
 

  
Abstract- Internet is major communication media and 

staying “online” becomes a key requirement. Commonly, the 
broadband access and enterprise networks involve devices with 
dynamic NAPT(NAT) and statefull firewalls functionality. 
Keeping open connection behind such an intermediate device is 
not a trivial task. The intermediate device closes the connection 
without sending any notify to participants. Until proactively 
detaching the change of connection status, all send packets get 
lost. Most applications involve deed-peer-detection mechanisms 
to verify the host availability, thus if the connection is active. 
The fast detection of connection lost is vital for the application 
and therefore short constant dead-peer-detection intervals are 
used. The update interval is a tradeoff between the network 
resources and fast detection of disconnection. The interval 
values are currently constant and set based on the general 
network experience and application requirements. In this 
paper is suggested a new framework for dynamic optimization 
of the update intervals in respect of fast disconnection 
detection and low network resources. The key idea is to make 
the update interval proportional to the probability of 
connection drop. The main issue is that the time point of 
disconnection can only be narrowed down to certain update 
interval, the exact time point can not be determined by the 
hosts. The proposed solution is based on adaptive Fuzzy Logic. 
The simulation results are presented to verify the performance 
of the new method. The optimization is relevant for wide 
spectrum of applications, like VoIP, routing, security protocols 
etc. 

Index Terms- deed-peer-detection, adaptive Fuzzy Logic, 
NAT, NAPT, router, non-linear and non-Gaussian, network 
events, prediction, One Pass method, RLS. 

I. INTRODUCTION 

The internet grows rapidly and its importance becomes 
significant for many business arias. At the same time, the 
structure and principles of internet are steadily evaluating. 
The majority of the internet protocols [IETF] are designed 
with the strict assumption, that IP layer connectivity is 
always present. Unfortunately, this condition is currently not 
applicable. The reasons are that: (1) the majority broadband 
and enterprise routers implements dynamic Network 
Address and Port Translation (NAPT) [NAT], (2) the spared 
of statefull inspection firewalls, (3) the mobile wireless 
access (for example WiFi host spots) leads to often 
interruption of the application connection. 

NAPT enables private addresses to communicate with the 
public routable address space [NAT]. The connection 
thought NAPT device (dynamic NAT) is unidirectional and 
can be established only form inside to outside, thus usually 
LAN side to WAN(internet) side. For every connection is 
created a table entry, which contains information required 
for the packet forwarding (multiplexing and 
demultiplexing). The NAPT table entry is removed when: 
 

 

some idle timeout is reached, the public ip of the device has 
changes or the connection is terminated by the hosts. The 
entry removal leads to disconnection and it is done without 
notifying the connection participants. In the case of 
undesired removal, for example due idle timeout, the end 
hosts consider the connection as active. Practically the 
connection “hangs”(zombie connections) - all send packets 
get lost. The end hosts must detach these zombie 
connections and reset them. For most of the broadband 
internet access hosts (quasi ADSL) undesired disconnection 
happens at least ones a day, since the public ip is rotated 
ones a day. Zombie connection can be found in other 
popular scenario is, when the device is moving between 
different wireless access networks. The device will 
permanently change its network status between online and 
offline. The status change requires some action by the 
application, for example VoIP client. When the ip 
connection gets down (offline) simultaneously, no notify 
can be sent to the communication host at the internet side. 
The internet participant will keep its connection open until 
some timeout is reached. During this time, all send packets 
get lost.  

In order to reduce the detection time the most application 
implement dead-peer-detection mechanism. Its main target 
is the proactive check, if the connection is active. The 
application sends at regular constant time intervals request 
packet to the communication host. The receiver of the dead-
peer-detection (DPD) message replies to the sender 
including some payloads of the received packet. In this way 
the originator (sender) becomes feedback, if the peer is 
active or not. In general, the result of DPD execution is 
Boolean: active or not active. The exact time of becoming 
unreachable (offline) is unknown. It is between to last 
successful DPD execution and update failure. The result 
says, if the peer is currently reachable or not. The 
mechanism is widely used for example in: VoIP protocols 
SIP, H323, routing protocols like BGP, ISIS, OSPF, security 
protocols as IPSec. The notation is different and can be 
update, hello messages etc. In this paper we use the common 
name dead-peer-detection, since it is more intuitive. 

