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ABSTRACT 
 
The lack of end-to-end quality of service support in the 
current Internet has caused significant difficulties to 
ensuring playback continuity in video streaming 
applications. This study addresses this challenge by 
investigating a new adaptation algorithm to adjust the 
bit-rate of video data in response to the network 
bandwidth available to improve playback continuity. 
Unlike previous works, the proposed algorithm is 
transparent to the video client, requires no parameter 
tuning, and yet can outperform existing algorithms. This 
paper presents this algorithm, evaluates and compares its 
performance with the best algorithm currently available 
using extensive trace-driven simulations. 
 
 
1. INTRODUCTION 
 
The lack of end-to-end quality-of-service (QoS) support in 
today’s Internet has caused significant difficulties to the 
deployment of video streaming services such as video 
broadcasting and video-on-demand. In particular, when 
the network becomes congested, significant packet losses 
will arise, leading to corrupted or even dropped video 
frames.  

Given QoS support is unlikely to be widely available in 
the near future, researchers have resorted to another 
approach to tackle this problem. Specifically, a number of 
pioneering researchers have investigated algorithms to 
adapt the video bit-rate to the network bandwidth 
available [1-5]. For example, when the network becomes 
congested, the sender will reduce the bit-rate of the 
encoded video to alleviate the congestion. Clearly, 
reducing the bit-rate will also degrade the visual quality. 
Nevertheless, reducing the video bit-rate in a controlled 
manner at the sender will result in far better visual quality 
than attempting to recover from data loss at the receiver. 

To perform video adaptation we must tackle two 
fundamental challenges. First, the sender must be able to 
dynamically control or convert the video bit-rate to the 

desired value. This can be accomplished by means of 
scalable video coding [6] and transcoding [7-9]. Second, 
an adaptation algorithm is needed to estimate the network 
bandwidth available, and subsequently determine the 
bit-rate to be used for converting and transmitting the 
video stream. This study focuses on the second challenge, 
i.e., design of the rate adaptation algorithm.  

This problem has recently been studied by a number of 
researchers, including the studies by Rejaie, et al. [4] and 
Assuncao and Ghanbari [5] which adopted UDP as the 
network transport; and the studies by Cuetos and Ross [1], 
Cuetos, et al. [2], and Jacobs and Eleftheriadis [3] which 
adopted TCP as the network transport. 

A common property of these adaptation algorithms is 
the existence of a configurable operating parameter [1-2], 
which is typically used in the feedback loop of the 
algorithms. Not surprisingly, as will be illustrated in 
Section 5, the choice of this operating parameter will 
significantly affect the performance of the rate adaptation 
algorithm. Unfortunately, to optimize this parameter for 
the best performance will require a priori knowledge of 
the network bandwidth available over the entire duration 
of the video session. This is clearly not possible in 
practice and thus poses significant difficulties to 
deploying these rate adaptation algorithms. 

In this study, we address this issue by presenting a new 
rate adaptation algorithm that does not have configurable 
parameter at all. In other words, no prior knowledge of the 
available network bandwidth is needed nor required to run 
the rate adaptation algorithm. Our results show that 
compared to the existing algorithms, the presented 
algorithm can achieve comparable or even better 
performance and does so without the need to tweak any 
operating parameters. 

 
2. SYSTEM MODEL 

 
In this work we consider a video streaming system that 
streams pre-encoded video data using TCP as the network 
transport to the receiver for playback. Despite the 
common notion that TCP is unsuitable for video streaming 



for its aggressive congestion control and full reliability, it 
does possess a number of appealing features.  

First, TCP is intrinsically TCP-friendly and thus 
fairness with other TCP traffics is automatically 
guaranteed. Second, using TCP the sender can stream 
video using say the standard HTTP protocol to the client. 
As most, if not all, video players in the market supports 
HTTP-based video streaming and playback, compatibility 
is greatly enhanced. Third, for security reasons, many 
company and ISP blocks UDP traffic at their gateways, 
thus making UDP-based video streaming impossible. By 
contrast, TCP/HTTP streaming can pass through firewalls 
in the same way as web traffic. Finally, to perform 
bandwidth estimation the sender will need some form of 
feedbacks from the client. Thus with UDP transport the 
client will need to be modified to send explicit feedbacks 
to the sender to enable bandwidth estimation and 
subsequently rate adaptation to be performed. By contrast, 
TCP with its built-in flow control already can provide 
implicit feedbacks to the sender and thus no modification 
to the client is necessary. Again this will greatly enhance 
the compatibility of the rate-adaptation algorithm to the 
existing video player software. 

