

Abstract- Internet is major communication media and

staying “online” becomes a key requirement. Commonly, the
broadband access and enterprise networks involve devices with
dynamic NAPT(NAT) and statefull firewalls functionality.
Keeping open connection behind such an intermediate device is
not a trivial task. The intermediate device closes the connection
without sending any notify to participants. Until proactively
detaching the change of connection status, all send packets get
lost. Most applications involve deed-peer-detection mechanisms
to verify the host availability, thus if the connection is active.
The fast detection of connection lost is vital for the application
and therefore short constant dead-peer-detection intervals are
used. The update interval is a tradeoff between the network
resources and fast detection of disconnection. The interval
values are currently constant and set based on the general
network experience and application requirements. In this
paper is suggested a new framework for dynamic optimization
of the update intervals in respect of fast disconnection
detection and low network resources. The key idea is to make
the update interval proportional to the probability of
connection drop. The main issue is that the time point of
disconnection can only be narrowed down to certain update
interval, the exact time point can not be determined by the
hosts. The proposed solution is based on adaptive Fuzzy Logic.
The simulation results are presented to verify the performance
of the new method. The optimization is relevant for wide
spectrum of applications, like VoIP, routing, security protocols
etc.

Index Terms- deed-peer-detection, adaptive Fuzzy Logic,
NAT, NAPT, router, non-linear and non-Gaussian, network
events, prediction, One Pass method, RLS.

I. INTRODUCTION

The internet grows rapidly and its importance becomes
significant for many business arias. At the same time, the
structure and principles of internet are steadily evaluating.
The majority of the internet protocols [IETF] are designed
with the strict assumption, that IP layer connectivity is
always present. Unfortunately, this condition is currently not
applicable. The reasons are that: (1) the majority broadband
and enterprise routers implements dynamic Network
Address and Port Translation (NAPT) [NAT], (2) the spared
of statefull inspection firewalls, (3) the mobile wireless
access (for example WiFi host spots) leads to often
interruption of the application connection.

NAPT enables private addresses to communicate with the
public routable address space [NAT]. The connection
thought NAPT device (dynamic NAT) is unidirectional and
can be established only form inside to outside, thus usually
LAN side to WAN(internet) side. For every connection is
created a table entry, which contains information required
for the packet forwarding (multiplexing and
demultiplexing). The NAPT table entry is removed when:

some idle timeout is reached, the public ip of the device has
changes or the connection is terminated by the hosts. The
entry removal leads to disconnection and it is done without
notifying the connection participants. In the case of
undesired removal, for example due idle timeout, the end
hosts consider the connection as active. Practically the
connection “hangs”(zombie connections) - all send packets
get lost. The end hosts must detach these zombie
connections and reset them. For most of the broadband
internet access hosts (quasi ADSL) undesired disconnection
happens at least ones a day, since the public ip is rotated
ones a day. Zombie connection can be found in other
popular scenario is, when the device is moving between
different wireless access networks. The device will
permanently change its network status between online and
offline. The status change requires some action by the
application, for example VoIP client. When the ip
connection gets down (offline) simultaneously, no notify
can be sent to the communication host at the internet side.
The internet participant will keep its connection open until
some timeout is reached. During this time, all send packets
get lost.

In order to reduce the detection time the most application
implement dead-peer-detection mechanism. Its main target
is the proactive check, if the connection is active. The
application sends at regular constant time intervals request
packet to the communication host. The receiver of the dead-
peer-detection (DPD) message replies to the sender
including some payloads of the received packet. In this way
the originator (sender) becomes feedback, if the peer is
active or not. In general, the result of DPD execution is
Boolean: active or not active. The exact time of becoming
unreachable (offline) is unknown. It is between to last
successful DPD execution and update failure. The result
says, if the peer is currently reachable or not. The
mechanism is widely used for example in: VoIP protocols
SIP, H323, routing protocols like BGP, ISIS, OSPF, security
protocols as IPSec. The notation is different and can be
update, hello messages etc. In this paper we use the common
name dead-peer-detection, since it is more intuitive.

The “hanging” connections lead to packet loses, so their
existing time must be minimal. For fast detection of the
connection failure commonly short DPD intervals are used.
The fast detection is a tradeoff the network resources. More
updates means more traffic and processing power.