The “hanging” connections lead to packet loses, so their 
existing time must be minimal. For fast detection of the 
connection failure commonly short DPD intervals are used. 
The fast detection is a tradeoff the network resources. More 
updates means more traffic and processing power. 

The dead-peer-detection(DPD) mechanism implemented 
in majority of the applications suffers of inflexibility. The 
update time intervals are constant. Using expert knowledge 
of networks and knowing the application requirements, 
some time value is set. For example in VoIP SIP application 
traditionally short interval of 10-15 sec are used. The BGP 
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routing protocols use 90-180 seconds. The set value does 
not change during the session. 

In this paper we are using non-linear update intervals for 
minimizing the network resources and keeping the 
disconnection detection time low. The main goal is to make 
the size of the update interval dependent of the probability 
for connection drop. The update intervals close to the 
predicted disconnection time point must be small and update 
intervals with low probability must be large. The proposed 
method is based on adaptive Fuzzy Logic controller. Fuzzy 
controller is very suitable, because can handle expert 
experience and combine it with adaptive algorithms. The 
Fuzzy rule base is created with One Pass(OP) training 
method and expert knowledge. The membership functions 
are optimized for fast convergence with Recursive Least 
Square method (RLS) [FUT].  

The challenge in optimizing the update intervals is that 
there are no exact measurable values – the time point of 
disconnection. The disconnection time point can only be 
narrowed down to the update interval. This is the time 
interval of the dead-peer-detection. Since the result of the 
DPD execution is Boolean active/not active, it is not 
possible to determine the exact disconnection time. If the 
update interval is 300 seconds, we can find the interval and 
determine the disconnection somewhere within this 300 sec.  

In the classical filter theories based on Bayesian rule there 
are crisp(exact) measured values involved in the calculation. 
The measurement values consist of noise and equalized 
signal. The general task is to filter the noise from the signal. 
In this paper we overcome this issue by creating model 
which contains crisp values. 

In the following chapter II the terminology and objectives 
are defined. Method overview is made in the next chapter 
III. The update distribution problem and its solution are 
presented in chapters IV, V and VI. The Fuzzy controller are 
briefly described in chapter VII. The Fuzzy rules creation 
through One Pass training and RLS optimization is 
described in IX and X. The last chapter concludes the 
results. 

II. MODEL THERMINOLOGY AND OBJECTIVES 

The implementations are slightly different, so we create 
an abstract model summarizing and representing all 
deployments. Without changing the nature of the dead-peer-
detection we made the following abstraction and 
assumptions: The host sending the packets receives 
feedback with the execution result, thus exit code. The result 
is Boolean. The status “true” means the update was 
successful and “false” means it has failed. Practically if the 
reply is received in the dead-peer-detection the result is 
“true” - the connection is active. If no reply is received 
within certain time interval the exit status is considered as 
“false” – disconnection. We are concentrated in prediction 
of the false events. Let us further denote “update procedure” 
meaning execution of dead-peer-detection. 

The execution time of the update procedure is denoted as 
Update Time Point (s. Figure 2). The update procedure 
practical can not be executes in zero time, so we consider 
the time point, when the result is received. The time point, 
where the disconnection occurs, is Event Time Point (ETP). 
Disconnection Interval (DI) is the time interval for 

disconnection detection. This is the interval between the 
event time point and the following first update time point. 
Maximum Disconnection Interval is time tolerable by the 
application without active connection (zombie connection). 
It is usually couple of seconds for real time applications, like 
VoIP and minute for not time critical applications as Email. 
The maximum Disconnection Interval value must not be 
exceeded. The interval between two following event time 
points is the Event Interval (EI). The interval between two 
following update time points is Update Interval. All 
definitions are shown in Figure 2. 