Nevertheless, the rate-adaptation algorithm presented 
in this study can also be applied to UDP-based video 
streaming with appropriate support from the client’s 
player software (e.g. sending explicit feedbacks).  

Figure 1 shows the key components in the video 
streaming system. Assuming the video data are encoded at 
a constant bit rate of rmax bps.  The rate controller can 
convert the encoded video to any bit-rate between rmax and 
rmin (e.g., using scalable video coding [6] or transcoding 
[7-9]). Note that there is a lower limit rmin on the 
achievable video bit-rate to model, for example, the 
bit-rate of the base layer in FGS encoded video [6] or the 
lowest achievable bit rate in transcoding [7-9].  

In practice, even with a transcoder the video bit-rate 
may not be changed at arbitrary time due to the structure 
of the coding algorithm (e.g. group of pictures, etc.). Thus 
in the system model we assume video transcoding is 
performed in discrete video segments of fixed playback 
duration, denoted by M seconds. The rate controller will 
then determine the target bit-rate for the next video 
segment based on estimation of the client’s buffer 
occupancy. We denote the average bit rate for the kth

 video 
segment by rk. 

The transcoded video segments are then transmitted to 
the client using TCP. Note that the server does not limit 
the transmission rate here and simply sends the transcoded 
video data as fast as TCP allows. This ensures that 
available network bandwidth is fully utilized. 

At the receiver, many existing video players will 
prefetch a certain amount of video data before starting 
playback to absorb the inevitable bandwidth fluctuations.  
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Figure 1: Block diagram of the system model. 

 
We denote the playback duration of the prefetched 

video data by Bp seconds. Depending on the specific 
player software, Bp can be a fixed value known to the 
server, or it can be configurable by the users. If it is the 
latter case and the existing player software does not report 
this value to the server, the server will simply assume the 
worst case of no prefetch, i.e. Bp = 0 sec, in performing 
rate adaptation. Our results show that the performance 
difference is insignificant (c.f. Section 5-A).  

 
3. CLIENT BUFFER OCCUPANCY AND 
NETWORK BANDWIDTH ESTIMATION 

 
The objective of the rate adaptation algorithm is to 
prevent playback starvation caused by client buffer 
underflow. To prevent buffer underflow, the server will 
need to estimate the available network bandwidth as well 
as the client buffer occupancy, in terms of second’s worth 
of video data.  

Specifically, we make two assumptions on the receiver 
and the server. First, we assume that the client will not 
decode and playback a video frame until it is completely 
received. Thus if a frame arrives late missing the playback 
schedule, then the player will pause playback until the 
whole frame is received. We call the period of time when 
the playback is stalled due to late frame arrival underflow 
time. Second, we assume that the total size of the buffer in 
between the server application and the network (e.g., 
including the buffer inside the socket library and TCP) is a 
known constant, denoted by Z.  

Estimation of the client buffer occupancy is then 
performed every time the server completes submitting a 
video frame to the network transport for delivery. For 
example, if the common socket library is used then this is 
equivalent to completing all send() function calls for the 
video frame. 

Let ti be the completion time of submitting video frame 
i for transmission, and let fi be the index of the oldest 
frame (i.e. with the smallest index number) that has not 
yet been completely received by the client at time ti. Now 
as the server will submit data for transmission as fast as 
the transport allows, we can assume that the intermediate 
buffer at the server is always full, i.e., there are Z bytes of 
data accumulated awaiting for transmission. Thus we can 
estimate fi from 
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where si is the size of frame i.  
Similarly, after frame i+1 is submitted for 

transmission, we can compute fi+1 using (1). Now if fi+1> 
fi , then we know that frame fi to frame fi+1−1 must have 
arrived at the client during the time from ti to ti+1. 
Assuming in this short interval the frames arrive at the 
client at a constant rate. Then we can estimate the arrival 
time of frame k , denoted by Tk, from  
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Note that we ignored in (2) network and processing 
delay in receiving ACKs from the client. Our simulations 
show that this does not have significant impact on the 
algorithm’s performance.  