The dead-peer-detection(DPD) mechanism implemented
in majority of the applications suffers of inflexibility. The
update time intervals are constant. Using expert knowledge
of networks and knowing the application requirements,
some time value is set. For example in VoIP SIP application
traditionally short interval of 10-15 sec are used. The BGP

Optimization of update intervals in Dead-Peer-Detection
using adaptive Fuzzy Logic

Vesselin Tzvetkov
vesselin.tzvetkov@arcor.net

Arcor AG&Co KG, Alfred-Herrhausen-Allee 1, 65760 Eschborn, Germany

routing protocols use 90-180 seconds. The set value does
not change during the session.

In this paper we are using non-linear update intervals for
minimizing the network resources and keeping the
disconnection detection time low. The main goal is to make
the size of the update interval dependent of the probability
for connection drop. The update intervals close to the
predicted disconnection time point must be small and update
intervals with low probability must be large. The proposed
method is based on adaptive Fuzzy Logic controller. Fuzzy
controller is very suitable, because can handle expert
experience and combine it with adaptive algorithms. The
Fuzzy rule base is created with One Pass(OP) training
method and expert knowledge. The membership functions
are optimized for fast convergence with Recursive Least
Square method (RLS) [FUT].

The challenge in optimizing the update intervals is that
there are no exact measurable values – the time point of
disconnection. The disconnection time point can only be
narrowed down to the update interval. This is the time
interval of the dead-peer-detection. Since the result of the
DPD execution is Boolean active/not active, it is not
possible to determine the exact disconnection time. If the
update interval is 300 seconds, we can find the interval and
determine the disconnection somewhere within this 300 sec.

In the classical filter theories based on Bayesian rule there
are crisp(exact) measured values involved in the calculation.
The measurement values consist of noise and equalized
signal. The general task is to filter the noise from the signal.
In this paper we overcome this issue by creating model
which contains crisp values.

In the following chapter II the terminology and objectives
are defined. Method overview is made in the next chapter
III. The update distribution problem and its solution are
presented in chapters IV, V and VI. The Fuzzy controller are
briefly described in chapter VII. The Fuzzy rules creation
through One Pass training and RLS optimization is
described in IX and X. The last chapter concludes the
results.

II. MODEL THERMINOLOGY AND OBJECTIVES

The implementations are slightly different, so we create
an abstract model summarizing and representing all
deployments. Without changing the nature of the dead-peer-
detection we made the following abstraction and
assumptions: The host sending the packets receives
feedback with the execution result, thus exit code. The result
is Boolean. The status “true” means the update was
successful and “false” means it has failed. Practically if the
reply is received in the dead-peer-detection the result is
“true” - the connection is active. If no reply is received
within certain time interval the exit status is considered as
“false” – disconnection. We are concentrated in prediction
of the false events. Let us further denote “update procedure”
meaning execution of dead-peer-detection.

The execution time of the update procedure is denoted as
Update Time Point (s. Figure 2). The update procedure
practical can not be executes in zero time, so we consider
the time point, when the result is received. The time point,
where the disconnection occurs, is Event Time Point (ETP).
Disconnection Interval (DI) is the time interval for

disconnection detection. This is the interval between the
event time point and the following first update time point.
Maximum Disconnection Interval is time tolerable by the
application without active connection (zombie connection).
It is usually couple of seconds for real time applications, like
VoIP and minute for not time critical applications as Email.
The maximum Disconnection Interval value must not be
exceeded. The interval between two following event time
points is the Event Interval (EI). The interval between two
following update time points is Update Interval. All
definitions are shown in Figure 2.

The disconnection interval is less or equal to the smallest
update interval, which surrounds the event time point (s.
Figure 2). Less update interval, the less disconnection interval
becomes.

To reduce the network resources the update interval
length must be inversely proportional to the probability of
false event occurrence (PDF), as shown at Figure 1. The
regions with high probability density must have small
update intervals. The large update interval means low event
probability.

III. METHOD OVERVIEW

The method consists of prediction and update phase. In
the prediction phase the upcoming event interval (EI) is
predicted. For this purpose, adaptive Fuzzy logic controller
is involved. The controller has input parameter the posteriori
estimated event intervals and the absolute time. The output
is the predicted event interval. In the second phase using the
predicted event interval the update time points are
calculated. The update time points are calculated using
transformation function. The transformation function
converts constant linear update intervals to intervals
proportional to the priori probability of event time point.
The transformation function’s input parameters are: the
predicted event interval and the maximal disconnection
interval. The function plays a key role in the proposed
method and described in chapter VI.

