
A Transparent Rate Adaptation Algorithm
for Streaming Video over the Internet

L. S. Lam, Jack Y. B. Lee, S. C. Liew, and W. Wang

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong, China
{lslam2, yblee, soung, wwang2}@ie.cuhk.edu.hk

ABSTRACT

The lack of end-to-end quality of service support in the
current Internet has caused significant difficulties to
ensuring playback continuity in video streaming
applications. This study addresses this challenge by
investigating a new adaptation algorithm to adjust the
bit-rate of video data in response to the network
bandwidth available to improve playback continuity.
Unlike previous works, the proposed algorithm is
transparent to the video client, requires no parameter
tuning, and yet can outperform existing algorithms. This
paper presents this algorithm, evaluates and compares its
performance with the best algorithm currently available
using extensive trace-driven simulations.

1. INTRODUCTION

The lack of end-to-end quality-of-service (QoS) support in
today’s Internet has caused significant difficulties to the
deployment of video streaming services such as video
broadcasting and video-on-demand. In particular, when
the network becomes congested, significant packet losses
will arise, leading to corrupted or even dropped video
frames.

Given QoS support is unlikely to be widely available in
the near future, researchers have resorted to another
approach to tackle this problem. Specifically, a number of
pioneering researchers have investigated algorithms to
adapt the video bit-rate to the network bandwidth
available [1-5]. For example, when the network becomes
congested, the sender will reduce the bit-rate of the
encoded video to alleviate the congestion. Clearly,
reducing the bit-rate will also degrade the visual quality.
Nevertheless, reducing the video bit-rate in a controlled
manner at the sender will result in far better visual quality
than attempting to recover from data loss at the receiver.

To perform video adaptation we must tackle two
fundamental challenges. First, the sender must be able to
dynamically control or convert the video bit-rate to the

desired value. This can be accomplished by means of
scalable video coding [6] and transcoding [7-9]. Second,
an adaptation algorithm is needed to estimate the network
bandwidth available, and subsequently determine the
bit-rate to be used for converting and transmitting the
video stream. This study focuses on the second challenge,
i.e., design of the rate adaptation algorithm.

This problem has recently been studied by a number of
researchers, including the studies by Rejaie, et al. [4] and
Assuncao and Ghanbari [5] which adopted UDP as the
network transport; and the studies by Cuetos and Ross [1],
Cuetos, et al. [2], and Jacobs and Eleftheriadis [3] which
adopted TCP as the network transport.

A common property of these adaptation algorithms is
the existence of a configurable operating parameter [1-2],
which is typically used in the feedback loop of the
algorithms. Not surprisingly, as will be illustrated in
Section 5, the choice of this operating parameter will
significantly affect the performance of the rate adaptation
algorithm. Unfortunately, to optimize this parameter for
the best performance will require a priori knowledge of
the network bandwidth available over the entire duration
of the video session. This is clearly not possible in
practice and thus poses significant difficulties to
deploying these rate adaptation algorithms.

In this study, we address this issue by presenting a new
rate adaptation algorithm that does not have configurable
parameter at all. In other words, no prior knowledge of the
available network bandwidth is needed nor required to run
the rate adaptation algorithm. Our results show that
compared to the existing algorithms, the presented
algorithm can achieve comparable or even better
performance and does so without the need to tweak any
operating parameters.

2. SYSTEM MODEL

In this work we consider a video streaming system that
streams pre-encoded video data using TCP as the network
transport to the receiver for playback. Despite the
common notion that TCP is unsuitable for video streaming

for its aggressive congestion control and full reliability, it
does possess a number of appealing features.

First, TCP is intrinsically TCP-friendly and thus
fairness with other TCP traffics is automatically
guaranteed. Second, using TCP the sender can stream
video using say the standard HTTP protocol to the client.
As most, if not all, video players in the market supports
HTTP-based video streaming and playback, compatibility
is greatly enhanced. Third, for security reasons, many
company and ISP blocks UDP traffic at their gateways,
thus making UDP-based video streaming impossible. By
contrast, TCP/HTTP streaming can pass through firewalls
in the same way as web traffic. Finally, to perform
bandwidth estimation the sender will need some form of
feedbacks from the client. Thus with UDP transport the
client will need to be modified to send explicit feedbacks
to the sender to enable bandwidth estimation and
subsequently rate adaptation to be performed. By contrast,
TCP with its built-in flow control already can provide
implicit feedbacks to the sender and thus no modification
to the client is necessary. Again this will greatly enhance
the compatibility of the rate-adaptation algorithm to the
existing video player software.