The disconnection interval is less or equal to the smallest 
update interval, which surrounds the event time point (s. 
Figure 2). Less update interval, the less disconnection interval 
becomes. 

To reduce the network resources the update interval 
length must be inversely proportional to the probability of 
false event occurrence (PDF), as shown at Figure 1. The 
regions with high probability density must have small 
update intervals. The large update interval means low event 
probability.  

III. METHOD OVERVIEW 

The method consists of prediction and update phase. In 
the prediction phase the upcoming event interval (EI) is 
predicted. For this purpose, adaptive Fuzzy logic controller 
is involved. The controller has input parameter the posteriori 
estimated event intervals and the absolute time. The output 
is the predicted event interval. In the second phase using the 
predicted event interval the update time points are 
calculated. The update time points are calculated using 
transformation function. The transformation function 
converts constant linear update intervals to intervals 
proportional to the priori probability of event time point. 
The transformation function’s input parameters are: the 
predicted event interval and the maximal disconnection 
interval. The function plays a key role in the proposed 
method and described in chapter VI. 

The update procedure is executed sequentially at the 
calculated time points. If the execution result of the update 
procedure is false, then the update procedure is terminated. 
The estimate event time point is in the middle of the last 
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update interval. The update sequence is started form the 
beginning using the obtained estimated event time point. 
The steps are summarized in following points: 

 
1) The Fuzzy controller initialization. The initialization 

is done thorough One Pass (OP) training methods and 
expert knowledge. Chapters IX and X describe the 
procedure. 

2) Using the last n posteriori event intervals, the new 
predicted event interval is calculated. This procedure 
is described in chapter VIII. 

3) Using the transformation function the update time 
intervals are calculated. See chapters V and VI. 

4) The updated procedure is executed until the result of 
the execution is false. 

5) The update interval is estimated in the middle of the 
last update interval. The execution is next returning 
back to 2). 

IV. PROBLEM OVERVIEW AND INTERVAL LENGHT 

Implementing classical prediction theory in update 
procedure arises the problem, that there is no crisp measured 
values. The event time points can be narrowed down to a 
certain interval, which can not be handled directly in 
classical theory. The measurement represents in our case the 
event time point (ETP). To solve this problem we assume 
that the measured crisp value is in the middle of the update 
interval, in which disconnection occurs. The maximal 
absolute estimation error in this case is the half of the update 
interval. A further important assumption is that the 
probability for ETP is Gaussian distributed with standard 
deviation proportional to the length of the update interval. 
At Figure 4 the PDF (probability density function) in update 
interval is shown. 

It is important to stress that the Normal (Gaussian) 
distribution is infinite, so it is not possible to be limited in 
the update interval. The controversy is that practically 
outside the update interval there is zero probability for the 
event occurrence. It’s sure that the event has happened in the 
update interval. Although the Normal distribution cannot 
satisfy the mentioned condition. It gives a smooth reduction 
of the probability and many natural phenomena are describe 
by it. 

The length of the update interval must be inversely 
proportional to the probability density function (PDF) 

function, as defined in II. The PDF of the Normal 
distribution is the well known bell curve. At Figure 3 is 
shown the abstract relation between the probability of ETP 
and the update interval length. The inversely proportional 
function of the update interval length is defined general by: 

 ( )σµ ,,. ii xNbaL −=            (1) 

, where Li is the length of the i-th interval, a and b are 
constant. ),,( σµixN denotes the normal distribution function 
at xi, where σµ ,  are the mean and standard deviation. 
Normal distribution is defined by 
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V. UPDATE INTERVALS AND TRASFORMATION FUNCTION 

In order to generate update interval according (1) we 
create transformation function T(). The function T() 
transforms constant update intervals to intervals 
proportional to the PDF of event time point. The 
transformation function depends of the following parameter: 
maximal disconnection interval defined by the application, 
predicted event interval value and normal distribution 
coefficients. These parameters define fully the 
transformation function.  