The update procedure is executed sequentially at the
calculated time points. If the execution result of the update
procedure is false, then the update procedure is terminated.
The estimate event time point is in the middle of the last

Update Event

Event Time Point

Event Interval

Disconnection Interval

time

Event Time Point

Update Event

Update Interval

Update Event

Event Time Point

Event Interval

Disconnection Interval

time

Event Time Point

Update Event

Update Interval

Figure 2 Terminology

time

PDF of event occurrence

Update Time Points

time

PDF of event occurrence

Update Time Points

Figure 1 Update time points and event PDF

update interval. The update sequence is started form the
beginning using the obtained estimated event time point.
The steps are summarized in following points:

1) The Fuzzy controller initialization. The initialization

is done thorough One Pass (OP) training methods and
expert knowledge. Chapters IX and X describe the
procedure.

2) Using the last n posteriori event intervals, the new
predicted event interval is calculated. This procedure
is described in chapter VIII.

3) Using the transformation function the update time
intervals are calculated. See chapters V and VI.

4) The updated procedure is executed until the result of
the execution is false.

5) The update interval is estimated in the middle of the
last update interval. The execution is next returning
back to 2).

IV. PROBLEM OVERVIEW AND INTERVAL LENGHT

Implementing classical prediction theory in update
procedure arises the problem, that there is no crisp measured
values. The event time points can be narrowed down to a
certain interval, which can not be handled directly in
classical theory. The measurement represents in our case the
event time point (ETP). To solve this problem we assume
that the measured crisp value is in the middle of the update
interval, in which disconnection occurs. The maximal
absolute estimation error in this case is the half of the update
interval. A further important assumption is that the
probability for ETP is Gaussian distributed with standard
deviation proportional to the length of the update interval.
At Figure 4 the PDF (probability density function) in update
interval is shown.

It is important to stress that the Normal (Gaussian)
distribution is infinite, so it is not possible to be limited in
the update interval. The controversy is that practically
outside the update interval there is zero probability for the
event occurrence. It’s sure that the event has happened in the
update interval. Although the Normal distribution cannot
satisfy the mentioned condition. It gives a smooth reduction
of the probability and many natural phenomena are describe
by it.

The length of the update interval must be inversely
proportional to the probability density function (PDF)

function, as defined in II. The PDF of the Normal
distribution is the well known bell curve. At Figure 3 is
shown the abstract relation between the probability of ETP
and the update interval length. The inversely proportional
function of the update interval length is defined general by:

 ()σµ ,,. ii xNbaL −= (1)

, where Li is the length of the i-th interval, a and b are
constant.),,(σµixN denotes the normal distribution function
at xi, where σµ , are the mean and standard deviation.
Normal distribution is defined by

 −
−= 2

2

2
)(

exp
2

1),,(
σ

µ
πσ

σµ i
i

x
xN

V. UPDATE INTERVALS AND TRASFORMATION FUNCTION

In order to generate update interval according (1) we
create transformation function T(). The function T()
transforms constant update intervals to intervals
proportional to the PDF of event time point. The
transformation function depends of the following parameter:
maximal disconnection interval defined by the application,
predicted event interval value and normal distribution
coefficients. These parameters define fully the
transformation function.

Let us first derivate the equation for the transformation
function T(). The difference between two transferred time
points is the update interval:

iLxTxT =−)()(21
, where x1,2

are input time points, Li is the update interval length and
()T the transformation function. The interval L fulfills the

defined in equation (1) for inverse proportion to ETP’s PDF,
so it can be found that:

ii L
x
xTLxTxT =

∂
∂<=>=−)()()(21

iii xNbaL
x
xT),,(.)(σµ−==

∂
∂

∫ −=
m

n
i dxxNbaxT),,(.)(σµ

UEn UEn+1ETPk

timeDIn

σn

Ev
en

t t
im

e
po

in
t ‘

s
Pr

ob
ab

ili
ty

de
ns

ity

PDF

Update IntervalI

UEn UEn+1ETPk

timeDIn

σn

Ev
en

t t
im

e
po

in
t ‘

s
Pr

ob
ab

ili
ty

de
ns

ity

PDF

Update IntervalI
Figure 4 Gaussian distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.4