Nevertheless, the rate-adaptation algorithm presented
in this study can also be applied to UDP-based video
streaming with appropriate support from the client’s
player software (e.g. sending explicit feedbacks).

Figure 1 shows the key components in the video
streaming system. Assuming the video data are encoded at
a constant bit rate of rmax bps. The rate controller can
convert the encoded video to any bit-rate between rmax and
rmin (e.g., using scalable video coding [6] or transcoding
[7-9]). Note that there is a lower limit rmin on the
achievable video bit-rate to model, for example, the
bit-rate of the base layer in FGS encoded video [6] or the
lowest achievable bit rate in transcoding [7-9].

In practice, even with a transcoder the video bit-rate
may not be changed at arbitrary time due to the structure
of the coding algorithm (e.g. group of pictures, etc.). Thus
in the system model we assume video transcoding is
performed in discrete video segments of fixed playback
duration, denoted by M seconds. The rate controller will
then determine the target bit-rate for the next video
segment based on estimation of the client’s buffer
occupancy. We denote the average bit rate for the kth

 video
segment by rk.

The transcoded video segments are then transmitted to
the client using TCP. Note that the server does not limit
the transmission rate here and simply sends the transcoded
video data as fast as TCP allows. This ensures that
available network bandwidth is fully utilized.

At the receiver, many existing video players will
prefetch a certain amount of video data before starting
playback to absorb the inevitable bandwidth fluctuations.

Encoded
Video

Rate
Controller

TCP

Network

Client Buffer D
ecoder

t

Bitrate
rmax

Bitrate

rmax
rmin

t

Encoded
Video

Rate
Controller

TCP

Network

Client Buffer D
ecoder

t

Bitrate
rmax

Bitrate

rmax
rmin

t

Figure 1: Block diagram of the system model.

We denote the playback duration of the prefetched

video data by Bp seconds. Depending on the specific
player software, Bp can be a fixed value known to the
server, or it can be configurable by the users. If it is the
latter case and the existing player software does not report
this value to the server, the server will simply assume the
worst case of no prefetch, i.e. Bp = 0 sec, in performing
rate adaptation. Our results show that the performance
difference is insignificant (c.f. Section 5-A).

3. CLIENT BUFFER OCCUPANCY AND
NETWORK BANDWIDTH ESTIMATION

The objective of the rate adaptation algorithm is to
prevent playback starvation caused by client buffer
underflow. To prevent buffer underflow, the server will
need to estimate the available network bandwidth as well
as the client buffer occupancy, in terms of second’s worth
of video data.

Specifically, we make two assumptions on the receiver
and the server. First, we assume that the client will not
decode and playback a video frame until it is completely
received. Thus if a frame arrives late missing the playback
schedule, then the player will pause playback until the
whole frame is received. We call the period of time when
the playback is stalled due to late frame arrival underflow
time. Second, we assume that the total size of the buffer in
between the server application and the network (e.g.,
including the buffer inside the socket library and TCP) is a
known constant, denoted by Z.

Estimation of the client buffer occupancy is then
performed every time the server completes submitting a
video frame to the network transport for delivery. For
example, if the common socket library is used then this is
equivalent to completing all send() function calls for the
video frame.

Let ti be the completion time of submitting video frame
i for transmission, and let fi be the index of the oldest
frame (i.e. with the smallest index number) that has not
yet been completely received by the client at time ti. Now
as the server will submit data for transmission as fast as
the transport allows, we can assume that the intermediate
buffer at the server is always full, i.e., there are Z bytes of
data accumulated awaiting for transmission. Thus we can
estimate fi from

= max s.t.
i

i k
k n

f n s Z
=

≥∑ (1)

where si is the size of frame i.
Similarly, after frame i+1 is submitted for

transmission, we can compute fi+1 using (1). Now if fi+1>
fi , then we know that frame fi to frame fi+1−1 must have
arrived at the client during the time from ti to ti+1.
Assuming in this short interval the frames arrive at the
client at a constant rate. Then we can estimate the arrival
time of frame k , denoted by Tk, from

() []1 1
1

1
 , 1i

k i i i i i
i i

k f
T t t t k f f

f f + +
+

+ −
= + − ∈ −

−
 (2)

Note that we ignored in (2) network and processing
delay in receiving ACKs from the client. Our simulations
show that this does not have significant impact on the
algorithm’s performance.

