
Please do not remove this page

Load sharing in peer-to-peer networks using
dynamic replication
Rajasekhar, Sathish; Rong, Bin; Lai, Kwong; Khalil, Ibrahim; Tari, Zahir
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Load-sharing-in-peer-to-peer-networks-using/9921860302801341/files
AndLinks?index=0

Rajasekhar, S., Rong, B., Lai, K., Khalil, I., & Tari, Z. (2006). Load sharing in peer-to-peer networks using
dynamic replication. Proceedings of the 20th International Conference on Advanced Information
Networking and Applications, 1101–1106. https://doi.org/10.1109/AINA.2006.207

Published Version: https://doi.org/10.1109/AINA.2006.207

Downloaded On 2024/04/28 00:15:16 +1000
© 2006 IEEE
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Load-sharing-in-peer-to-peer-networks-using/9921860302801341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Load-sharing-in-peer-to-peer-networks-using/9921860302801341
http://doi.org/doi:https://doi.org/10.1109/AINA.2006.207
https://researchrepository.rmit.edu.au

Load Sharing in Peer-to-Peer Networks using Dynamic Replication

S Rajasekhar, B Rong, K Y Lai, I Khalil and Z Tari
School of Computer Science and Information Technology

RMIT University, Melbourne 3000, Australia
(sathish,brong,kwonglai,ibrahimk,zahirt)@cs.rmit.edu.au

Abstract

The peer-to-peer (P2P) architecture provides support for
the next generation of information sharing applications. A
difficult challenge faced by these systems in the presence
of non-uniform data distribution and dynamic network con-
ditions is load sharing. This paper addresses the prob-
lem of load sharing in P2P networks across heterogeneous
super-peers. We propose two load sharing techniques that
use data replication to improve access performance. In
the first technique, called Periodic Push-based Replication
(PPR), super-peers periodically send replicas of the most
frequently accessed files to remote super-peers. This effec-
tively reduces the hop count to fetch these files. The second
technique, called On-Demand Replication (ODR), performs
replication based on access frequency. By performing repli-
cation on-demand, ODR provides adaptability to changes
in access behavior. Extensive testing have been conducted
to study the performance of the proposed techniques. The
results obtained demonstrate significant performance im-
provements through replication.

1. Introduction

In recent years, P2P networks have become very popu-
lar due to its simplicity and its decentralised approach in
supporting large scale applications such as file-sharing. A
practical problem encountered by P2P systems is load im-
balance. Peers with popular data files are accessed more
frequently, putting these nodes under heavy load.

Achieving load sharing is of fundamental importance in
P2P systems. By sharing the load, better utilisation and
performance can be achieved. Some P2P systems such as
Gnutella [1] flood information throughout the network cre-
ating heavy load on peer nodes. Peers have no knowledge
about the identity and information of other peer devices in
the network, hence, coordination amongst peers becomes
a complex task with significant overheads. To overcome
these drawbacks a super-peer (SP) based scalable and ro-

bust Quality of Service (QoS) architecture for WiFi P2P
networks was proposed in [7]. A SP is a powerful device,
which intelligently and collectively manages the operations
of a peer community.

Load balancing has been extensively used in distributed
architectures and is viewed as migrating units of work from
heavily loaded to lightly loaded servers [9]. Load Sharing
involves distribution of load to reduce idle on servers.

In this paper, we propose two novel techniques to share
the load using replication techniques. In PPR, the hosting
super-peer periodically send replicas of the most frequently
accessed files to remote SPs based on the global access fre-
quency. By replicating, the hop count to search for a file is
reduced. A SP receiving a replica also informs its neighbor-
ing super-peers about the replica through a restricted gos-
siping algorithm [2, 5]. ODR, performs replication based
on local access frequencies. A request for replication is
initiated by a super-peer if the access frequency of a par-
ticular file reaches a predefined threshold. This technique
allows super-peers to dynamically adapt to changes in ac-
cess behavior, however, it is greedy as each super-peer tries
to perform replication based on its own needs rather than
replicating from a global perspective as done in PPR.

