
Automatic Decomposition of Java Program

for Implementation on Mobile Terminals

Takaaki Umedu, Shigeharu Urata, Akio Nakata and Teruo Higashino

Graduate School of Info. Sci. and Tech., Osaka Univ., Japan

Yamadaoka, Suita, Osaka 565-0871, Japan

{umedu, s-urata, nakata, higashino}@ist.osaka-u.ac.jp

Abstract

In this paper, we propose a method for partitioning a given
application program that exceeds resource limits of mobile
terminals into two module sets. Only a part of modules of
the given application is assigned on a mobile terminal and
the rest of modules are running on its proxy server, and
that the mobile terminal invokes the modules on the server
using remote method invocation. It is desirable that we
can minimize the total amount of communication, delay
time and power consumption between the mobile terminal
and its server (here, we call the total amount as the total
cost).

In the proposed technique, first, a given Java program
is repeatedly simulated on a single machine, and we col-
lect the statistics information to estimate the total cost.
Then, we give the resource limitation of the mobile termi-
nal such as the memory size and an objective function that
shows what total cost should be minimized. Under those
constraints, our tool divides optimized division by using
Simulated Annealing (SA). We have applied our technique
to some application programs and examined its usefulness
by evaluating their total costs.

1 Introduction

Recently, handheld terminals such as mobile phones or
PDAs have become very popular. And many additional
functions have been given to such devices. Especially,
since many mobile phones that equip Java Virtual Ma-
chine have appeared, the requirement for the applica-
tions running on mobile phones has been becoming larger.
However, because of the limitations such as available
memory size and processing power, not so many appli-
cations can be executed on such handheld devices. On
the other hand, remote method invocation facilities such
as Java RMI [1] and HORB [2] and distribution methods
to execute Java programs in distributed environments by

using such facilities have been studied.
In this paper, we propose a distribution method where

given applications that exceed the limitation of mobile ter-
minals will be executed in mobile terminals virtually by
using remote method invocation. In our approach, only
a part of the application that includes its user interface
is executed on a mobile terminal and large sized modules
that cannot be executed in the mobile terminal are ex-
ecuted on its proxy server. The two parts communicate
each other by using remote method invocation and the
whole system is executed as the same as the original ap-
plication running on a single machine. In this case, the
division is required to satisfy the limitation of mobile ter-
minals and moreover it is better that the division satisfies
the requirements from its user’s environment. So in this
paper, we propose a method for obtaining the division
that is as good as possible in a sense of the given metrics
under the given restrictions.

To derive such a division, the statistical data about the
amount and number of communication among modules
are needed. For remote method invocation in Java, many
studies are done such as a study of measurement and op-
timization [3], studies of measurement and scheduling for
improvement of real-time systems [4, 5] or a study of ef-
ficient implementation of RMI [6]. However, these stud-
ies are based on the measurement of performance of dis-
tributed applications in practical environments. So, it is
difficult to apply those techniques to divide applications
that are not specified as programs running on distributed
environments.

For statistical performance evaluation, there are many
studies based on analysis of source codes such as studies of
slicing of parallel Java programs [7, 8]. However, here for
simplicity of discussion, we use a simulation based perfor-
mance evaluation technique. In our technique, additional
codes for performance evaluation are inserted to the given
source code automatically. The codes are inserted to be
called before all the method invocations and record the

amount and number of communication between two mod-
ules (classes). The statistical performance data can be
collected by executing the modified code repeatedly with
considering various situations.

Then a division is derived where it satisfies all the re-
strictions such as the memory size and it is optimized
under the given metrics. Here, we have proven that this
division problem is NP-hard. Since in general the opti-
mized solution cannot be derived in practical time, we use
a heuristic algorithm to get an approximated solution. To
solve such NP-hard problems, there are many studies for
approximation such as Min-Cut method [9] proposed by
Kernighan and Lin, its advanced method [10] and a com-
bination of Min-Cut based graph division algorithm and
GA (generic algorithm) [11]. Moreover, SA(Simulated
Annealing) [12], liner-time heuristic division method [13]
and other methods are proposed. In our technique, we
use SA based method because it is known that relatively
good solutions can be derived in reasonable computation
time.