0.5

Deviation to the estimated time point

up
da

te
 in

te
rv

al
 le

ng
ht

 /
 p

ro
ba

bi
lit

y
of

 E
T

P

Update interval and PDF function for event time point

Update interval lenght

PDF of event time point(ETP)

Maximum update
interval

Maximum
probability
for the ETP

Figure 3 The ETP probability and interval length

∫

 −−−=
m

n

dxxbaxT 2

2

2
)(exp

2
1.)(

σ
µ

πσ

CxxerfbaxxT +

 −−=
µσπσ

2)(
, where

() ∫ −= dueuerf u 22
π

The erf() denotes error function and C is constant due the
integration. The coefficients in the equation can be rewritten
to simpler form:

C
k
xerfuaxxT +

−= .)(, (2)

 where a,u,k and C are the coefficients.

VI. APPROXIMATION OF THE TRANSFORMATION FUNCTION

The function (2) is the analytically derivate and optimal in
all aspects. Unfortunately the transformation function (2)
can not be used in the suggested form. Implementable
transformation function should be invertible, thus the
inverse transformation)(1 xT − is required. The transform
function (2) consist of polynomial and trigonometric terms
and it’s inverse can’t be found analytically. To overcome
this shortcoming we approximate the transformation
function to set of invertible functions.

Analyzing the function (2) and curve at Figure 5 it’s easy
to notice, that for small x values the domination term is

k
xerfu . and for big x values the term ax dominates the

result. The transformation function can be spitted to:

()

−∉ℜ∈∀+
+−∈+

=
),(,

),(,/.
)(

2

1

llxCax
llxCkxerfu

xT

Then the inverse function is:

()

−∉ℜ∈∀−
+−∈−

=
−

−

),(,/)(
),(,/)(.

)(
2

1
1

1
trtr

trtr

llxaCx
llxuCxerfk

xT

At the next step the coefficient of new T() equations are
derivate. The frame requirements include objective and
subjective arguments:

1) The fist condition is that the transformation function
and its inverse must be continuous (not interrupted).
Otherwise for some values is not possible to find the inverse
and visa versa. This gives relation between the two spitted
functions at the crossover point - l:

() 21 ./(. ClaCklerfu +=+
 The function must have the same value at this point.

2) The cross point l is defined using subjective
knowledge. The cross over point defines the region (-l,l),
where the intervals becomes inverse proportional to the
probability. Outside this interval the updates are constant,
since the transformation function there is linear. The
predicted event interval is a reasonable to be equal to l, thus

+= kPl , where +
kP is the predicted event interval. The k

index denote the prediction cycle. The plus sign stress that
it’s the predicted values – priori estimation.

3) The linear update interval is the maximal disconnection
interval defined by the application. It is the input of the
transformation function. This value must not be exceeded.
The value depends of the application requirements as
described in chapter II.

3) The output of the transformation function (the non
linear update interval) must also not exceed maximal
disconnection interval. Considering condition 2) it follows,
that the derivate of T(x) must be bigger then one for

),(++−∈ kkk PPx :

() 1/. ≥
∂
∂ kxerfu
x k

,),(++−∈ kkk PPx

4) The erf() function is an integral of the famous bell
curve(Normal distribution). Observing the curve can be
noticed, that the erf() reaches it’s maximum at the infinity.
On the other hand the function reaches 95% of it’s
maximum quite rapidly at ca. x=1,38k, see equation (2). The
last 5% of the increase can be approximated to line, which is
almost horizontal. The linear part of the function is not
interesting for our transformation. With this empirical and
subjective consideration the condition is defined: The erf
function riches 95% of its maximum at the cross point
between the components functions, thus:

uCPk 95.02 =++

5) The transformation function has its minimum at the
predicted event time point, since there the probability is
highest. The event time point is set as point zero and all
points in relation to it. The transformation function is odd
function returning positive values. This condition facilitates
the practical implementation and do not restrict properties.

These five conditions deliver the solution for the
coefficients of the transformation function. Without going
deeper in mathematical solution steps we calculate the
transformation function:

()

−∉ℜ∈∀+
+−∈

= ++

++

),(,
],[,/.

)(
2 kk

kk

PPxCx
PPxkxerfu

xT

()

−∈∉ℜ∈∀−
+−∈

= ++

++−
−

),(,
),(,/.