Knowing the arrival time of each video frame, we can
then proceed to estimate the client buffer occupancy. Let
Bi (in seconds of video data) be the client buffer
occupancy when frame i arrives at the client and G be the
frame rate of the video. Then we can estimate the client
buffer occupancy Bi according to the following rules:
• Case 1 -

pi B G≤ ×
In this case the frame i belongs to the initial prefetch part
of the video, i.e., the player has not yet started decoding
the received video data. Thus the buffer occupancy is
equal to the duration of video data received:
 /iB i G= (3)
• Case 2 -

pi B G> ×
In this case, the way to estimate Bi depends on whether or
not the frame i has arrived before all the data in the client
buffer is consumed as illustrated in Figure 2.

If (Ti−1+Bi−1)−Ti≥0, that means frame i has arrived
before the client buffer becomes empty, then Bi is
estimated as:
 ()1 1 1/i i i iB B T T G− −= + − + (4)

Otherwise, if (Ti−1+Bi−1)−Ti≥0, that means the client
buffer has been empty for a period of time before frame i
arrived, then Bi is simply equal to the time value of a
frame, i.e.:

 1/iB G= (5)

From the above derivation, we can estimate Bi when

frame i has just arrived at the client. However, since the
video bit rate of a segment has to be determined when all
the data of the previous segment has been submitted into
the server buffer, some frames of the previous segment are
still in the server buffer. Therefore, to predict the client
buffer occupancy after all the data of the previous
segment has arrived at the client, we need to predict the
arrival times of the frames in the server buffer.

Ti-1 Ti

Bi = (Bi-1+ Ti-1)- Ti + 1/G

t

Bi-1

Ti

Bi = 1/G

t

Period when
buffer is empty

Bi

Frame i

Figure 2: Two ways to estimate Bi when i > Bp x G.

Let ni be the index of the last frame of segment i, we

have to predict
inB at time

int while frame
inf to

frame ni are still in the server buffer and then use the
predicted

inB to perform adaptation of segment i+1.
Assuming the remaining data in the server buffer at

time
int will arrive at the client at a constant rate of Di+1’,

which is also the estimated TCP throughput for sending
the segment i+1, the arrival times of the remaining frames
are estimated as follows:

1

1 () ,
'i i i

ni

k

k n j n n i
j fi

T t F t k f n
D =+

 = + ∀ ∈  ∑ (6)

where Fi(t) is the remaining amount of data of frame i at
time t. With , kT k ∈[

inf , ni], we can estimate
inB .

To estimate Di+1’, we simply take the rate at which
segment i was submitted into the server buffer as the
estimated value, i.e.,

 ()1 '
i

i i

i

n

i k n m
k m

D s t t+
=

= −∑ (7)

where mi is the index of the first frame of segment i. This
is because the rate at which data are submitted into the
server buffer is equal to the rate at which data leave the
server buffer.

4. RATE ADAPTATION

Armed with a mean to estimate the client buffer
occupancy and network bandwidth, the next challenge is
to devise an adaptation algorithm to control the video
bit-rate to prevent client buffer underflow.

A. Segment-based Rate Control

As video data are transcoded and transmitted in
fixed-duration segments, the server must determine the
target bit-rate before converting a video segment for
transmission. The server determines the target bit-rate
based on two factors, namely the estimated client buffer
occupancy and the estimated network bandwidth available
which could be estimated using techniques described in
Section 3.

Suppose segment i has just been submitted to the server
buffer, with the estimated Di+1’ and

inB , we can predict
the client buffer occupancy after transmitting the segment
i+1 to the client, i.e.

1inB
+

, from:

1

1

1 'i i

i
n n

i

Mr
B B M

D+

+

+

= + − (8)

where the last term is the predicted time taken to send the
whole i+1th segment to the client. By rearranging (8), we
obtain:

1
1 11 'i in n

i i

B B
r D

M
+

+ +

− 
= − 

 
 (9)

From (9), we can relate the video bit-rate ri+1 with the
estimated client buffer occupancy (represented by

1inB
+

).
Our goal is to adjust the video bit-rate to maintain the
client buffer occupancy to above a given threshold
denoted by BT such that short-term bandwidth variations
can be absorbed. In practice, BT =Bp when Bp is known,
otherwise it is set to 5 seconds.