We have developed a performance evaluation tool and
division tool based on SA. Then we have applied our
method to some example applications by some dividing
metrics. By this evaluation, we have checked our method
can reduce calculation time extremely by compared with
brute force method and the derived division can be as
good as the optimized answer by searching widely.

2 Outline of proposed technique

In our proposed technique, a given application is divided
into two parts where each class is assigned to either server
side modules or client side modules. These two parts of
modules communicate with each other so that their be-
havior is the same as the given application.

2.1 Restrictions for target applications

Here, we give some restrictions for the target applications.

• The source codes of the target application are avail-
able.

• All the interactions between classes are done by
method invocation.

• All the parameter variables are simple data structure
that can be passed by value.

• After each method invocation, the called class never
keeps the reference to parameter variables of the in-
vocation.

At first, since our performance evaluation method is
done by modifying source codes, if a part of source codes

is not available like as the standard library, these classes
are not cared in division and they are placed on both the
server side and client side. Secondly, if some shared vari-
ables are used for interaction, they must be replaced by
access methods of private variables before applying our
method. Thirdly, all the parameters must be passed as
if they were passed by value to measure the amount of
communication correctly. Lastly, if some classes keep the
references to parameter variables, they must be combined
by a wrapper class that hides such complicated interac-
tions into it.

2.2 Assumption for target environment

In our technique, the divided two parts interact with each
other by using Java RMI, in target environment. RMI
must be available between the server side modules and
client side modules in both directions.

Now in many environments of mobile phones, RMI is
not supported and only pull type communication from
terminals is served. However, push type communication
from servers is defined in WAP2.0, which is the next gen-
eration of handheld communication device standard. So
by using such services to simulate RMI, our technique can
be applied. On the other hand, even in the current gen-
eration of cellular phones, push type communication from
the server side can be available by using short mail ser-
vices provided in some cellular phone environments such
as C-mail service of ezplus provided by KDDI Japan. So
by using such services as triggers, RMI can be simulated
in these environments.

3 Estimation method of statistical

information for optimal division

In our method, we collect statistical data to divide given
applications by simulation. By inserting special codes to
given source nodes of applications that collect statistical
information, and then by executing the inserted codes, the
simulation is carried out.

3.1 Statistical information and optimiz-
ing parameters

At first, we define the target of optimization as follows.

• amount of communication

• communication delay

• power consumption in handheld devices

Here, we assume each parameter is estimated as follows.
The amount of communication is evaluated by measur-
ing the communication between modules. The communi-
cation delay is approximated by the number of method
invocation, since the delay is mainly caused by the over-
head of remote method invocation. We assume the power
consumption is in proportion to the amount of codes on
handheld devices. So we estimate the power consump-
tion by the duration that the modules are executed in
handheld devices. Moreover, since the handheld devices
often has much less power than servers, we can make the
divided application faster by assigning the modules con-
suming much time into the server side. In our technique,
the optimization process is based on an objective func-
tion that is constructed as the weighted summation of
these three parameters in order to get various optimized
division according as we need.

Hereafter, we show our evaluation method.

Estimation of the amount of communication

In this paper, we use the summation of size of data
exchanged by remote method invocations between classes
placed on other sides through the execution of the ap-
plication as the total amount of communication. So we
must estimate it by assuming that all methods are in-
voked through remote method invocation.

Here we define the amount of communication of a re-
mote method invocation as data size of parameter val-
ues + data size of the return value + overhead of remote
method invocation.

Since the actual amount of communication is slightly
different in each execution of application, we must use
the averaged data after executing the application many
times with practical usage.

Estimation of communication delay

In our technique, we assume that communication delay
is mainly caused by the overhead of communication and
estimate it by the number of remote method invocations
simply. In practice, since the communication delay de-
pends on the data size and their transmission speed, we
must coordinate the weight of the amount of communica-
tion and the number of remote method invocations.

Estimation of time spent by each module

In order to estimate the power consumption of a class,
we measure the time spent by the methods of that class.
Here we measure them simply by calculating the duration
from time a method is called to the time the method re-
turns. If we cannot assume that there is no other large
load on the environment for measurement, and the target
application is not multi-threaded, we must measure them
by using more detailed profiling tools such as Extensible
Java Profiler [14].