The objective of our work is to improve the performance.
This is achieved in load sharing by replicating most fre-
quently accessed files and restricted gossip of file location
information to benefit nearby peers.

The main contribution of this paper are as follows:

1. Two algorithms are proposed:

(a) Periodic Push-based Replication (PPR);

(b) On Demand Replication (ODR)

2. Simulation results show that through replication and
restricted gossiping, significant performance improve-
ment can be achieved. The average hop count for peers
to fetch data files is reduced by over 30% through PPR,
while ODR reduces average hop count by over 10%.

The rest of the paper is organised as follows. Section 2
presents a summary of background material and related

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 23:16 from IEEE Xplore. Restrictions apply.

work. In Section 3, the PPR and ODR strategies are de-
scribed. Analytical model of the proposed schemes in Sec-
tion 4 are proposed. Simulation results are reported in Sec-
tion 5. Finally, this paper concludes in Section 6.

2. Related Work

Load sharing minimises load on serving entity by repli-
cating popular files based on their access probabilities and
threshold values. This section discusses some of the repli-
cation strategies and traditional load balancing approaches
that deal with minimising load on the serving entity and puts
our work in context.

A number of replication approaches are discussed in [6].
The owner replication approach replicates data object to the
peer that has successfully located the query. This causes
huge burden on peer to carry more information. In this
approach, data objects are replicated along the search path
that is traversed as part of the search in path replication.
This, however, causes congestion in the network. Random
replication replicates data items randomly. This approach
may or may not have any effect on the load. Data objects
are replicated a pre-defined number of times to control the
spread of replica. This method does not adapt to changes in
the environment and variable resource availability. Finally,
the replication process aims at uniformly exploiting the stor-
age resources available at peers while also trying to achieve
uniform distribution of the replicas of a data object, i.e., for
each data object approximately the same number of repli-
cas exist. While this controls the overhead of replication,
replicas may be found in places where peers do not access
the files. In another work [4], the uniform and proportional
replication strategies are described. In the uniform strat-
egy, replications are uniformly distributed throughout the
network (similar to random), while the proportional strat-
egy replicates popular files more frequently. A proportional
strategy makes popular items easier to locate and less pop-
ular items harder to find therefore increases the search time
for these data.

A balancing strategy for DHTs based on Chord is pro-
posed in [3]. In order to provide load-balancing, multiple
hash functions are used instead of only one, and multiple
peers, each choose the keys generated from the hash func-
tions. However, when a peer is loaded, it transfers the load
to neighboring peer, resulting in more redirections.

Our approach takes the cost of searching a data item and
successfully replicates the most frequently accessed data
files based on the access probabilities. It also uses restrictive
gossiping to notify nearby super peers of the data location.

SP1

SP2 SP3

SP4
SP5

SP6 SP8

SP9

SP10
SP7

SP11

req

replica

check

Gossip

within scope

Figure 1. PPR

3. Replication Approaches

This section provides an overview of the proposed algo-
rithms. SPs manage peer devices in a P2P system. Each
peer has a unique id and register the files it wish to share
with its SP. Each SP maintains access statistics of peers con-
nected to it. This information is stored in file statistics mod-
ule of the P2P architecture as described in [7]. Each SP
coordinates activities of the peer devices. Any peer device
joining/leaving the P2P system informs its SP. We propose
the following two techniques:

3.1 Periodic Push-based Replication

In this algorithm, a periodic update is enforced on the
SPs. Every SP maintains the access statistics of each file
shared by its peers. If the access frequency of one of these
files exceeds a predefined threshold value, the file is repli-
cated to the SP which has requested the file most frequently.
When a SP receives a replica, it uses the restricted gossip
algorithm [2, 6] to propagate the file location to its neigh-
boring SPs within its scope.

