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Abstract

With the emerging paradigm of grid computing and the
development of grid infrastructures, grid-based applica-
tions are becoming a common approach for solving many
complex, large-scale problems in science and engineering.
In order to benefit from the large computing power of grid
systems, efficient allocation of jobs to resources is neces-
sary. In this work, we consider the allocation problem in
immediate mode, in which jobs are allocated as soon as they
arrive in the system. We implemented several methods and
measured four parameters of the system: makespan, flow-
time, resource utilization and matching proximity. The im-
mediate methods are especially interesting when good qual-
ity allocations are necessary in very short time. The con-
sidered methods have been tested using the most difficult
benchmark in the literature for the problem. The compu-
tational results allowed us to identify which of considered
methods perform better for makespan, flowtime, resource
utilization and matching proximity. Also, we were able to
evaluate the usefulness of such methods if we knew in ad-
vance certain grid characteristics such as degree of consis-
tency of computing, heterogeneity of jobs and resources.

*Research supported by ASCE Project TIN2005-09198-C02-02,
Project FP6-2004-IST-FETPI (AEOLUS) and MEC TIN2005-25859-E.

1. Introduction

Computational grids were introduced by Foster and other
researchers in late '90s [10, 11] as new computational
frameworks by which geographically distributed resources
are logically unified as a computational unit. Grid comput-
ing motivated the development of large scale applications
that benefited from the large computing capacity offered by
the grid. Thus, several projects such as NetSolve [8], Meta-
Neos Project!, and applications for stochastic programming
and optimization [14, 19] used computational grids.

Grid systems are parallel in nature; the large comput-
ing capacity provided by grid systems is beneficial for solv-
ing complex problems by using many nodes of the grid at
the same time. The usefulness of a grid system largely de-
pends, among other factors, on the efficiency of the system
regarding the allocation of jobs to grid resources. The re-
source allocation problem is known to be computationally
hard and much more difficult than its standard version for
sequential or LAN computation environments. Indeed, not
only the grid systems are heterogenous and dynamic, but
also usually a large number of jobs must be allocated to grid
nodes. For instance, researchers from MetaNeos Project re-
ported that for solving the difficult instance Nug30 of the
Quadratic Assignment Problem, a queue of thousands of

Uhttp://www-unix.mcs.anl.gov/metaneos/
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pending jobs had to be managed for a grid of roughly 1000
machines.

Another important function of computational grids is to
provide load balancing of the resources. Indeed, an orga-
nization or company could occasionally have unexpected
peaks of activity, which require a larger capacity of com-
putation resources. If their applications were grid-enabled,
they would be able to be emigrated to machines with low
utilization during those peaks.

Due to its importance, scheduling in Grids is being stud-
ied from different perspectives such as queueing systems
and resource management (e.g. Condor-G, Nimrod/G) [13,
1], optimization approaches (e.g. genetic algorithms, meta-
heuristics) [1, 4, 16, 7, 6, 21] and economic models [3, 5].

Given the dynamic nature of the grid systems, any sched-
uler should provide allocations of jobs to resources as fast
as possible. Therefore, schedulers based on very efficient
methods are very important especially in presence of time
restrictions on job executions on the grid. Immediate mode
methods fall into this type of methods since they distin-
guish for their efficiency in contrast to more sophisticated
schedulers that could need larger execution times to pro-
vide the allocation (e.g. a genetic-based scheduler would
require more time for the population of individuals to con-
verge). These methods have been proposed in the litera-
ture [15, 1, 2, 20] mainly with the objective to use them
as part of other approaches. Our main focus here is to
adapt and implement these methods for the case of grid sys-
tems as well as to conduct a complete comparative study
on their performance. To the best of our knowledge, this
is the first time these methods are empirically studied al-
together. Furthermore, in previous work the performance
of these methods is measured using only the makespan of
the system while we study their performance with regard to
four parameters: makespan, flowtime, resource utilization
and matching proximity.

In the immediate mode, a job is scheduled as soon as it
enters in the system without waiting for the next time in-
terval when the scheduler will get activated or the job ar-
rival rate is small having thus available resources to execute
jobs immediately. We consider the following five immedi-
ate mode methods: Opportunistic Load Balancing (OLB),
Minimum Completion Time (MCT), Minimum Execution
Time (MET), Switching Algorithm (SA) and k-Percent Best
(kPB). Once implemented, these methods have been tested
using a benchmark of instances proposed by Braun et al. [2],
which is obtained from the Expected Time to Compute
model that simulates distributed heterogenous systems.

The experimental study revealed the performance of
these methods with regard to the four considered parame-
ters (makespan, flowtime, resource utilization and match-
ing proximity). Furthermore, based on the computational
results, we are able to evaluate the usefulness of the con-

sidered methods if we knew in advance certain grid char-
acteristics such as the degree of consistency of computing,
heterogeneity of jobs and heterogeneity of resources.

We also discuss some issues related to the integration
of immediate methods in grid scheduling services. The re-
cent grid standards and architectural schemes such as the
Open Grid Services Architecture’? (OGSA), developed by
the Globus Alliance and based on standard XML-based web
services technology, require the identification and integra-
tion of efficient dynamic schedulers as part of global grid
service delivery. We observe that immediate mode sched-
ulers are appropriate for decentralized scheduling services,
that is, scheduling services that will integrate local sched-
ulers, which will be in charge for the scheduling of user jobs
to idle computers in a LAN. Immediate mode-based sched-
ulers are especially efficient on LANs due to their small or
moderate size and for sites with high throughput.