3.2 Insertion of measurement codes

In our method, to measure the above three profiles, the
measurement codes are inserted to the given application
automatically as follows.

class Main {
public static void main(String args[]) {

:
Result.AddData(CLASS_Main, CLASS_Sub1,

RMI_OVERHEAD+4); // Inserted
sub1.method1(x);
Result.AddData(CLASS_Main, CLASS_Sub2,

RMI_OVERHEAD+8); // Inserted
sub2.method2(y);

:
}

}
class Result { // class for measurement
public static final int RMI_OVERHEAD = 20;
public static final int CLASS_Main = 0;
public static final int CLASS_Sub1 = 1;
public static final int CLASS_Sub2 = 2;
public static final int NUM_CLASSES = 3;
// amount of communication
private static int T[][] = new int[NUM_CLASSES][NUM_CLASSES];
// number of method invocation
private static int C[][] = new int[NUM_CLASSES][NUM_CLASSES];
// time spent by each class
private static long Q[] = new long[NUM_CLASSES];
// the class that currently executing method belongs to
private static int CurrentClass = CLASS_Main;
// the time when currently executing method was invoked
private static long InvokedTime = System.currentTimeMillis();
public static void AddData(int from, int to, int size) {
T[from][to] += size;
C[from][to] ++;
long CurrentTime = System.currentTimeMillis();
Q[from] = CurrentTime - InvokedTime;
InvokedTime = CurrentTime;
}

}

The inserted codes will call the recording function of
Result class to record the information. In the above ex-
ample program, we assume that the overhead of RMI is
20 bytes to calculate the amount of communication. A
constant is defined for each class. The exchanged data
size and the number of method invocations are recorded
in two dimensional arrays T and C, respectively. Those
two dimensional arrays are reffered by a pair of a caller
class and a callee class. The time spent by each class is
recorded in array Q.

4 Formulation of module assign-

ment problem

We have formulated our module assignment problem as
follows.

input:

• a set of modules M = {m1, ..., mn}
• the memory size of each module S : M �→ N

• available memory on the client side mc ∈ N

• modules explicitly assigned to the server side or client
side MS, MC ⊂ M

• the amount of communication between modules T :
M × M �→ N

• the number of method invocations between modules
C : M × M �→ N

• the time spent by each module Q : M �→ N

• the weights for the optimization parameters
K1, K2, K3 ∈ N

output:

• a pair of assignments Ms and Mc that satisfy the fol-
lowing restriction and minimize the value of the ob-
jective function (here, Ms and Mc denote the server
side modules and client side modules, respectively).

restriction:

• Ms ∪ Mc = M, Ms ∩ Mc = ∅
•

∑
m∈M1

S(m) ≤ mc

objective function:

F (Ms, Mc) = K1

∑
m1∈Ms,m2∈Mc

T (m1, m2)

+K2

∑
m1∈Ms,m2∈Mc

C(m1, m2) + K3

∑
m∈Mc

Q(m)

Here, we assume that T (m1, m2) denotes the sum of the
ammounts of communication from m1 to m2 and that for
the reverse direction. If we prefer to give different weights
for the both directions, we can do so. K1, K2 and K3

denote the weights for the amount of communication, the
number of method invocations and the CPU time spent
in the client side, respectively. We can optimize them by
adjusting the values of K1, K2 and K3.

Here, we discuss about the computational complex-
ity for this module assignment problem. Since a graph
partitioning problem dividing a given set of vertexes
V = v1, ..., v2n of G = (V, E) into two sets V1 and
V2(|V1| = |V2| = n, V1 ∪ V2 = V, V1 ∩ V2 = ∅) by min-
imizing the cut W (V1, V2) =

∑
v1∈V1,v2∈V2,(v1,v2)∈E 1 is

known as a NP-hard problem [15].
Here, any graph partitioning problem can be reduced

to the module assignment problem as follows.

• M = V ∪ {vc}
• ∀v ∈ M : S(v) = 1

• mc = |V |/2 + 1

• {vc} ∈ Mc

• T (v1, v2) =

⎧⎨
⎩

1 ((v1, v2) ∈ E)
|E| + 1 (v1 = vc or v2 = vc)
0 (otherwise)

• K1 = 1, K2 = 0, K3 = 0, and all the other parameters
are set to 0 or ∅.