Figure 1 illustrates the operation of PPR. SPs SP1, SP2,
SP6, and SP8 frequently requests file x. This file can be
found at SP10. SP10 keeps track of the access statistics
for file x. ie. the number of requests for file x from differ-
ent SPs over time. If the access frequency of file x exceeds
the threshold, then SP10 pushes the file to the SP which
has requested x most frequently. The push operation is per-
formed using the capacity-to-hop count routing algorithm
as presented in [8]. For example, SP10 pushes file x to
SP1. When SP1 receives the file, it restrictively gossips
the location of file to other SPs within its scope (that is,
SP2, SP3, SP4, SP5, and SP6) as shown in Figure 1.
By doing so, these neighboring peers can take advantage of
the replica, which is closer than the copy hosted at SP10.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 23:16 from IEEE Xplore. Restrictions apply.

Algorithm 1 Periodic Push Based Algorithm
Start
for all peer devices attached to super-peer (i = 1 to Np)

Register peer ID
Register sharable files with super-peer

At time = t (push interval)
for j = 1 to Nsp

Check global access frequency of each file
if access frequency > threshold

PUSH replica to most requested SP
(say SPi)

SPi gossips within its scope
End

SP1

SP2 SP3

SP4
SP5

SP6 SP8

SP9

SP10
SP7

SP11

req

replica

check

Gossip

within scope

Figure 2. ODR

3.2 On Demand Replication

In this section, we propose On Demand Replication, that
performs replication in a greedy manner. In ODR, SPs keep
track of the access frequency of its connected peers (instead
of the access frequency of the files these peers share as done
in PPR). Whenever a SP (say SPi) routes a request for one
of its peers, it checks to see if the access frequency for the
requested file has exceeded a predefined threshold. If the
threshold is exceeded, SPi sends a replication request to SP
hosting the file (say SPj). When SPj receives the repli-
cation request, it sends SPi a copy of the requested file.
SPi then will caches the file locally to answer further re-
quests. Furthermore, SPi uses the restricted gossip algo-
rithm to propagate the file location to its neighboring SPs
within its scope. The advantage of the ODR approach is
that each SP request replicas based on access frequency of
its peers. However, due to greedy nature of this strategy,
ODR could lead to high replication overhead.

We illustrate in Figure 2 how ODR works. SP1 fre-
quently requests for file x. This file x is found in SP10.
SP1 checks its access frequency of file x. If the access fre-
quency of file x by the peer community within SP1 exceeds
the threshold, then a request is sent to SP10 to request for
x. After receiving the request, SP10 sends a copy of the
file back to SP1, which is then cached there for future re-

quests. SP1 gossips location of file x to other SPs within
its scope as shown in Figure 1.

Algorithm 2 On-Demand Algorithm
Start
for all peer devices attached to super-peer (i = 1 to Np)

Register peer ID
Register sharable files with super-peer

if access frequency > threshold
for j = 1 to Nsp

Send request to hosting SP to fetch replica
Hosting SP push replica to requesting SP .
Requesting SP gossips within its scope

End

4. Analytical Model

In this section, we develop analytical models to calculate
the replication overhead and average access cost of PPR and
ODR techniques. A P2P network consists of Nsp SPs, con-
nected in a random graph topology. Each SP is connected
to on average k other SPs. The distance between two SPs
ni and nj is denoted as d(ni, nj).

4.1 Access cost

Given a query for an object, average cost of the query is:

costavg = Pr(local)×costlocal+Pr(remote)×costremote

(1)
where Pr(local) is the probability the query is answered
by the local SP. costlocal is the cost to fetch the object from
the local SP. Pr(remote) is the probability the query is an-
swered by a remote SP, and costremote is the associated
cost.

In our model, the traditional DHT (distributed hash ta-
ble) technique is used to help normal peers locate the data
objects. The cost of using DHT for a search is logarithmic
[10], and can be calculated as:

costsearch =
1
2
× log2(Nsp) × costsearch msg (2)

where costsearch msg is the cost to send a search request
over one hop.

Assume the cost to transfer an object from one SP to an
adjacent SP is costsp and the cost to transfer an object from
a SP to one of its child peer is costp. And denote the average
distance between two SPs as davg .

