assigned the task of carrying out
user requests. After this, in order to find an appropriate
service, the client needs to perform service discovery.
During this procedure, information about different
services advertised in the network is gathered (2). This
information includes types and descriptions of services
and information that the client has to provide in order to
be able to use them. Depending on local policies, different
resources may have different requirements. Thus, the user
agent must select the most suitable service that requires
information the user is happy to provide.

The client may need to evaluate the chosen service (3)
before using it. The evaluation is performed with the help
of local policy (4). Additionally, the client may want to
check the quality of the service by collecting opinions of
other clients (5). When this is done, and the client wants
to continue, she makes a request (6, 7).

When the request is received on the service side, an
authorisation agent is created to handle it. This performs
risk assessment and checks whether the potential risk is
acceptable in terms of the local policy of the resource (9).
In doing this, it assesses the potential damage to the user
from in terms of the damage it is possible to do to the
reputation associated with this identity, including identity
loss, or loss of associated values (money may be charged
if a credit card number is provided). It then compares this
to the potential damage that could be sustained by the
resource. It is therefore possible that a user will be
declined access when using one of her electronic identities
and granted access when using another.

Depending on the circumstances, the authorisation
agent may request additional information to be provided
by the user (7). However, this may contradict user policy.
For example, the user policy may not allow the release of
some information from its local network.

When the client provides the information required to
use the service, the authorisation agent has to collect
evidence that the provided information is correct and that
the user who requests the service is indeed the person she
claim to be (8).

At this point, the authorisation agent that processes the
request has obtained the information on which it will base
its authorisation decision. However, it does not yet know
whether this information is trustworthy nor whether it has
been sent by a legitimate user. The agent does not perform
authentication itself. Instead, the authorisation agent
delegates this task to third parties that have had previous
experience of interactions with this user or different

authorities (10). This runs an automatic credentials
discovery (ACD) protocol, which will form the subject of
a future paper. However, its basis is that there are different
sources available that can be used to verify the user
identity, provide information about user’s reputation, and
verify information provided by user. In pervasive systems,
these sources could be distributed over numerous
networks and, as a result, might not be capable of working
cooperatively. Consequently, the authentication agent
must collect their recommendations and combine them to
have a reasonable basis for the access control decision it
will take. For example, the local profile management
server may verify a password’s hash sent along with the
request; a request signed by user’s private key may be
verified if one of the parties provides the corresponding
public key; there are authorities who can verify credit card
numbers; etc. We would like to note that local policies
and the availability of information dictate the number of
steps in this process and proof of identity required to
obtain access.

After a request for user credentials is made, the
authorisation agent has to collect pieces of knowledge
about the user in a secure and private manner. This
information must be transforming from heterogeneous
opinions into homogeneous data that can be automatically
combined and thus allow a decision about user reputation
to be made (11). It is worth noting that the result of
negotiations between agents is not binary. The
negotiations themselves are regulated by a set of fuzzy
rules that are dynamically created and reflect local
policies. Thus, the authorisation agent may decide that a
user’s credentials are inadequate to authorise the
requested action, e.g. “write”, but are adequate to allow
another, say “read”. The client may accept or decline the
offer. Also, she may be willing to give some extra
information to get the desired service (for example, some
companies require a deposit or a card number if a client
does not have a credit history).

After a user’s credentials have been collected and
evaluated, the authorisation agent decides whether or not
to perform the action. If yes, the agent creates an
association that is given to client (12). The agent enforces
access restrictions by controlling this association. Over the
lifespan of an association, authorisation agents perform
continuous auditing as a basis for the later (re)assessment
of the user’s reputation. Audit trails are also used for
reactive fraud detection and response (14). Agents
perform both misuse and anomaly detection and notify
interested parties about any problems. When the action
has been completed, the authorisation agent classifies its
experience as positive or negative (15) and disseminates
updates to user credentials (16). After this, the agent is
destroyed, invalidating the client’s association. At the
client, the user agent evaluates user experience (17) and
disseminates service credentials when appropriate (18).

Whilst we have no space to explore this further, it is
unreasonable to assume that recommenders always
provide accurate testimonies; the system can be subverted
both maliciously and as a result of the use of different
knowledge management methods or policies. Thus
evaluations of testimonies (fraud detection) and agents’
ratings are used to maintain overall system integrity by
favouring better recommenders.
4. Conclusions

This paper presents a conceptual description of the
Distributed Access Control System (ADAM), which is
aimed at automation of trust establishment process by
performing distributed knowledge acquisition and
management. The architecture is based upon two groups
of agents: mobile user agents protecting user interests and
authorisation agents protecting network resources. The
access control decisions are results of negotiations
between them. Local policies are translated into sets of
fuzzy rules and the negotiations aimed at finding
consensus between these sets.

The system allows automated trust establishment by
gathering information about network entities and later
maintenance of trust by constantly controlling information
flow and manipulations with network resources. This
system facilitates automatic trust establishment and
maintenance independently of the type and topology of
underlying networks. This provides considerable
flexibility and allows ADAM to function in pervasive
environments.
5. References
[1] Reiter, M., Stubblebine, S. “Path Independence for
Authentication in Large-scale Systems”, 4th ACM Conference
on Computer and Communications Security, pp. 57-66, 1997.
[2] Tarah, A, Huitema, Ch. ”Associating metrics to
certification paths”, ESORICS: European Symposium on
Research in Computer Security, pages 175–192, 1992.
[3] Levien, R. “Attack Resistant Trust Metrics”. Draft
Ph.D. thesis, 2003.
[4] Grandison, T. “Trust Specification and Analysis for
Internet Applications”, Ph.D. Thesis, Imperial College of
Science Technology and Medicine, Department of Computing,
London, 2001.
[5] Weeks, S. “Understanding Trust Management
Systems”, IEEE Symposium on Security and Privacy, pp. 94-
105, 2001.
[6] Blaze, M., Feigenbaum, J., Strauss, M. “Compliance
Checking in the PolicyMaker Trust Management System”,
Financial Cryptography", pp. 254-274, 1998.
[7] Veijalainen, J., Seleznyov, A., Mazhelis, O. “Security
and Privacy of the PTP”, In Book: Mobile and Wireless
Internet: Protocols, Algorithms, and Systems, Eds. Makki, K,
Pissinou, N, Makki, K., Park, E., Kluwer Publishers, Boston,
pp. 165-190, 2003.