For the given cost function W (V1, V2) of the graph parti-
tioning problem, we define the objective function of our
module assignment problem as F (Ms, Mc) = |Ms|×(|E|+
1) + W (V1, V2) where Ms = V1 and Mc = V2 ∪ {vc}
hold. For any division of G = (V, E), the cost W
holds W (V1, V2) ≤ |E|. Therefore, for any two divi-
sions {Ms1, Mc1} and {Ms2, Mc2}, |Ms1| < |Ms2| ⇒
F (Ms1, Mc1) < F (Ms2, Mc2) holds. So the optimal re-
sult Ms of our module assignment problem always mini-
mizes the size of |Ms|. Also, the number of elements in
|Ms| holds |Ms| = |M | − mc = |V |/2 because at most
|V |/2 vertexes can be assigend to Mc. In this case, since
the value of the objective function holds F (Ms, Mc) =
(|V |/2) × (|E| + 1) + W (Ms, Mc − {vc}), the optimized
division must minimize W (Ms, Mc−{vc}). So we can get
the optimized division of G = (V, E) from the optimized
assignment. Since this reduction can be done in polyno-
mial time, our module assignment problem is proved as
NP-hard.

5 Optimizing the assignment of

modules

Since this module assignment problem is NP-hard, we can-
not the optimized result in practical time. So we use a
heuristic algorithm to get approximate results. Here, we
use a SA (Simulated Annealing) based method.

In SA based methods, candidate results are repeatedly
improved in order to obtain the optimized result. A neigh-
bor of the current candidate is selected as the new candi-
date randomly and if the new candidate is better than the
current one, the current candidate is replaced by the new
candidate. Also even if the new candidate is worse than
the current one, the replacement occurs in some proba-
bility. The probability starts with a large value and is
decreased mildly. It is known that by making the decre-
ment very mild and trying enough times, relatively good
results can be obtained.

6 Example applications

6.1 Ex1: randomly generated modules

At first, we have applied our technique to some randomly
generated problems.

Table 1: Amount of communication between server and
clients
(1) 30 modules

of loops 10 50 100 150

SA
170KB
(0.06s)

130KB
(0.29s)

104KB
(0.56s)

104KB
(0.85s)

brute force 98KB(200.54s)

(2) 50 modules

of loops 10 100 1000 2000

SA
276KB
(0.14s)

276KB
(1.42s)

253KB
(14.13s)

213KB
(28.31s)

brute force —(—)

• available memory on client side: 120.0KB

• number of modules : 30, 50

• size of modules : randomly generated at most
30.0KB.

• amount of communication : randomly generated

The results are shown in Table 1. Each table shows the
amount of communication between the server and client
where the numbers shown in the parentheses are time
spent for calculation.

From the above results, we can say that by using SA
based method we can obtain enough good results as an
approximation for large sized problems that cannot be
solved by the round robin method. And it is shown that
enough large counts of loops are needed to derive good
results close to the optimal ones.

6.2 Ex2: an existing application

We have chosen an existing Java application for editing
pictures. This application consists of 68 classes where the
average size of classes is about 5 KB. At the first, we have
collected our statistical information for this application.
The results are shown in Fig.1. Each graph shows (1) the
amount of communication and (2) the number of method
invocation between each pair of two classes (the pairs that
never communicate with each other are omitted in these
graphs) and (3) CPU time spent by each module.

Then, we have applied our module assignment algo-
rithm to the application based on the above information.

To evaluate the usefulness of our technique, we have
evaluated in some conditions by changing the optimiza-
tion parameters K1, K2, K3 and available memory on the
client. The results are shown in Table 2. The first col-
umn shows the result of optimization for the amount of
communication where only parameter K1 is used while K2

Table 2: Result of division for the example application
memory of amount of number of CPU time

client comm. method of client
(KB) (bytes) invocation (ms)

K1 = 1, K2 = 0, K3 = 0
45 234014 4162 134199
50 18566 873 687890
55 2870 104 709080
60 2242 73 709080

K1 = 0, K2 = 1, K3 = 0
45 234014 4162 134199
50 18958 908 687900
55 3594 136 755907
60 3462 108 691717

K1 = 0, K2 = 0, K3 = 1
45 238198 4297 363280
50 236322 4236 378151
55 236090 4230 378151
60 235294 4218 378151

and K3 are ignored. The second and third columns show
the results of optimization for the number of method invo-
cations and power consumption respectively in the same
way.