For a query, if the local SP has the required object, then
the search request only need to be sent over one hop. As a
result:

costlocal = costp + costsearch msg (3)

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 23:16 from IEEE Xplore. Restrictions apply.

The cost of searching and accessing an object from a re-
mote SP is higher, and can be calculated as:

costremote = costsearch + davg × costsp + costp (4)

Pr(local) and Pr(remote) can be calculated by look-
ing at the query distribution. Assume the query distribution
follows the Zipf distribution. The access probability of file
i is equal to:

Pr(i) =
1

∑D
x=1

1
x

× 1
i

(5)

Based on Eq. 5:

Pr(local) =
c∑

i=1

Pr(i) (6)

where c is the number of objects available from the local SP.
If the query distribution is uniform, then Pr(i) = 1

D and
Pr(local) = c

D .
Based on Eq. 6, Pr(remote) can be calculated as:

Pr(remote) = 1 − Pr(local) (7)

Finally, the average access cost per query can be calcu-
lated by substituting Eq.3, 4, 6 and 7 into Eq.1.

The access cost for a period t is therefore:

t × Np × q × costavg (8)

where q is the query rate of each peer and costavg is the
average cost per query as defined in Eq. 1.

4.2 Replication overhead

4.2.1 PPR

In PPR approach, SPs pushes replicates to other SPs based
on the predefined threshold denoted thres. The push fre-
quency is denoted freq, therefore the time between pushes
is tpush = 1

frac .
The replication overhead for a SP ni for each push period

is:
thres × davg × costsp (9)

Since there are Nsp SPs in the network, the total replication
overhead per push period is therefore:

overheadpush = Nsp × thres × davg × costsp (10)

The replication overhead for the push-based method over a
period t is therefore:

overheadpush(t) =
t

tpush
× overheadpush (11)

Table 1. Simulation parameters
parameter Explanation value

timesim Simulation duration 18000s
NSP Number of super-peers 57
NP Number of peers 570
UP Number of unique files 570
q Query rate 0.5 queries/s

tpush Gossip frequency (in PRR) 1 minutes
λ Peer arrival rate 0.2/minute
μ Peer departure rate 0.2/minute

davg Average hops between super-peers 8.5
CacheSizeSP Super-peer cache size 10 files

CostSP Transfer cost between super-peers 1
CostP Transfer cost between super-peers and peers 1

4.2.2 ODR

In the ODR scheme, replication occurs when the access fre-
quency of a file exceeds the predefined threshold. The ac-
cess probability of a file i is defined in Eq. 5. (If a uniform
access distribution is used instead, Pr(i) = 1

D where D is
the number of unique files in the system.

Given clients generate queries at a rate of q, in a time
period t, the number of queries for file i equals:

numAccess(i) = Np × t × q × Pr(i) (12)

Given a threshold thres, denote the probability that file i
is access more than thres times as Pr(numAccess(i) >
thres), the number of files to replicate in the period t is
then:

numRep =
D∑

i=1

(Pr(numAccess(i) > thres)) (13)

Based on Eq. 13, the replication overhead of the ODR
method over a period t is equal to:

overheadonDemand = numRep × davg × costsp (14)

5. Simulation and Discussion

This section reports the performance evaluation of our
proposed techniques using a discrete event simulator OM-
NETT++. The simulation model consists of 57 super-peers
connected in a randomly formed P2P network. During sim-
ulation, peers join and leave the network following a Pois-
son process with an arrival rate of λ and departure rate of μ.
Arrival and departures are uniformly distributed among the
peers connected to different SPs. Peer queries are distrib-
uted among these data items based on the Zipf distribution
with a skewness parameter α = 1.