)(
2

1
1

kk

kk

PPxxCx
PPxuxerfk

xT

with

+

−

+

−=

==

−

−

k
erf

erfk

PeC

eku
erf

P
k

)95.0(
2

)95.0(2
1

1

1

2
.95.0

,
2

,
)95.0(

π

π

Approximated transformation function with update linear
interval of 1 and estimation of 2 is shown at Figure 5. The
zero point at the abscise is predicted event time point(ETP).
The time values at abscise are relative to ETP, see condition
5). The function obeys the required conditions: it become
linear at infinite and for values near to the ETP is not linear.

The intervals become smaller nearing the zero point, thus
the probability becomes higher – the intervals smaller.

VII. FUZZY LOGIC OVERVIEW

By exploring phenomena generally there are two types of
descriptions - objective and subjective. The objective
knowledge creates system model involving univalent
mathematical equations based on known physical properties.
The second possibility for system description is using
subjective knowledge, which represents expert experience.
The discipline for defining, creating operations and
processing subjective knowledge is called Fuzzy Logic.
Fuzzy Logic is mainly used for solving very complex
problems, where an exact solution in objective mathematical
sense can not be achieved in the required technical frame.
Here we are not giving details on fuzzy logic, more detailed
can be found among other in [FUM][FUN].

Fuzzy system consists of the following blocks: fuzzifier,
fuzzy rules, inference and defuzzifier. The crisp input values
are transformed by the fuzzifier in fuzzy set. Using the fuzzy
rules and inference the result fuzzy set is calculated. The
defuzzifier converts the fuzzy set back to crisp value.

The abstract crisp output of one fuzzy controller is:

()

 Τ∗Λ==

==
)()(sup,11

l
kQ

n

k

l
o

M

l
xyDODf µµ

, where oµ and Qµ is the membership functions of
consequent and antecedent rules. The Operation * is a single
T-norm operation and T denotes sequence of T-norm
operation. The system has n input variables and y is the
centre of the consequent membership function. The
Λ denotes the T-Conorm operation and M is the number of
rules. The D() denotes the defuzzfication function.

If centroid method is used for defuzzification and
singletone output membership functions, then the crisp
output is denoted as:

∑
∑

∑
=

= =

= =
=

Τ

Τ

= M

l
l
fb

l

M

l
l
kQ

n

k

M

l
l
kQ

n

k

l

xpy
x

xy
f

1

1 1

1 1
)(

)(

)(

µ

µ (3)

∑ = =

=

Τ

Τ
=

M

l
l
kQ

n

k

l
kQ

n

kl
fb

x

x
xp

1 1

1

)(

)(
)(

µ

µ

The p variable is Fuzzy Basis Function as defined in

[FFB] and it will play important role in the creation of the
fuzzy controller.

VIII. PREDICTION WITH FUZZY CONTROLLER

The fuzzy controller uses the last posteriori event
intervals to predict the upcoming event interval. The input
values are used in antecedent part of the fuzzy rules. Using
training method the exact rules are created, see IX. Before
starting the fuzzy controller the training phase must be
finished. An additional antecedent element is the absolute
time. The absolute time helps to make estimation if it is high
probability time - rush hour (see IX). The Fuzzy controller is
working as black box for every input values in gives
predicted interval.

IX. CREATION OF THE RULE BASE

The rule base plays decisive role in the performance of
the model. It is crated using two methods: first by using the
expert knowledge and second by using training methods.

A. Expert knowledge

The experience by observing the network brings the
rudimental knowledge involved in rules creation. In most of
the cases DPD is used with normal repeating cycle. For
working employee in business days there are general two
working maximums at the morning and after lunch. The
Monday’s maximums are higher then at the Friday. At the
weekend there is a reduced activity. Typical diagrams for
day and week activity is at Figure 7. (Internet exchange
point PARIX) This knowledge builds the first rules in the
rules base.