Specifically, if
1in TB B

+
< then it implies the client

buffer occupancy is below the threshold. Hence the server
will reduce the video bit-rate to raise the buffer occupancy
to BT by substituting

1in TB B
+

= in (9) to obtain:

1 11 'iT n
i i

B B
r D

M+ +

− 
= − 

 
 (10)

Otherwise if
in TB B≥ , then it implies the client buffer

occupancy is above the threshold. In this case the server
will simply maintain the current client buffer occupancy
by setting

1inB
+

=
inB in (9) to obtain ri+1. This is a

conservative strategy to reduce the possibility of buffer
underflow. Thus, we have

 1 1 'i ir D+ += (11)
Finally, the server checks and limits the computed

video bit rate to the feasible range [rmin, rmax] by
 { }{ }1 max min 1min , max ,i ir r r r+ += (12)
Note that in contrast to previous works [1-3], this

adaptation algorithm has no control parameter that
requires either offline or online optimization. This has
practical significance as optimizing the control parameters
in the existing algorithms [1-3] requires a priori
knowledge of the available network bandwidth over the
entire duration of the video session, clearly impossible in
practice.

B. Preemptive Rate Control

In our experiments, we found that the available network
bandwidth can occasionally drops drastically to a very low
value. These sudden bandwidth drops do not appear to be

predictable and thus can result in client video playback
starvation.

The fundamental problem is that the adaptation
algorithm is executed only when a new video segment is
to be transmitted. Thus if bandwidth drops significantly,
then the transmission of the current video segment will
stall. The adaptation algorithm cannot react in this case as
the current video segment has not yet been completely
transmitted. Meanwhile the client will continue
consuming video data for playback and thus may
eventually runs into buffer underflow.

To tackle this problem, we propose a preemptive
scheduling technique to shorten the time at which the
adaptation algorithm can react to changing network
conditions. Instead of waiting for a video segment to be
completely submitted into the server buffer, the scheduler
will timeout after Mri+1/Di+1’ seconds, which is the
expected time required to submit the i+1th video segment
into the server buffer, even if not all video data have been
submitted. In this case, any data not yet submitted for
transmission will be discarded and the remaining video
segment transcoded again according to the new estimates
on client buffer occupancy and available network
bandwidth.

Note that preemptive rate control requires the video
transcoder to be able to adjust the video bit rate in
between a video segment. The implementation will be
highly dependent on the video compression employed and
further study is required to identify the constraints and
tradeoffs of this requirement.

5. PERFORMANCE EVALUATION

In this section, we use trace-driven simulation written in
ns-2 [10] to evaluate the performance of the proposed
adaptation algorithm (denoted by AVS) and compare it
with the current state-of-the-art algorithm proposed by
Cuetos and Ross [1-2] (denoted by CR).

Figure 3 depicts the simulated network topology. We
use the common NewReno TCP [11-12] as the transport
protocol to deliver the video data to the client. Cross
traffic is generated from a packet trace file obtained from
Bell Labs [13-14]1. The trace file captured 107 hours of
network traffic passing through a firewall. We divide the
107-hour trace file into 107 1-hour trace files and run a
simulation for each 1-hour trace file to evaluate the
algorithms’ performance under different cross traffics.

Both the streaming traffic and the cross traffic share a
link of R Mbps as shown in Figure 3. For each simulation,
we adjust R such that the network has just sufficient

1 Network traces used in the simulations belongs to NLANR
project sponsored by the National Science Foundation and its ANIR
division under Cooperative Agreement No. ANI-9807479, and the
National Laboratory for Applied Network Research.

bandwidth to stream the video maxR r c= + , where c is
the average data rate of the cross traffic. We summarize
the system settings in Table 1.

We use two performance metrics, namely underflow
ratio and bandwidth utilization, to evaluate the algorithms’
performance. Underflow ratio is defined as the ratio of
underflow duration (i.e. the duration of time that playback
starvation occurs) to the video length. Bandwidth
utilization is defined as:

max{ , }

0
0

()
N P L S

i
i

Utilization s v t dt
+

=

= ∑ ∫ (13)

where N is the total number of frames, P is the initial
prefetch delay, L is the movie length, S is the total time
taken to stream the video and v(t) is the TCP throughput at
time t. The value of bandwidth utilization is in the range
of [0,1]. This metric measures how well an algorithm
utilizes the available network bandwidth.

