
Automatic Generation of the C# Code for Security Protocols Verified with
Casper/FDR

Chul-Wuk Jeon, Il-Gon Kim, Jin-Young Choi
Dept. of Computer Science and Engineering, Korea University, Seoul, 136-701 KOREA

{cwjeon, igkim, choi}@formal.korea.ac.kr

Abstract

Formal methods technique offer a means of verifying the
correctness of the design process used to create the security
protocol. Notwithstanding the successful verification of the
design of security protocols, the implementation code for
them may contain security flaws, due to the mistakes made
by the programmers or bugs in the programming language
itself. We propose an ACG-C# tool, which can be used to
generate automatically C# implementation code for the se-
curity protocol verified with Casper and FDR. The ACG-C#
approach has several different features, namely automatic
code generation, secure code, and high confidence. We con-
duct a case study on the Yahalom security protocol, using
ACG-C# to generate the C# implementation code.

1 Introduction

With the rapid development of communication networks,
the use of security protocols to achieve security goals
such as confidentiality, authentication, integrity and non-
repudiation is becoming more and more popular. How-
ever, many supposedly inviolable security protocols have
been proposed in the literature and even exploited in prac-
tice, only to be found to be vulnerable later on. Therefore,
various formal methods have been developed to verify the
safety of security protocols. These include belief logics
such as BAN[1] and various tools such as FDR, Murphi,
NRL Analyzer, and Isabelle[2].

Notwithstanding the successful verification of the design
of security protocols, the implementation code for them
may contain security flaws, due to the mistakes made by the
programmers or bugs in the programming language itself.
In addition, the process of implementing a security proto-
col is a tedious and time-consuming task. For example, a
flaw pertaining to a buffer overflow attack was found in the
OpenSSH code of the SSH protocol[3]. This vulnerability
did not concern the security protocol itself, but its imperfect
implementation.

Accordingly, research into the generation of the program
code automatically from a high-level specification of a se-
curity protocol is necessary, in order to reduce such vulnera-
bilities in the implementation phase. If the design of the se-
curity protocol is found to be correct, the use of automated
translation guarantees that the behavior of the implementa-
tion code corresponds precisely to the formal specification.

In this paper, we propose an ACG-C# tool, which can
be used to generate automatically the C# implementation
code for security protocols from the high-level specifica-
tion written in a variation of Casper notation. This ACG-C#
tool compiles the specification to produce C# code that is a
concrete implementation of the protocol.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of Casper notation. Section
3 introduce the notation, the process of code generation, ar-
chitecture, API of the ACG-C# tool and the advantages of
our approach. Finally, section 4 concludes this paper.

2 Casper

Casper was developed by Gavin Lowe in order to ex-
press the behavior of security protocols more easily and to
allow their security properties to be verified. The Casper
tool translates a high-level description of a security proto-
col into CSP, which is the process algebra of Communicat-
ing Sequential Processes developed by Hoare. It was devel-
oped to enable the behavior of security protocols to be spec-
ified more easily and verify the security properties, such as
confidentiality and authentication, to be verified with the
FDR model checking tool. The Casper/FDR approach has
been very successful over the past few years and has led to
the discovery of many security weaknesses in protocols that
were thought to be inviolable.

A Casper script consists of two parts: a general part that
specifies a model of a system running the protocol and a
specific part that defines a particular image a given of a
given function by instantiating the parameters of the pro-
tocol. we first introduce the basic notation of Casper using
the Needham-Schroeder protocol as an example.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

Figure 1 shows the “#Free variables” section contains
the functions PK and SK that return a public key and a pri-
vate key of the agents a and b, respectively. The term In-
verseKeys defines a pair of keys used to encrypt and decrypt
a message. Therefore, PK(a) and SK(a) are inverses of one
another(PK(a) : the public key of agent a, SK(a) : the pri-
vate key of agent b). The “#Protocol description” section
defines the sequence of messages in the protocol. The mes-
sage numbers 0, 1, 2, and 3 denote the message sequence
between the agents a and b. In message 0, agent a receives
the identity of agent b from the environment. This message
tells agent a to communicate with agent b. The “#Speci-
fication” section describes the various security properties,
such as secrecy and authentication. For example, the nota-
tion Secret(a,na,[b]) means that the agent a thinks that the
nonce, na is a secret that should be known only to himself
and agent b. The “#Actual variables” section defines the
actual datatypes of two honest agents a(Alice), b(Bob), and
an intruder(Ivor). The “#System” section defines a single
initiator Alice and a single responder Bob which use nonces
na and nb, respectively. The “#Intruder Information” sec-
tion specifies the initial knowledge of an intruder to inter-
cept the messages and fake the identity of the agents.