Figure 7 Day and week activity

Profile with rules build the rudimentary sets depending of
the customers behavior. The base rules can be for example:

IF 7:oo h < time AND time < 20:oo h THEN Update Interval IS
small

 IF Monday < day AND day < Friday THEN Update Interval IS small

Multiple profiles can be created as for example: traveler,
office employee, holiday etc. The user can switch manually
between the profiles for increasing the performance.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

nnonliner update time [Sec]

lin
ea

r
up

da
te

 t
im

e
[S

ec
]

 Approximated transformation function of the update time

input
Crisp Values

Fuzzifier

Fuizzy rules

Infrence

Defuzzifier

output
Crisp Values

input
Crisp Values

Fuzzifier

Fuizzy rules

Infrence

Defuzzifier

output
Crisp Values

Figure 6 Fuzzy system

Figure 5 Transformation function

B. Training methods

In many cases there are no sufficient expert information to
create exact membership functions and rules, thus no
acceptable results can be achieved. If there are already
observed actions-reactions of the system, then they can be
used to create fuzzy rules and adjust the membership
functions. Involving known system input and output values
to adjust the controller parameters is called training. We are
using One Pass method with Recursive Last Squares (RLS)
optimization.

One Pass method

One Pass(OP) is simple and fast method for creation of
fuzzy rules using known input-ouput pairs [FWM]. The
generated rules are used further in the controller. The given
values are),,....,(),,,....,()2()2()2(

2
)2(

1
)1()1()1(

2
)1(

1 yxxxyxxx nn ,
where x is the crisp input values and y is the corresponding
output value. The index denotes the pair number. There are
n input variables and single output variable.

1) The intervals, where the input/outpu variables are

expected to lie are:[] [] [] []+−+−+−+− yyxxxxxx nn ,;,....,;, 2211 . The
intervals can be adjusted dynamical, but at first stage for
simplicity they are fixed. Each interval is divided into N
regions, where the number of regions can be different for
every variable. The number depends of the required
precision for the variable. More important variable should
have more regions. To every region a membership function
is assigned. The membership function is not zero within the
region and zero outside it.

2) Every pear of input-output values is evaluated to fuzzy
rule. Each input-output set is assigned to the region with the
highest membership function. Proceeding in this way for
every training set(pair) one rule is created. If there are n
pairs, then n rules are created.

3) For every rule degree of strength is calculated in order
to resolve conflicting rules. The degree S of l-th rule is
calculated as follows:

 () ()∏
=

=
n

i

l
iXi

l
Yl xyS

1

µµ

, where XnXY µµµ ,...., 1 are the membership functions for
the rule. Conflicting rules have the same antecedent
memberships, but different consequent membership. For
specific combination of antecedent members only one rule
must be selected - for one combination for input values is
possible only one output. If there are conflicting rules the
rule with the highest degree is kept and the other one is
discarded.

4) After evaluating all set as described in 2) and 3) the
rules base is ready for use. The new crisp input values can
be evaluated in the rule base. Using defuzzification the crisp
output value is calculated.

 Recursive Last Squares Method

Major drawbacks of the One Pass(OP) method are the
form and the centre of the membership functions. The
values are predefined mostly without sufficient knowledge

for the system. The result performance of OP is not optimal.
The main idea of the RLS method is minimizing the sum of
square error between the crisp fuzzy output and the real
training data.

Let us consider, that the rules are already developed by
some method as OP. The Fuzzy output f() according the
equation (3) is:

∑ =
== M

l
fbTl

fb
l xPYxpyf

1
)()(

, where Y and P are the matrixes of column values. The
RLS algorithm can be applied to this equation, since f() is
linear function in respect to Y. For every training data set k
then input-output pairs must be evaluated [FAF]:

,*11 ++ = k
fb

k PP ,
11

1

++

+

+
=

kk
T

k

kk
n PLP

PL
G

λ

k
T

kkk YPde 111 +++ −= ,
11 ++ += kkkk eGYY

k
T

kkkk LPGLL 11
11

1 ++
−−

+ −= λλ

The ,*1+k
fbP denotes the fuzzy basis function at k-th

training pair. It is column with M values, one for each input.
The Gk is the gain vector at step k. Lk denotes the inverse
correlation matrix at step k. L is initialized MxM identity
matrix. The value ek is the priory error. Y is the matrix with
the centers of the consequent membership function. It is
initialized with M zero values. More information on the
mathematical background can be found in [FUM].

X. TRAINING DATA COLLECTION

The training data is collected using constant update
intervals. This intervals must be enough small, so the
DI(disconnection interval) is tolerable for the application.
The estimate ETP (estimate time point) is the middle of the
update interval, when the event has occured. Reasonable
update interval size in our studies was half of the maximum
disconnection interval. It is very important, that the training
date includes all significant states and in this way to
representative rule to be created.