Knowing the arrival time of each video frame, we can 
then proceed to estimate the client buffer occupancy. Let 
Bi (in seconds of video data) be the client buffer 
occupancy when frame i arrives at the client and G be the 
frame rate of the video. Then we can estimate the client 
buffer occupancy Bi according to the following rules: 
• Case 1 - 

pi B G≤ ×  
In this case the frame i belongs to the initial prefetch part 
of the video, i.e., the player has not yet started decoding 
the received video data. Thus the buffer occupancy is 
equal to the duration of video data received: 
    /iB i G=       (3) 
• Case 2 - 

pi B G> ×  
In this case, the way to estimate Bi depends on whether or 
not the frame i has arrived before all the data in the client 
buffer is consumed as illustrated in Figure 2.  

If (Ti−1+Bi−1)−Ti≥0, that means frame i has arrived 
before the client buffer becomes empty, then Bi is 
estimated as: 
   ( )1 1 1/i i i iB B T T G− −= + − +        (4) 

Otherwise, if (Ti−1+Bi−1)−Ti≥0, that means the client 
buffer has been empty for a period of time before frame i 
arrived, then Bi is simply equal to the time value of a 
frame, i.e.: 

    1/iB G=       (5) 
 
From the above derivation, we can estimate Bi when 

frame i has just arrived at the client. However, since the 
video bit rate of a segment has to be determined when all 
the data of the previous segment has been submitted into 
the server buffer, some frames of the previous segment are 
still in the server buffer. Therefore, to predict the client 
buffer occupancy after all the data of the previous 
segment has arrived at the client, we need to predict the 
arrival times of the frames in the server buffer.  
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Figure 2: Two ways to estimate Bi when i > Bp x G. 

 
Let ni be the index of the last frame of segment i, we 

have to predict 
inB  at time 

int  while frame 
inf  to 

frame ni are still in the server buffer and then use the 
predicted 

inB  to perform adaptation of segment i+1. 
Assuming the remaining data in the server buffer at 

time 
int  will arrive at the client at a constant rate of Di+1’, 

which is also the estimated TCP throughput for sending 
the segment i+1, the arrival times of the remaining frames 
are estimated as follows: 
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where Fi(t) is the remaining amount of data of frame i at 
time t. With , kT k ∈[

inf , ni], we can estimate 
inB .  

To estimate Di+1’, we simply take the rate at which 
segment i was submitted into the server buffer as the 
estimated value, i.e., 
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where mi is the index of the first frame of segment i. This 
is because the rate at which data are submitted into the 
server buffer is equal to the rate at which data leave the 
server buffer. 
 
4. RATE ADAPTATION 
 
Armed with a mean to estimate the client buffer 
occupancy and network bandwidth, the next challenge is 
to devise an adaptation algorithm to control the video 
bit-rate to prevent client buffer underflow.  

 
A. Segment-based Rate Control 

 
As video data are transcoded and transmitted in 
fixed-duration segments, the server must determine the 
target bit-rate before converting a video segment for 
transmission. The server determines the target bit-rate 
based on two factors, namely the estimated client buffer 
occupancy and the estimated network bandwidth available 
which could be estimated using techniques described in 
Section 3. 



Suppose segment i has just been submitted to the server 
buffer, with the estimated Di+1’ and 

inB , we can predict 
the client buffer occupancy after transmitting the segment 
i+1 to the client, i.e. 
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where the last term is the predicted time taken to send the 
whole i+1th segment to the client. By rearranging (8), we 
obtain: 
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From (9), we can relate the video bit-rate ri+1 with the 
estimated client buffer occupancy (represented by 

1inB
+

). 
Our goal is to adjust the video bit-rate to maintain the 
client buffer occupancy to above a given threshold 
denoted by BT such that short-term bandwidth variations 
can be absorbed. In practice, BT =Bp when Bp is known, 
otherwise it is set to 5 seconds. 

Specifically, if 
1in TB B

+
<  then it implies the client 

buffer occupancy is below the threshold. Hence the server 
will reduce the video bit-rate to raise the buffer occupancy 
to BT by substituting 

1in TB B
+

=  in (9) to obtain: 
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Otherwise if 
in TB B≥ , then it implies the client buffer 

occupancy is above the threshold. In this case the server 
will simply maintain the current client buffer occupancy 
by setting 

1inB
+

=
inB  in (9) to obtain ri+1. This is a 

conservative strategy to reduce the possibility of buffer 
underflow. Thus, we have 

    1 1 'i ir D+ +=     (11) 
Finally, the server checks and limits the computed 

video bit rate to the feasible range [rmin, rmax] by 
   { }{ }1 max min 1min , max ,i ir r r r+ +=      (12) 
Note that in contrast to previous works [1-3], this 

adaptation algorithm has no control parameter that 
requires either offline or online optimization. This has 
practical significance as optimizing the control parameters 
in the existing algorithms [1-3] requires a priori 
knowledge of the available network bandwidth over the 
entire duration of the video session, clearly impossible in 
practice.  