A. Sensitivity to prefetch duration

The proposed rate adaptation algorithm makes use of
knowledge of the client’s initial prefetch duration in
estimating the client buffer occupancy. However if this is
not known then it simply assumes no prefetch is
performed.

To investigate the performance impact of such
knowledge we run two sets of simulations for all 107
traffic traces, one set with the prefetch duration known to
the server and the other set simply assuming no prefetch.
In both cases the client has a prefetch duration of 5
seconds.

Table 2 shows the underflow ratio and bandwidth
averaged over all 107 traces for the two cases. In both
cases the differences are insignificant and thus implying
that the proposed rate adaptation algorithm is insensitive
to the knowledge of the prefetch duration. Therefore in
practice we can simply assume no prefetch if the prefetch
duration is not known.

B. Effectiveness of preemptive rate control

To investigate how much performance gains can be
obtained from preemptive rate control, we run two sets of
simulations for all 107 traffic traces, one with
segment-based rate control and the other with preemptive
rate control.

In all 107 traces, preemptive rate control achieves
lower underflow ratios compared to segment-based rate
control. On average, the underflow ratio is reduced by
20% when preemptive rate control is used. Nevertheless
preemptive rate control does require more complex
transcoders and thus further investigation is needed to
quantify the gains and the tradeoffs.

Streaming Server

Cross Traffic Generator Cross Traffic Receiver

Streaming Client

100Mbps, 10ms

10
0M

bp
s,

10
ms

10
0M

bp
s,

10
ms

100Mbps, 10ms

R Mbps, 100ms

Streaming Server

Cross Traffic Generator Cross Traffic Receiver

Streaming Client

100Mbps, 10ms

10
0M

bp
s,

10
ms

10
0M

bp
s,

10
ms

100Mbps, 10ms

R Mbps, 100ms

Figure 3: The network topology in the simulation.

Table 1: System settings for simulations.

Parameter Symbol Value
Prefetch duration Bp 5 seconds
Video segment length M 1 seconds
Original video bit-rate rmax 1.1 Mbps
Lowest video bit-rate rmin 200 kbps
Video Length 3000 seconds
TCP MSS 1500 bytes

Table 2: Effect of knowledge of the prefetch duration.

Prefetch Duration Known Unknown Difference
Bandwidth Utilization 0.9999 0.9998 ~0.01%
Underflow Ratio 0.056335 0.055502 ~1.48%

C. Comparison with the CR algorithm

In this section, we compare the proposed rate adaptation
algorithm (the AVS algorithm) with the current
state-of-the-art algorithm proposed by Cuetos and Ross
[1-2] (the CR algorithm).

In the CR algorithm, there is a control parameter α
(0≤α≤1) that can substantially affect the performance. To
find the optimal value for α it is necessary to know the
network bandwidth availability over the entire duration of
the video session. This is clearly not possible in practice
and the authors did not explain how to adjust the
parameter in practice.

Thus to obtain performance results for the CR
algorithm we run 2,000 simulations with the control
parameter α varied from 0 to 1 with a step size of 0.0005.
We found that the optimal value for α depends heavily on
the particular traffic trace chosen, and can range from 0 to
0.7 over the 107 traces.

As the optimal α is not known a priori, we compare CR
with AVS by computing the proportion of the 2,000
simulation runs that result in higher underflow ratio than
the AVS algorithm, which does not need any parameter
tuning. The results are summarized in Figure 4, which
also plots the bandwidth utilization ratio, defined as
(bandwidth utilization of AVS)/(average bandwidth
utilization of CR over all α values).

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Trace No.

Po
rp

or
tio

n/
R

at
io

Proportion of alpha values CR gives larger underflow ratio Bandwidth utilization ratio

Figure 4: Comparison of underflow ratios and bandwidth

utilization of CR and AVS for different traces.

The results in Figure 4 show that the proposed AVS

algorithm outperforms CR in more than half of the
simulation runs with different α values. Averaging over
all 107 traces, the proposed AVS algorithm can achieve
lower underflow ratio than the CR algorithm for 77% of
the α values. This shows that in practice, the proposed
AVS algorithm is likely to perform better and yet does not
require any a priori knowledge of the network bandwidth
available nor tuning of any control parameter.