Let us first derivate the equation for the transformation 
function T(). The difference between two transferred time 
points is the update interval: 

iLxTxT =− )()( 21
, where x1,2 

are input time points,  Li is the update interval length and 
()T  the transformation function. The interval L fulfills the 

defined in equation (1) for inverse proportion to ETP’s PDF, 
so it can be found that: 
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The erf() denotes error function and C is constant due the 
integration. The coefficients in the equation can be rewritten 
to simpler form:  

C
k
xerfuaxxT +





−= .)( ,  (2) 

 where a,u,k and C are the coefficients. 

VI. APPROXIMATION OF THE TRANSFORMATION FUNCTION 

The function (2) is the analytically derivate and optimal in 
all aspects. Unfortunately the transformation function (2) 
can not be used in the suggested form. Implementable 
transformation function should be invertible, thus the 
inverse transformation )(1 xT − is required. The transform 
function (2) consist of polynomial and trigonometric terms 
and it’s inverse can’t be found analytically. To overcome 
this shortcoming we approximate the transformation 
function to set of invertible functions. 

Analyzing the function (2) and curve at Figure 5 it’s easy 
to notice, that for small x values the domination term is 









k
xerfu .  and for big x values the term ax  dominates the 

result. The transformation function can be spitted to: 
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Then the inverse function is:  
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At the next step the coefficient of new T() equations are 
derivate. The frame requirements include objective and 
subjective arguments: 

1) The fist condition is that the transformation function 
and its inverse must be continuous (not interrupted). 
Otherwise for some values is not possible to find the inverse 
and visa versa. This gives relation between the two spitted 
functions at the crossover point - l: 

( ) 21 ./(. ClaCklerfu +=+  
 The function must have the same value at this point. 

2) The cross point l  is defined using subjective 
knowledge. The cross over point defines the region (-l,l), 
where the intervals becomes inverse proportional to the 
probability. Outside this interval the updates are constant, 
since the transformation function there is linear. The 
predicted event interval is a reasonable to be equal to l, thus 

+= kPl , where +
kP  is the predicted event interval. The k 

index denote the prediction cycle. The plus sign stress that 
it’s the predicted values – priori estimation.  

3) The linear update interval is the maximal disconnection 
interval defined by the application. It is the input of the 
transformation function. This value must not be exceeded. 
The value depends of the application requirements as 
described in chapter II.  

3) The output of the transformation function (the non 
linear update interval) must also not exceed maximal 
disconnection interval. Considering condition 2) it follows, 
that the derivate of T(x) must be bigger then one for 
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4) The erf() function is an integral of the famous bell 
curve(Normal distribution). Observing the curve can be 
noticed, that the erf() reaches it’s maximum at the infinity. 
On the other hand the function reaches 95% of it’s 
maximum quite rapidly at ca. x=1,38k, see equation (2). The 
last 5% of the increase can be approximated to line, which is 
almost horizontal. The linear part of the function is not 
interesting for our transformation. With this empirical and 
subjective consideration the condition is defined: The erf 
function riches 95% of its maximum at the cross point 
between the components functions, thus: 

uCPk 95.02 =++  

5) The transformation function has its minimum at the 
predicted event time point, since there the probability is 
highest. The event time point is set as point zero and all 
points in relation to it. The transformation function is odd 
function returning positive values. This condition facilitates 
the practical implementation and do not restrict properties. 

These five conditions deliver the solution for the 
coefficients of the transformation function. Without going 
deeper in mathematical solution steps we calculate the 
transformation function: 
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Approximated transformation function with update linear 
interval of 1 and estimation of 2 is shown at Figure 5. The 
zero point at the abscise is predicted event time point(ETP). 
The time values at abscise are relative to ETP, see condition 
5). The function obeys the required conditions: it become 
linear at infinite and for values near to the ETP is not linear. 



 

The intervals become smaller nearing the zero point, thus 
the probability becomes higher – the intervals smaller. 