 
B. Preemptive Rate Control 

 
In our experiments, we found that the available network 
bandwidth can occasionally drops drastically to a very low 
value. These sudden bandwidth drops do not appear to be 

predictable and thus can result in client video playback 
starvation. 

The fundamental problem is that the adaptation 
algorithm is executed only when a new video segment is 
to be transmitted. Thus if bandwidth drops significantly, 
then the transmission of the current video segment will 
stall. The adaptation algorithm cannot react in this case as 
the current video segment has not yet been completely 
transmitted. Meanwhile the client will continue 
consuming video data for playback and thus may 
eventually runs into buffer underflow.  

To tackle this problem, we propose a preemptive 
scheduling technique to shorten the time at which the 
adaptation algorithm can react to changing network 
conditions. Instead of waiting for a video segment to be 
completely submitted into the server buffer, the scheduler 
will timeout after Mri+1/Di+1’ seconds, which is the 
expected time required to submit the i+1th video segment 
into the server buffer, even if not all video data have been 
submitted. In this case, any data not yet submitted for 
transmission will be discarded and the remaining video 
segment transcoded again according to the new estimates 
on client buffer occupancy and available network 
bandwidth.  

Note that preemptive rate control requires the video 
transcoder to be able to adjust the video bit rate in 
between a video segment. The implementation will be 
highly dependent on the video compression employed and 
further study is required to identify the constraints and 
tradeoffs of this requirement. 
 
5. PERFORMANCE EVALUATION 

 
In this section, we use trace-driven simulation written in 
ns-2 [10] to evaluate the performance of the proposed 
adaptation algorithm (denoted by AVS) and compare it 
with the current state-of-the-art algorithm proposed by 
Cuetos and Ross [1-2] (denoted by CR).  

Figure 3 depicts the simulated network topology. We 
use the common NewReno TCP [11-12] as the transport 
protocol to deliver the video data to the client. Cross 
traffic is generated from a packet trace file obtained from 
Bell Labs [13-14]1. The trace file captured 107 hours of 
network traffic passing through a firewall. We divide the 
107-hour trace file into 107 1-hour trace files and run a 
simulation for each 1-hour trace file to evaluate the 
algorithms’ performance under different cross traffics.  

Both the streaming traffic and the cross traffic share a 
link of R Mbps as shown in Figure 3. For each simulation, 
we adjust R such that the network has just sufficient 
                                                 

1 Network traces used in the simulations belongs to NLANR 
project sponsored by the National Science Foundation and its ANIR 
division under Cooperative Agreement No. ANI-9807479, and the 
National Laboratory for Applied Network Research. 



bandwidth to stream the video maxR r c= + , where c  is 
the average data rate of the cross traffic. We summarize 
the system settings in Table 1.   

We use two performance metrics, namely underflow 
ratio and bandwidth utilization, to evaluate the algorithms’ 
performance. Underflow ratio is defined as the ratio of 
underflow duration (i.e. the duration of time that playback 
starvation occurs) to the video length. Bandwidth 
utilization is defined as: 

  
max{ , }

0
0

( )
N P L S

i
i

Utilization s v t dt
+

=

= ∑ ∫  (13) 

where N is the total number of frames, P is the initial 
prefetch delay, L is the movie length, S is the total time 
taken to stream the video and v(t) is the TCP throughput at 
time t. The value of bandwidth utilization is in the range 
of [0,1]. This metric measures how well an algorithm 
utilizes the available network bandwidth. 
 
A. Sensitivity to prefetch duration 
 
The proposed rate adaptation algorithm makes use of 
knowledge of the client’s initial prefetch duration in 
estimating the client buffer occupancy. However if this is 
not known then it simply assumes no prefetch is 
performed. 

To investigate the performance impact of such 
knowledge we run two sets of simulations for all 107 
traffic traces, one set with the prefetch duration known to 
the server and the other set simply assuming no prefetch. 
In both cases the client has a prefetch duration of 5 
seconds. 