#Free variable
a, b : Agent
na, nb : Nonce
PK : Agent -> PublicKey
SK : Agent -> SecretKey
InverseKeys = (PK, SK)

#Protocol description
0. -> a : b
1. a -> b : {na, a}{PK(b)}
2. b -> a : {na, nb}{PK(a)}
3. a -> b : {nb}{PK(b)}

#Processes
INITIATOR(a,na) knows PK, SK(a)
RESPONDER(b,nb) knows PK, SK(b)

#Specification
Secret(a,na,[b])
Secret(b,nb,[a])
Agreement(a,b,[na,nb])
Agreement(b,a,[na,nb])

#Actual variables
Alice, Bob, Ivor : Agent
Na, Nb, Nm : Nonce

#Function
symbolic PK, SK

#System
INITIATOR(Alice, Na)
RESPONDER(Bob, Nb)

#Intruder Information
Intruder = Ivor
IntruderKnowlege
={Alice, Bob, Ivor, Nm, PK, SK(Ivor)}

Figure 1. Needham-Schroeder protocol
Casper Script

3 The ACG-C#(Automatic Code Generator
into C#) tool

3.1 Overview

The term ACG-C# stands for Automatic Code Generator
into C# code. It’s basic notation and the code generation
process are based on the COSP-J tool that Xavier Didelot
of Oxford University developed[4]. The ACG-C# tool can
minimize the inconsistency between the formal specifica-
tion and the executable implementation code for the secu-
rity protocol. The ACG-C# tool automatically generates the
C# implementation code from the high-level description of
the security protocol verified with Casper/FDR.

Figure 2. The verification and code generation
processes for the security protocol

Figure 2 shows the overall process used to verify the
safety of the security protocol and to implement it. The
entire process is composed of two subprocesses, which are
referred to as protocol design and protocol implementation.
To guarantee the safety of the security protocol in the de-
sign phase, we first make an abstract model of the protocol
with Casper and then generate CSP code with the compila-
tion function of Casper. Next, we can run the FDR model
checking tool to verify whether the security protocol satis-
fies the security properties or not. If the security properties
are satisfied, then the designer inputs the slightly modified
Casper script into the ACG-C# tool. In the implementation
phase, the ACG-C# tool automatically generates the C# im-
plementation code for the security protocol. The choice of
C# as the target language is due to the support that the C#
language provides for security mechanisms, such as type-

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

#Protocol description
1. a -> b : {a,na}{PK(b)}
2. b -> a : {na,nb}{PK(a)}
3. a -> b : {nb}{PK(b)}
4. a -> : b,na,nb
5. b -> : a,na,nb

#Free variables
a, b : Agent
na,nb : Nonce
PK : Agent -> RSAPublicKey
SK : Agent -> RSASecretKey
InverseKeys = (PK, SK)

#External
key.xml : KeyStore

#Functions
PK = key.xml.PK
SK = key.xml.SK

#Processes
INITIATOR(a,b) knows PK,SK(a)
generates na
RESPONDER(b) knows PK,SK(b)
generates nb

Figure 3. ACG-C# input script

safety, security policy, authentication and authorization[5].
It also supports security libraries such as secret and commu-
nication service provider APIs.

3.2 The input notation in ACG-C#

The structure of the input script of ACG-C# is adapted
from the general structure of the input script of Casper.
When ACG-C# generates the C# implementation code,
there is no need for all eight sections of the Casper script.

The “#System” section, “#Actual variable” section, and
“#Intruder Information” section in Casper are related to the
definition of the agents taking part in the actual system, the
roles they play and the intruder’s abilities. However, gener-
ating the implementation code is not absolutely necessary.
Instead, ACG-C# needs to be more specific for implementa-
tion code. In the “#Free variable” section, functions PK and
SK do not really need to be defined in the Casper script. If
the designer wants to RSA encryption, function “PK: agent
→ PublicKey” replaces “PublicKey” with “RSAPublicKey”
and also “SK: agent → SecurityKey” replaces “SecretKey”
with “RSASecretKey”. In practice, the function PK and SK
should provide running code with the secret key or public
key of a given agent. In order to store these public and se-
cret keys used in an xml file. The running code gets the
public keys and the private keys in an xml file. Lastly, the
“#External” section does not exist in Casper. This section
describes the key’s store position. The casper script for the
modified Needham-Schroeder protocol is Figure 3.

3.3 Architecture

ACG-C# separates the implementation of the protocol
notation from that of the network communications and
cryptographic algorithms.

• Protocol notation - this part of the architecture is re-
lated to the “#Protocol description” section in Casper
script. This code maintains the protocol state, deter-
mines when and if messages are sent and received,
checks the contents of the outgoing messages and the
incoming messages, as well as stores the message
components.