 

VII. FUZZY LOGIC OVERVIEW 

By exploring phenomena generally there are two types of 
descriptions - objective and subjective. The objective 
knowledge creates system model involving univalent 
mathematical equations based on known physical properties. 
The second possibility for system description is using 
subjective knowledge, which represents expert experience. 
The discipline for defining, creating operations and 
processing subjective knowledge is called Fuzzy Logic. 
Fuzzy Logic is mainly used for solving very complex 
problems, where an exact solution in objective mathematical 
sense can not be achieved in the required technical frame. 
Here we are not giving details on fuzzy logic, more detailed 
can be found among other in [FUM][FUN].  

Fuzzy system consists of the following blocks: fuzzifier, 
fuzzy rules, inference and defuzzifier. The crisp input values 
are transformed by the fuzzifier in fuzzy set. Using the fuzzy 
rules and inference the result fuzzy set is calculated. The 
defuzzifier converts the fuzzy set back to crisp value.  

 
The abstract crisp output of one fuzzy controller is: 
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, where oµ and Qµ is the membership functions of 
consequent and antecedent rules. The Operation * is a single 
T-norm operation and T denotes sequence of T-norm 
operation. The system has n input variables and y is the 
centre of the consequent membership function. The 
Λ denotes the T-Conorm operation and M is the number of 
rules. The D() denotes the defuzzfication function. 

If centroid method is used for defuzzification and 
singletone output membership functions, then the crisp 
output is denoted as: 
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The p variable is Fuzzy Basis Function as defined in 

[FFB] and it will play important role in the creation of the 
fuzzy controller. 

VIII. PREDICTION WITH FUZZY CONTROLLER 

The fuzzy controller uses the last posteriori event 
intervals to predict the upcoming event interval. The input 
values are used in antecedent part of the fuzzy rules. Using 
training method the exact rules are created, see IX. Before 
starting the fuzzy controller the training phase must be 
finished. An additional antecedent element is the absolute 
time. The absolute time helps to make estimation if it is high 
probability time - rush hour (see IX). The Fuzzy controller is 
working as black box for every input values in gives 
predicted interval. 

IX. CREATION OF THE RULE BASE 

The rule base plays decisive role in the performance of 
the model. It is crated using two methods: first by using the 
expert knowledge and second by using training methods. 

A. Expert knowledge 

The experience by observing the network brings the 
rudimental knowledge involved in rules creation. In most of 
the cases DPD is used with normal repeating cycle. For 
working employee in business days there are general two 
working maximums at the morning and after lunch. The 
Monday’s maximums are higher then at the Friday. At the 
weekend there is a reduced activity. Typical diagrams for 
day and week activity is at Figure 7. (Internet exchange 
point PARIX) This knowledge builds the first rules in the 
rules base.  
 

 
Figure 7 Day and week activity 

Profile with rules build the rudimentary sets depending of 
the customers behavior. The base rules can be for example: 

 
IF 7:oo h < time AND time < 20:oo h THEN Update Interval IS 
small 

 IF Monday < day AND day < Friday THEN Update Interval IS small 
  

Multiple profiles can be created as for example: traveler, 
office employee, holiday etc. The user can switch manually 
between the profiles for increasing the performance.  
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B. Training methods 

In many cases there are no sufficient expert information to 
create exact membership functions and rules, thus no 
acceptable results can be achieved. If there are already 
observed actions-reactions of the system, then they can be 
used to create fuzzy rules and adjust the membership 
functions. Involving known system input and output values 
to adjust the controller parameters is called training. We are 
using One Pass method with Recursive Last Squares (RLS) 
optimization. 

One Pass method  

One Pass(OP) is simple and fast method for creation of 
fuzzy rules using known input-ouput pairs [FWM]. The 
generated rules are used further in the controller. The given 
values are ),,....,(),,,....,( )2()2()2(

2
)2(

1
)1()1()1(

2
)1(

1 yxxxyxxx nn , 
where x is the crisp input values and y is the corresponding 
output value. The index denotes the pair number. There are 
n input variables and single output variable. 
 