For the PPR scheme, replications occur periodically. We
refer to the frequency of this happening as the gossip fre-
quency, tpush. Table 5 summarises the parameters used for
the simulation and their default values.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 23:16 from IEEE Xplore. Restrictions apply.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 1 2 3 4 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

H
op

s

N
um

be
r

of
 G

os
si

p
P

ac
ke

ts

Gossip Frequency (per minute)

Gossip Frequency vs Average Hops

PPR
No Replication

Number of Gossip Packets

Figure 3. Gossip Frequency vs. Hops

5.1 PPR Results

The results in Figure 3 show that an increase in gossip
frequency does not necessarily lead to a drop in hop count.
The reason for this is that the cache size of SPs are limited
(default to 10 files in our simulation). Therefore, even when
gossip frequency increases, SPs may not have the cache
space to cater for replicas. It is found that the best perfor-
mance for PPR is achieved when gossip frequency is around
twice per minute. In this case, the average hop count is re-
duced from 8.2 to 6.8. This shows the benefit of replication
where files are pushed and replicated at SPs where they are
requested frequently. Further increase in gossip frequency
beyond 1-2 times per minute only leads to marginal gain,
while incurring a large replication overhead. The increase
in gossip overhead is roughly linear to the increase in gossip
frequency.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 5 10 15 20 25 30

 0

 200

 400

 600

 800

 1000

H
op

s

N
um

be
r

of
 G

os
si

p
P

ac
ke

ts

Threshold

Threshold vs Average Hops

PPR
No_replication

Number of Gossip Packets

Figure 4. Threshold vs. Average Hops

We verify how the threshold setting will affect the per-
formance in terms of the average hop counts for a peer to
fetch a needed data file. We fix the cache size and replica-
tion frequency while varying the value of the threshold. Fig-
ure 4 presents the result for the PPR approach. The thresh-
old value is the number of accesses of a particular data file
before it is pushed to other SPs. It was found that the aver-
age hop count does not change significantly as the thresh-

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 10 20 30 40 50 60

 0

 50

 100

 150

 200

H
op

s

N
um

be
r

of
 G

os
si

p
P

ac
ke

ts

Cache Size (number of files)

Cache Size vs Average Hops

PPR
No Replication

Number of Gossip Packets

Figure 5. Cache size vs. Average hops

old value changes. This is due to queries being modeled
following a Zipf distribution. This results in most queries
targeting towards particular hot spots in the data set. This
allows these hot files to reach the threshold quickly, while
access of other files never reaches the threshold.

Varying the cache size of SPs in order to determine the
optimal cache size is done in Figure 5. The replication
frequency and replication threshold are fixed. It is found
that the average hop count dropped by from over 7.7 to 5.1
when cache size is increase from 1 to 40. After this, fur-
ther increase in cache size did not yield significant bene-
fits. This is again due to the skewness of the access pattern.
For each SP, after the most frequently accessed data have
been cached, additional cache space provides diminishing
gain. With a cache size of 30 files, PPR reduces average
hop count by nearly 3 hops compared to where no replica-
tion is used. An interesting result is that even as cache size
increases, the gossip overhead did not change significantly.
This is because although larger caches can store more repli-
cas, replication only occurs when access frequency exceeds
the threshold. As a result, cache size has limited effect on
replication overhead. It is found that a cache size of 30 pro-
vides good performance.

5.2 ODR Results

In Figure 6, the relationship between cache size and av-
erage hops for ODR is shown. The average hop count and
gossip overhead remain steady as cache size changes. This
is because in ODR, replication and gossiping only occurs
when the access frequency of a file reaches the threshold.
As most peers show common interest for hot spots, and the
queries have been aggregated along the path to the hold of
the data item. As long as hot data have been cached along
the routing path, future queries can benefit from it.

Figure 7 plots the average hop count against replication
threshold. It was found that the average hop count dropped
significantly as the replication threshold dropped. However,
reducing the replication threshold also result in fast increase

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 23:16 from IEEE Xplore. Restrictions apply.