Despite the reduction in the underflow ratio, the
proposed AVS algorithm can still make efficient use of
the network bandwidth, and achieving bandwidth
utilization similar to that of the CR algorithm.

6. CONCLUSIONS

In this study we presented a new rate adaptation algorithm
for video streaming over the Internet. The algorithm has
two unique features to maximize its compatibility with
existing video player software. First, we show that the rate
adaptation algorithm can be applied to streaming video
over TCP/HTTP, which is compatible with most of the
existing video player software. Second, the rate adaptation
algorithm performs network bandwidth and client buffer
occupancy estimations using only local information. Thus
explicit feedbacks from the client is not needed and hence
existing video player software can be supported. More
importantly, unlike previous approaches the proposed
algorithm does not need any parameter tuning to operate
nor requires a prior knowledge of the network bandwidth
available to perform well, thus simplifying the
deployment of the adaptation algorithm in practice. Our
results show that the proposed algorithm can outperform
existing algorithm and yet still achieve efficient
bandwidth utilization.

ACKNOWLEDGEMENTS

This research is funded in part by an Earmarked Grant
(CUHK4229/00E) from the HKSAR Research Grant Council
and in part by the Area of Excellence Scheme, established under
the University Grants Council of the Hong Kong Special
Administrative Region, China (Project No. AoE/E-01/99).

REFERENCES

[1] P. de Cuetos and K.W. Ross, “Adaptive Rate Control for

Streaming Stored Fine-Grained Scalable Video,” Proc.
NOSSDAV, May 2002, pp.3-12.

[2] P. de Cuetos, P. Guillotel, K.W. Ross and D. Thoreau,
“Implementation of Adaptive Streaming Of Stored
MPEG-4 FGS Video Over TCP,” Proc. IEEE Multimedia
and Expo, 2002, pp.405-408.

[3] S. Jacobs and A. Eleftheriadis, “Streaming Video using
Dynamic Rate Shaping and TCP Congestion Control,”
Journal of Visual Communication and Image
Representation, Vol. 9, No. 3, 1998, pp.211-222.

[4] R. Rejaie, M. Handley and D. Estrin, “Architectural
considerations for playback of quality adaptive video over
the Internet,” Technical Report 98-686, USC-CS, Nov.
1998.

[5] P.A.A. Assuncao and M. Ghanbari, “Congestion control
of video traffic with transcoders,” Proc. IEEE Int. Conf.
Communications, Vol. 1, June 1997, pp. 523-527.

[6] W. Li, “Overview of Fine Granularity Scalability in
MPEG-4 Video Standard,” IEEE Trans. Circuits and
Systems for Video Tech. Vol. 11, No. 3, March 2001,
pp.301-317.

[7] P. A. A. Assunção and G. Mohammed, “A
Frequency-Domain Video Transcoder for Dynamic
Bit-Rate Reduction of MPEG-2 Bit Streams,” IEEE
Trans. Circuits and Systems for Video Tech., Vol. 8, No.
8, Dec. 1998, pp.923-967.

[8] B. K. Natarajan and B. Vasudev, “A Fast Approximate
Algorithm for Scaling down Digital Images in the DCT
Domain,” Proc. IEEE Int. Conf. Image Processing, Vol. 2,
Oct. 1995, pp.241-243.

[9] H. Sun, W. Kwok and J.W. Zdepski, “Architecture for
MPEG compressed bitstream scaling,” IEEE Trans.
Circuits and Systems for Video Technology, Vol. 6, No. 2,
April 1996, pp.191-199.

[10] The network simulator – ns-2. [Online]. Available:
http://www.isi.edu/nsnam/ns/

[11] S. Floyd and V. Paxson, “Difficulties in Simulating the
Internet,” IEEE/ACM Trans. Networking, Vol. 9, No. 4,
August 2001, pp. 392-403.

[12] S. Floyd and T. Henderson, “The NewReno Modification
to TCP’s Fast Recovery Algorithm,” RFC 2582, April
1999.

[13] NLANR Measurement and Network Analysis Group.
[Online]. Available:
http://pma.nlanr.net/Traces/long/bell1.html

[14] Bell Labs Internet Traffic Research. [Online]. Available:
http://cm.bell-labs.com/cm/ms/departments/sia/InternetTra
ffic/