From these results, we can say our technique is use-
ful for designing practical applications running on mobile
terminals.

7 Conclusion

In this paper, we have developed a tool for gathering sta-
tistical information of Java programs and proposed a mod-
ule assignment technique where the amount of communi-
cation between the server side and client side, elapsed time
or power consumption on handheld devices are minimized.
We also have applied our technique to some examples and
obtained useful results in reasonable time.

As our future work, we are planning to apply our tech-
nique to various applications. We also would like to find
more effective approximation algorithms.

References

[1] Grosso W. : Java RMI, O’Reilly & Associates, Inc.
(2002)

[2] HORB Open : http://www.horbopen.org/ (2001)

[3] Matjaz B.J., Ivan R., Marjan H., Alan P.S. and Si-
mon N. : Java 2 Distributed Object Models Per-
formance Analysis, Comparison and Optimization,

(1) Exchanged data between modules (2) Number of method invocations between modules

(3) CPU time spent by modules

Figure 1: Interaction among modules and CPU time spent by modules in an example application

Proc. of 7th Int. Conf. on Parallel and Distributed
Systems (ICPADS’00), pp. 239–246 (2000)

[4] Kalogeraki V., Melliar-Smith P.M. and Moser L.E.
: Using Multiple Feedback Loops for Object Pro-
filing, Scheduling and Migration in Soft Real-Time
Distributed Object Systems, Proc. of 2nd IEEE
Int. Symp. on Object-Oriented Real-Time Distributed
Computing, pp. 291–300 (1999)

[5] Flores A.P., Nacul A., Silva L., Netto J., Pereira
C.E. and Bacellar L. : Quantitative Evaluation of
Distributed Object-Oriented Programming Environ-
ments for Real-Time Applications, Proc. of 2nd IEEE
Int. Symp. on Object-Oriented Real-Time Distributed
Computing, pp. 133–138 (1999)

[6] Kono K. and Masuda T. : Efficient RMI, Dy-
namic Specialization of Object Serialization, Proc. of
20th Int. Conf. on Distributed Computing Systems
(ICDCS 2000), pp. 308–315 (2000)

[7] Zhao J. : Slicing Concurrent Java Programs, Proc. of
7th Int. Workshop on Program Comprehension, pp.
126–133 (1999)

[8] Zhao J. : Multithreaded Dependence Graphs for
Concurrent Java Program, Proc. of 1999 Int. Symp.
on Software Engineering for Parallel and Distributed
Systems, pp. 13–23 (1999)

[9] Kernighan B.W. and Lin S. : An Efficient Heuristic
Procedure for Partitioning Graphs, Bell Syst. Tech.
J., vol.49, no.2, pp. 291–307 (1970)

[10] Krishnamurthy B. : An Improved Min-Cut Algo-
rithm for Partitioning VLSI Networks, IEEE Trans.
Computers, vol.33, no.5, pp. 438–446 (1984)

[11] Bui T.N. and Moon B.R. : Generic Algorithm and
Graph Partitioning, IEEE Trans. Computers, vol.45,
no.7, pp. 841–855 (1996)

[12] Johnson D.S., Aragin C., McGeoch L., and Schevon
C. : Optimization by Simulated Annealing, An Ex-
perimental Evaluation, Part1, Graph Partitioning,
Operations Research, vol.37, pp. 865–892 (1987)

[13] Fiduccia C.M. and Mattheyses R.M. : A Linear-Time
Heuristic for Improving Network Partitions, Proc.
of 19th Design Automation Conference, pp. 175–181
(1982)

[14] Sebastien Vauclair : Extensible Java Profiler,
http://ejp.sourceforge.net/

[15] Garey M.R. and Johnson D.S. : Computers and
Intractability: A Guide to the Theory of NP-
completeness, Freeman (1979)