1) The intervals, where the input/outpu variables are 

expected to lie are:[ ] [ ] [ ] [ ]+−+−+−+− yyxxxxxx nn ,;,....,;, 2211 . The 
intervals can be adjusted dynamical, but at first stage for 
simplicity they are fixed. Each interval is divided into N 
regions, where the number of regions can be different for 
every variable. The number depends of the required 
precision for the variable. More important variable should 
have more regions. To every region a membership function 
is assigned. The membership function is not zero within the 
region and zero outside it.  

2) Every pear of input-output values is evaluated to fuzzy 
rule. Each input-output set is assigned to the region with the 
highest membership function. Proceeding in this way for 
every training set(pair) one rule is created. If there are n 
pairs, then n rules are created. 

3) For every rule degree of strength is calculated in order 
to resolve conflicting rules. The degree S of l-th rule is 
calculated as follows: 
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, where XnXY µµµ ,...., 1 are the membership functions for 
the rule. Conflicting rules have the same antecedent 
memberships, but different consequent membership. For 
specific combination of antecedent members only one rule 
must be selected - for one combination for input values is 
possible only one output. If there are conflicting rules the 
rule with the highest degree is kept and the other one is 
discarded. 

4) After evaluating all set as described in 2) and 3) the 
rules base is ready for use. The new crisp input values can 
be evaluated in the rule base. Using defuzzification the crisp 
output value is calculated. 

 Recursive Last Squares Method 

Major drawbacks of the One Pass(OP) method are the 
form and the centre of the membership functions. The 
values are predefined mostly without sufficient knowledge 

for the system. The result performance of OP is not optimal. 
The main idea of the RLS method is minimizing the sum of 
square error between the crisp fuzzy output and the real 
training data.  

Let us consider, that the rules are already developed by 
some method as OP. The Fuzzy output f() according the 
equation (3) is: 

∑ =
== M

l
fbTl

fb
l xPYxpyf

1
)()(  

, where Y and P are the matrixes of column values. The 
RLS algorithm can be applied to this equation, since f() is 
linear function in respect to Y. For every training data set k 
then input-output pairs must be evaluated [FAF]: 
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The ,*1+k
fbP  denotes the fuzzy basis function at k-th 

training pair. It is column with M values, one for each input. 
The Gk is the gain vector at step k. Lk denotes the inverse 
correlation matrix at step k. L is initialized MxM identity 
matrix. The value ek is the priory error. Y is the matrix with 
the centers of the consequent membership function. It is 
initialized with M zero values. More information on the 
mathematical background can be found in [FUM].  

X. TRAINING DATA COLLECTION  

The training data is collected using constant update 
intervals. This intervals must be enough small, so the 
DI(disconnection interval) is tolerable for the application. 
The estimate ETP (estimate time point) is the middle of the 
update interval, when the event has occured. Reasonable 
update interval size in our studies was half of the maximum 
disconnection interval. It is very important, that the training 
date includes all significant states and in this way to 
representative rule to be created. 

XI. CONCLUSION  

The simulation results in Appendix A proof that the 
proposed algorithm has strong advantages over the constant 
update. Involving past disconnection events for prediction of 
the coming events is strong base for good results. A key 
point for achieving good results is enough big training 
period. The training must include in best case all possible 
states and transitions of the system. Another very important 
point is the right number of past values as input. Chousing 
more values increase the number of fuzzy rules needed for 
adequate results. The number of rules plays must be 
sufficient to represent all combination input-output 
variables.  



 

APPENDIX A – SIMULATION RESULTS 

An implementation and practical simulation of the update 
procedure was done in order to proof the qualities of the 
developed method. In this section the results briefly 
overviewed. The simulation was made with Matlab 7.0 on 
PC with 1.1 GHz and 512 RAM. The simulation was offline 
using intervals values, so the absolute time was not relevant. 
In this way the simulation code is simplified significantly. 
Unfortunately it is not possible to use expert knowledge to 
create basic rules. 