Table 2 shows the underflow ratio and bandwidth 
averaged over all 107 traces for the two cases. In both 
cases the differences are insignificant and thus implying 
that the proposed rate adaptation algorithm is insensitive 
to the knowledge of the prefetch duration. Therefore in 
practice we can simply assume no prefetch if the prefetch 
duration is not known.   
 
B. Effectiveness of preemptive rate control 
 
To investigate how much performance gains can be 
obtained from preemptive rate control, we run two sets of 
simulations for all 107 traffic traces, one with 
segment-based rate control and the other with preemptive 
rate control. 

In all 107 traces, preemptive rate control achieves 
lower underflow ratios compared to segment-based rate 
control. On average, the underflow ratio is reduced by 
20% when preemptive rate control is used. Nevertheless 
preemptive rate control does require more complex 
transcoders and thus further investigation is needed to 
quantify the gains and the tradeoffs. 
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Figure 3: The network topology in the simulation. 

 
Table 1: System settings for simulations. 

Parameter Symbol Value 
Prefetch duration Bp 5 seconds 
Video segment length M 1 seconds 
Original video bit-rate rmax 1.1 Mbps 
Lowest video bit-rate rmin 200 kbps 
Video Length  3000 seconds 
TCP MSS  1500 bytes 

 
Table 2: Effect of knowledge of the prefetch duration. 

Prefetch Duration Known Unknown Difference
Bandwidth Utilization 0.9999 0.9998 ~0.01% 
Underflow Ratio 0.056335 0.055502 ~1.48% 
 

C. Comparison with the CR algorithm 
 
In this section, we compare the proposed rate adaptation 
algorithm (the AVS algorithm) with the current 
state-of-the-art algorithm proposed by Cuetos and Ross 
[1-2] (the CR algorithm). 

In the CR algorithm, there is a control parameter α 
(0≤α≤1) that can substantially affect the performance. To 
find the optimal value for α it is necessary to know the 
network bandwidth availability over the entire duration of 
the video session. This is clearly not possible in practice 
and the authors did not explain how to adjust the 
parameter in practice.  

Thus to obtain performance results for the CR 
algorithm we run 2,000 simulations with the control 
parameter α varied from 0 to 1 with a step size of 0.0005. 
We found that the optimal value for α depends heavily on 
the particular traffic trace chosen, and can range from 0 to 
0.7 over the 107 traces. 

As the optimal α is not known a priori, we compare CR 
with AVS by computing the proportion of the 2,000 
simulation runs that result in higher underflow ratio than 
the AVS algorithm, which does not need any parameter 
tuning. The results are summarized in Figure 4, which 
also plots the bandwidth utilization ratio, defined as 
(bandwidth utilization of AVS)/(average bandwidth 
utilization of CR over all α values). 
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Figure 4: Comparison of underflow ratios and bandwidth 

utilization of CR and AVS for different traces. 
 
The results in Figure 4 show that the proposed AVS 

algorithm outperforms CR in more than half of the 
simulation runs with different α values. Averaging over 
all 107 traces, the proposed AVS algorithm can achieve 
lower underflow ratio than the CR algorithm for 77% of 
the α values. This shows that in practice, the proposed 
AVS algorithm is likely to perform better and yet does not 
require any a priori knowledge of the network bandwidth 
available nor tuning of any control parameter. 

Despite the reduction in the underflow ratio, the 
proposed AVS algorithm can still make efficient use of 
the network bandwidth, and achieving bandwidth 
utilization similar to that of the CR algorithm.  
 
6. CONCLUSIONS 
 
In this study we presented a new rate adaptation algorithm 
for video streaming over the Internet. The algorithm has 
two unique features to maximize its compatibility with 
existing video player software. First, we show that the rate 
adaptation algorithm can be applied to streaming video 
over TCP/HTTP, which is compatible with most of the 
existing video player software. Second, the rate adaptation 
algorithm performs network bandwidth and client buffer 
occupancy estimations using only local information. Thus 
explicit feedbacks from the client is not needed and hence 
existing video player software can be supported. More 
importantly, unlike previous approaches the proposed 
algorithm does not need any parameter tuning to operate 
nor requires a prior knowledge of the network bandwidth 
available to perform well, thus simplifying the 
deployment of the adaptation algorithm in practice. Our 
results show that the proposed algorithm can outperform 
existing algorithm and yet still achieve efficient 
bandwidth utilization. 
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