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50

 0

 2

 4

 6

 8

 10

H
op

s

N
um

be
r

of
 G

os
si

p
P

ac
ke

ts

Cache Size

Cache Size vs Average Hops

Hops
Number of Gossip Packets

Figure 6. Cache Size vs. Average Hops

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

H
op

s

N
um

be
r

of
 G

os
si

p
P

ac
ke

ts

Replicatoin Threshold

Replicatoin Threshold vs Average Hops

ODR
No Replication

Number of Gossip Packets

Figure 7. Replication Threshold vs. Hops

in gossip overhead. This result shows that there is a trade-
off between the cost of replication and gossiping and the
reduction in hop count. Since ODR is a greedy technique
where each SP attempts to fetch replicas it most frequently
accesses, huge savings (in terms of hop count) are achieved
at the expense of flooding the network with gossip mes-
sages. The optimal threshold value depends on the size of
the gossip messages and the cost to transmit over a hop. We
can see that as the threshold value increases, the hop count
of ODR approaches that of no replication. This is because
as the threshold increases, fewer files are replicated.

It is found that ODR outperforms PPR when the thresh-
old value is low. This is because in the ODR algorithm,
replication is performed on demand, as a result ODR is
more sensitive to changes in access probabilities. By captur-
ing and adapting to these changes quickly through replica-
tion, ODR is able to reduce the average hop count to fetch
a data file compared to PPR. However, ODR is somewhat
greedy because each SP demand replicas based on its own
needs. This result in higher variation between the perfor-
mance received by different SPs. PPR algorithm focuses on
balancing the global access cost. By periodically pushing
replicas, the replication overhead of PPR can be controlled
(by restricting the push frequency). An interesting result is

that the two algorithms converges as the threshold value ap-
proaches 40, which corresponds to the standard deviation of
the peer access pattern.

6. Conclusion

Resource sharing by mobile devices in P2P environ-
ment is vital to the success of next generation P2P net-
works that operate in wireless environments. In this pa-
per, we have proposed two novel techniques to perform
load sharing in mobile P2P networks through replication.
In the first technique, Periodic Push-based Replication
(PPR), hosting super-peers periodically send replicas of the
most frequently accessed files to remote selected super-
peers. The second proposed technique, On-Demand Repli-
cation (ODR), performs replication based on access fre-
quency. The ODR approach allows super-peers to dynam-
ically adapt to changes in access behavior. Extensive sim-
ulation has been conducted to evaluate the performance of
the proposed techniques. It is found that through replica-
tion, the average number of hops to reach a data file can be
reduced by over 30%. This presents a significant improve-
ment, especially in mobile P2P networks where a reduction
in hops result in lower transmission cost, reduced latency
and improved QoS.

References

[1] K. Aberer. Efficient search in unbalanced, randomized peer-
to-peer search trees. Technical report, EPFL.

[2] S. Banerjee, S. Lee, R. Braud, B. Bhattacharjee, and
A. Srinivasan. Scalable resilient media streaming. In IEEE
INFOCOM 2004.

[3] J. Byers, J. Considine, and M. Mitzenmacher. Simple load
balancing for distributed hash tables. In Proceedings of 2nd
International Workshop on Peer-to-Peer Systems, 2003.

[4] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. In Proc. ACM SIGCOMM.

[5] A. D. et. al. Epidemic algorithms for replicated database
maintenance. volume 22, pages 8–32, 1998.

[6] Q. L. et. al. Search and replication in unstructured peer-
to-peer networks. In Proc. of International conference on
Supercomputing, 2002.

[7] S. Rajasekhar, I. Khalil, and Z. Tari. A scalable and ro-
bust qos architecture for wi-fi p2p networks. In Proc. LNCS
ICDCIT’04, volume 3347, pages 65–74, Bhubaneswar, In-
dia, Dec. 2004.

[8] S. Rajasekhar, B. Lloyd-Smith, and Z. Tari. Qos path rout-
ing based on capacity to link ratio in networks. In Proc. of
NPDPA.

[9] M. Roussopoulos and M. Baker. Practical load balancing for
content requests in p2p networks. Technical report, Stanford
University.

[10] I. Stoica, R. Morris, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of ACM SIGCOMM.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 23:16 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