Figure 4. Protocol notation from ACG-C# to
C# code

In Figure 4, the “#Protocol description” section in
Casper script, the desired security protocol is separated into
two agents for the sake of computer networking. Agent a
creates the new nonce, na and then sends it. Agent b re-
ceives nonce, na. Similarly, Agent b encrypts the received
nonce with RSA encryption algorithm and then sends it.

• Secret and Communication Provider(SCP) - this part
of the architecture involves provider specific code that
handles the concatenating and separating of message
components into the byte stream, implements the cryp-
tographic algorithms, and manages the network proto-
col specific aspects. The Secret and Communication
Provider forms the common base when the C# imple-
mentation code is running.

3.4 SCP(Secret and Communication Provider)
API

SCP API provides the C# implementation code with
runtime access to the Secret and Communication library.
The agent class provides the functions required for the two
agents to communicate with each other. The agent class

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

contains the agent’s ID, IP, socket, and opponent fields. The
ID field represents the identity of the agent as it is used in
the protocol description section of the input script. The
IP field is the IP address which the agent uses for com-
puter networking. Socket is an instance of the class socket
that is used to communicate with the agent. The opponent
can get the IP address that the agent uses to communicate
with another agent. The message class represents the mes-
sages sent and received during communication. The mes-
sage class deals with operations involving the message’s
contents, such as encryption, decryption, and so on. The
message class includes the encrypt method, decrypt method,
hash method, and addMessage method.

The generated C# implementation code uses the proto-
col class method. The protocol class uses a design patt-
tern, abstract factory, which allows different providers to be
plugged into the SCP API. It provides the Protocol notation
code with a single point of access to instances of the con-
crete provider classes that are used to implement the SCP
API defined interfaces, and the cryptographic and network
operations.

Compared with COSP-J, the entire architecture is
changed due to the features of the C# language. In ACG-C#,
the class, MessageT, which is itself composed of the class
Message, is used to implement the interface IMessage. This
architecture can easily be extended by changing the class
Message.

3.5 Advantages

• No error-prone : If the programmer is inexperienced,
the security protocol is likely to be flawed. ACG-C#
precludes the possibility of the programmer making
such mistakes. Furthermore, the ACG-C# tool helps
the programmer to reduce tedious and time-consuming
tasks.

• Secure code : With the managed code in C#,
the CLR(Common Language Runtime) can perform
checks for type safety, memory overwrites, memory
management, and garbage collection. This results
in a reduction of memory leaks and related issues.
The CLR performing the memory management pre-
vents the code from buffer overflow, accessing mem-
ory directly, eliminating pointers, and greatly reducing
crashes or other memory-overwrite behaviors.

• High confidence : Using the well-defined Casper script
can provide guarantees that the desired security prop-
erties are satisfied, thus imparting high confidence.

• Strong key : People tend to choose their passwords
poorly[6]. To prevent guessing attacks, a good random

number generator is needed. The key generator gener-
ates DES keys which have 108 possible variations and
keys are saved in an XML file.

4 Conclusion

The security protocol implementation process can cause
difficulties, due to; a lack of expertise and experience on
the part of the programmer and bugs in the implementation
language, which lead to the implemented security protocols
behaving incorrectly. The automatic code generation ap-
proach not only eliminates these shortcomings, but offers
several advantages, such as its automatic code generation,
type safety, and high confidence. Using Casper provides
the designer with high confidence and high quality in terms
of the analysis of the security protocol. Once the security
protocol has been verified with Casper/FDR, the ACG-C#
tool generates the C# implementation code. This code is
guaranteed to be free of designer induced buffer overflow,
memory leaks, and type-flaw attacks. We believe that us-
ing formal methods and the automatic code implementation
approach is the efficient way to guarantee the safety of se-
curity protocols in the design and the implementation steps.

References

[1] M.Burrows, M.Abadi, and R.Needham. A Logic of
Authentication. ACM Transactions on Computer Sys-
tems, pp.18-36, 1990.

[2] P.Y.A. Ryan and S. A, Schneider. Modeling and analy-
sis of security protocols: the CSP Approach. Addison-
Wesley, 2001.

[3] M.Zalewski. Remote vulnerability in SSH daemon
crc32 compensation attack detector. Available from
http://razor.bindview.com/publish/advisories/adv ssh1
crc.html, 2001.

[4] X.Didelot. COSP-J: A Compiler for Security
Protocols. MSc dissertation, Available from
http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Sec
urity/Casper/COSPJ/, 2003.

[5] K.Shakil. Security Features in
C#, The article, Available from
http://www.developersdex.com/gurus/articles/5.asp,
2004.

[6] Gavin Lowe. Analysing Protocols Subject to Guessing
Attacks. Journal of Computer Security, 2004.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