XI. CONCLUSION

The simulation results in Appendix A proof that the
proposed algorithm has strong advantages over the constant
update. Involving past disconnection events for prediction of
the coming events is strong base for good results. A key
point for achieving good results is enough big training
period. The training must include in best case all possible
states and transitions of the system. Another very important
point is the right number of past values as input. Chousing
more values increase the number of fuzzy rules needed for
adequate results. The number of rules plays must be
sufficient to represent all combination input-output
variables.

APPENDIX A – SIMULATION RESULTS

An implementation and practical simulation of the update
procedure was done in order to proof the qualities of the
developed method. In this section the results briefly
overviewed. The simulation was made with Matlab 7.0 on
PC with 1.1 GHz and 512 RAM. The simulation was offline
using intervals values, so the absolute time was not relevant.
In this way the simulation code is simplified significantly.
Unfortunately it is not possible to use expert knowledge to
create basic rules.

For the simulation we used 4500 event intervals and
training in the first 1000 samples. The membership
functions was 2 to 3 time the maximum disconnection
interval, which is 10s.

To determine quality in exact manner, we compare the
method to constant update intervals. Constant update is the
most popular method, where the update interval are
monotone constant length. In order to achieve fair
comparison the both method fuzzy and constant run with the
same resources. This is fair way for objective results. The
same resources means the same number of updates during
the simulation time. Using the same number of updates in
the same time the both methods deliver different
disconnection times. The minimal, maximal and mean
values of the disconnection interval are compared.

A.1 NON LINER FUNCTION

Non liner signal with white noise is the big challenge for
the algorithm. The N=4500 random values r are generated
with the recursive equation used also in [PNO][PPA]

100)2.1cos(8
1
25

2 2
1

1 +++
+

+=
−

− r
k

k

kk
k vk

r
rr

r

),0(ϑNvr
k =

The standard deviation of the noise component is 10. The
fuzzy rule base includes 100 rules The 3 last values are used
for the prediction and the membership function is 3 times
the maximum disconnection interval of 10s.

The generated Event Intervals (EI) and the estimated
event interval are show at the Figure 8. The values are not
linear and subjective there are not dependencies.

500 1000 1500 2000 2500 3000

110

120

130

140

150

160

170

180

Interval number [Nmb]

E
ve

nt
 in

te
rv

al
 [

S
ec

]

Event intervals
(Fuzzy Eq ,max.err 10,rules 100, inputs 3,memb.int x3, tranning 1000, samples 4500)

Estimated posteriori event intervals
Real event interval

Figure 8 Event intervals case A.1

The histogram of the update intervals is presented at
Figure 9. Using the same network resurces (updates) the
suggested method delivers is in 96,34% smaller
disconnection interval to constant update interval. The
disconnection interval(DI) is maximum equal or less to the
update interval Die DI is not measurable in the praxis and
we compare the update intervals.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Disconnection Interval [Sec]

D
en

si
ty

Histogram - update intervals(UI)
(Non liner eq., max.err 10, rules 100, inputs 3, memb. int x3, t ranning 1000, samples 4500)

max user def err : 10
mean UI :2.11
max UI :10
max const UI :5.49
UI b. lin :96.57%
variance UI:1.84

Update Interval(UI)

real DI
UI by constant update
mean UI

user defined max UI
max UI

Figure 9 Histogram case A.1

The mean update interval of new method is 2.11s and in
the constant updates - 5.49s. There is over performance of
260%. There is clear advantage of the developed method to
the classical constant method. The update interval for every
same are shown at Figure 10.

Figure 10 Update interval values, case A.1

A.2 REAL DATA
In this case we tested with real network data. The data is

represent the dialin intervals in one administrative domain.
In order to represent the worst case there were missing data
regions and sporadic abnormal activities.

Even in this difficult case the suggested algorithm is in
89,09% of all estimations better then the constant
updates(Figure 11). The mean disconnection intervals by
here presented method (4.14s) and the constant update
(5.55s) shows an performance of 134%.