For the simulation we used 4500 event intervals and 
training in the first 1000 samples. The membership 
functions was 2 to 3 time the maximum disconnection 
interval, which is 10s. 

To determine quality in exact manner, we compare the 
method to constant update intervals. Constant update is the 
most popular method, where the update interval are 
monotone constant length. In order to achieve fair 
comparison the both method fuzzy and constant run with the 
same resources. This is fair way for objective results. The 
same resources means the same number of updates during 
the simulation time. Using the same number of updates in 
the same time the both methods deliver different 
disconnection times. The minimal, maximal and mean 
values of the disconnection interval are compared. 

A.1 NON LINER FUNCTION 

Non liner signal with white noise is the big challenge for 
the algorithm. The N=4500 random values r are generated 
with the recursive equation used also in [PNO][PPA] 
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The standard deviation of the noise component is 10. The 
fuzzy rule base includes 100 rules The 3 last values are used 
for the prediction and the membership function is 3 times 
the maximum disconnection interval of 10s. 

The generated Event Intervals (EI) and the estimated 
event interval are show at the Figure 8. The values are not 
linear and subjective there are not dependencies. 
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Figure 8 Event intervals case A.1 

The histogram of the update intervals is presented at 
Figure 9. Using the same network resurces (updates) the 
suggested method delivers is in 96,34% smaller 
disconnection interval to constant update interval. The 
disconnection interval(DI) is maximum equal or less to the 
update interval Die DI is not measurable in the praxis and 
we compare the update intervals. 
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Figure 9 Histogram case A.1 

The mean update interval of new method is 2.11s and in 
the constant updates - 5.49s. There is over performance of 
260%. There is clear advantage of the developed method to 
the classical constant method. The update interval for every 
same are shown at Figure 10. 

 
Figure 10 Update interval values, case A.1 

A.2 REAL DATA 
In this case we tested with real network data. The data is 

represent the dialin intervals in one administrative domain. 
In order to represent the worst case there were missing data 
regions and sporadic abnormal activities.  
 

Even in this difficult case the suggested algorithm is in 
89,09% of all estimations better then the constant 
updates(Figure 11). The mean disconnection intervals by 
here presented method (4.14s) and the constant update 
(5.55s) shows an performance of 134%. 
 

A.3 SINUS BASED SIGNAL  

In contrast to previous case a simulation with strong 
dependence. The disconnection intervals are combination of 
sinus signal and white noise:  
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The function max() denotes the maximum sample 
elements, thus 4500. The data is presented at the Figure 12. 
This is best case scenario for the adaptive fuzzy logic 
algorithm.  
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Figure 11 Simulation with real data 
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Figure 12 Event time intervals case A.3 

The advantages of the suggested method are clearly 
presented at the Figure 13. The suggested algorithm achieves 
mean update interval of 1.6s and the classical approach 
5.91s. There is clear over performance of 369%. In 99.49% 
of all update the performance was better then the classical 
constant update. This is the best case for the new method. 
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Figure 13 Results of sinus base signal, case A.3 

In is important to underline, that the good performance is 
a result of optimal parameters, like: number of rules (100), 
number input valuable (3) and membership function size (3x 
max DI). The training interval is very critical for conversing 
best results. If the parameters are chosen wrong than the 
performance will significantly decrease.  

The performance decrement is shown by repeating the last 
simulation using NOT optimal parameters: 50 rules, 
membership function 2x max DI. (The same sinus based 
signal – “best case” ). The update intervals are shown at 
Figure 14.  

 
Figure 14 Sinus based signal with not optimal parameters 

It is clear to see that in samples 300 to 700 and 2500 to 
3500 there is big gab in the prediction algorithm. The values 
increase to the maximum Disconnection interval and the 
performance becomes poor. The fuzzy controller does not 
include sufficient rules to cover all input values combination 
and the performance decrease. How the parameters must be 
optimal chosen is part of a future work. 
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