A.3 SINUS BASED SIGNAL

In contrast to previous case a simulation with strong
dependence. The disconnection intervals are combination of
sinus signal and white noise:

() ()
() k

k

vkksc

kkkkr

+++

+=

200)max(/

)max(/5.1cos..7.0)max(/4sin. πϑπϑ

10);,0(== ϑϑNv r
k

The function max() denotes the maximum sample
elements, thus 4500. The data is presented at the Figure 12.
This is best case scenario for the adaptive fuzzy logic
algorithm.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Disconnection Interval [Sec]

D
en

si
ty

Histogram - update intervals(UI)
(Real data, max.err 10, rules 100, inputs 3, memb.int x3, tranning 1000, samples 4500)

max user def err : 10
mean UI :4.14
max UI :10
max const UI :5.55
UI b. lin :89.09%
variance UI:6.39

Update Interval(UI)

real DI
UI by constant update
mean UI

user defined max UI

max UI

Figure 11 Simulation with real data

0 500 1000 1500 2000 2500 3000 3500 4000
170

180

190

200

210

220

230

240

Interval number [Nmb]

E
ve

nt
 in

te
rv

al
 [

S
ec

]

Event intervals
(Sinus based, max.err 10, rules 100, inputs 3, memb.int x3, tranning 1000, samples 4500)

Estimated posteriori event intervals
Real event interval

Figure 12 Event time intervals case A.3

The advantages of the suggested method are clearly
presented at the Figure 13. The suggested algorithm achieves
mean update interval of 1.6s and the classical approach
5.91s. There is clear over performance of 369%. In 99.49%
of all update the performance was better then the classical
constant update. This is the best case for the new method.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Disconnection Interval [Sec]

D
en

si
ty

Histogram - update intervals(UI)
(Sinus based, max.err 10, rules 100, inputs 3, memb.int x3, tranning 1000, samples 4500)

max user def err : 10
mean UI :1.6
max UI :10
max const UI :5.91
UI b. lin :99.49%
variance UI:0.386

Update Interval(UI)

real DI
UI by constant update
mean UI

user defined max UI
max UI

Figure 13 Results of sinus base signal, case A.3

In is important to underline, that the good performance is
a result of optimal parameters, like: number of rules (100),
number input valuable (3) and membership function size (3x
max DI). The training interval is very critical for conversing
best results. If the parameters are chosen wrong than the
performance will significantly decrease.

The performance decrement is shown by repeating the last
simulation using NOT optimal parameters: 50 rules,
membership function 2x max DI. (The same sinus based
signal – “best case”). The update intervals are shown at
Figure 14.

Figure 14 Sinus based signal with not optimal parameters

It is clear to see that in samples 300 to 700 and 2500 to
3500 there is big gab in the prediction algorithm. The values
increase to the maximum Disconnection interval and the
performance becomes poor. The fuzzy controller does not
include sufficient rules to cover all input values combination
and the performance decrease. How the parameters must be
optimal chosen is part of a future work.

REFERENCES
[FUT] “A First Course in Fuzzy Logic”, H. Nguyen, E. Walker,

Chapman & Hall/CRC; 3rd , 2005
[FUM] “Fuzzy Logic Systems for Engineering: a Tutorial” , IEEE Proc.,

Vol. 83, pp. 345-377, March 1995.
[FUN] “Designing fuzzy logic systems," G. Mouzouris, co-author), IEEE

Trans. on Circuits and Systems, Part II, vol. 44, pp. 885-895, Nov.
1997.

[FTN] “Triangular Norms” Erich Peter Klement, Radko Mesiar and
Endre Pap; Springer; July 1, 2000

[FFB] “Fuzzy Basis Functions, Universal Approximation,”, L.
Wang, co-author, IEEE Trans. on Neural Networks, vol. 3, pp.
807-814, Sept. 1992.

[FWM] “Generating fuzzy rules by learning from examples”, L. X. Wang
and J. Mendel, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 22, July 1992.

[FAF] “Adaptive Filter Theory”, Simon Haykin, Prentice Hall, 2002,
[PNO] “Novel approach to nonlinear and non-Gaussian Bayesian state

estimation”, N. Gordon, et.al, Proc. Inst. Elect. Eng., vol. 140,
1993.

[NAT] RFC 3022 “Traditional NAT”, January 2001
[IETF] www.ietf.org
[PPA] “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian

Bayesian Tracking”, M. S.Arulampalam et al, IEEE, VOL. 50,
NO. 2, 2002