The paper is organized as follows. We give in Section 2
a description of the job scheduling in computational grids.
The immediate mode methods considered in this work are
given in Section 3. We give in Section 5 some computa-
tional results, which are evaluated in Section 6. We end in
Section 8 with some conclusions.

2. Problem description

The job scheduling in grids consists in efficiently allocat-
ing jobs to resources in a global, heterogenous and dynamic
environment. The efficiency means that we are interested
to allocate jobs as fast as possible and optimizing several
conflicting criteria such as makespan, flowtime and resource
utilization.

Jobs have the following characteristics: are originated
from different users/applications, have to be completed in
unique resource (preemptive), are independent and could
have their requirements over resources. On the other hand,
resources could dynamically be added/dropped from the
grid, can process one job at a time and have their own com-
puting characteristics.

In order to formalize the instance definition of the prob-
lem, a benchmark simulation model is used. The main rea-
son behind this choice is the difficulty of using at present
real distributed grid systems to evaluate different grid sce-
narios, e.g. different degree of heterogeneity of resources,
which would require modifying the configuration of grid
nodes. Instead, we use the ETC (Expected Time to Com-
pute) matrix model by Braun et al. [2], which is able to cap-
ture most important characteristics of the scheduling prob-
lem. Thus, in this model, an instance of the problem at a
certain instant consists of:

Zhttp://www.globus.org/ogsa/
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— A number of independent (user/application) jobs to be
scheduled.

— A number of heterogeneous machines candidates to par-
ticipate in the planning.

— The workload of each job.
— The computing capacity of each machine (in mips).

— Ready time ready,, —when machine m will have fin-
ished the previously assigned jobs. (Measures the pre-
vious workload of a machine.)

— The Expected Time to Compute matrix, ETC,
(nb_jobs x nb_machines). ETC]i][j] = the expected
execution time of job ¢ in machine j.

Note that this version of the problem does not include
local policies of resources and possible job dependencies.
However, it is possible to express incompatibilities among
jobs and resources and penalties could be used to include in
the ETC values the cost of data transmission.

Optimization criteria. Several parameters could be mea-
sured for a given schedule. Among these, there are:

e Makespan (finishing time of latest job) defined as
minschadule maX{Fj j € JObS},

e Flowtime (sum of finishing times of jobs), that is,
minschedule ZjGJobs Fj’ and

e Resource utilization, in fact, we consider the average
resource utilization.

The last parameter is defined using the completion time
of a machine, which indicates the time in which the machine
will finalize the processing of the previous assigned jobs as
well as of those already planned for the machine. Formally,
for a machine m, it is defined as follows:

completion|m] = ready|[m]+ Z
jEschedule1(m)
(D
Having the values of the completion time for the ma-
chines, we can define the local_makespan, which is the
makespan by considering only the machines involved in the
current schedule:

local_makespan = max{completion[i] | i € Machines'}.
(@)
Then, we define:

ETCj][m].

Z{iEMachines} completion[i]
local_makespan - nb,machi??)s'

It should be noted that these parameters are among the
most important parameters of a grid system. Makespan
measures the productivity (throughput) of the grid system,
the flowtime measures the QoS of the grid system and re-
source utilization indicates the quality of a schedule with
respect to the utilization of resources involved in the sched-
ule aiming to reduce the idle time of resources.

We consider also a fourth parameter, called matching
proximity, which is very useful for measuring the perfor-
mance of the presented methods. Matching proximity indi-
cates the degree of proximity of a given schedule with re-
gard to the schedule produced by Minimun Execution Time
(MET) method (see later). A large value of matching prox-
imity means that a large number of jobs is assigned to the
machine that executes them faster. Formally, this parameter
is defined as follows:

local_avg_utilization =

> icsobs ETCli][scheduleli]]
Zie]abs ETC[Z] [MET[ZH (4)

matching_proximity =

3. Immediate mode methods

In this work five immediate mode methods, namely, Op-
portunistic Load Balancing (OLB), Minimum Completion
Time (MMCT), Minimum Execution Time (MET), Switching
Algorithm (SA) and k-Percent Best (kPB) are implemented
and empirically evaluated.

OLB: This method assigns a job to the earliest idle ma-
chine without taking into account the execution time of the
job in the machine. If two or more machines are available
at the same time, one of them is arbitrarily chosen. Usually
this method is used in scavenging grids. One advantage of
this method is that it tries to keep the machines as loaded
as possible; however, the method is not aware of the exe-
cution times of jobs in machines, which is, certainly, a dis-
advantage regarding the makespan, flowtime and matching
proximity parameters.

MCT: This method assigns a job to the machine yield-
ing the earliest completion time (the ready times of the ma-
chines are used). When a job arrives in the system, all avail-
able resources are examined to determine the resource that
yields the smallest completion time for the job. Note that a
job could be assigned to a machine that does not have the
smallest execution time for that job. This method is also

IEE |-:

COMPUTER
SOCIETY

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007 IEEE



known as Fast Greedy, originally proposed for SmartNet
system [12].

MET: This method assigns a job to the machine hav-
ing the smallest execution time for that job. Unlike MCT
method, MET does not take into account the ready times
of machines. Clearly, in grid systems having resources of
different computing capacity, this method could produce an
unbalance by assigning jobs to fastest resources. However,
the advantage is that jobs are allocated to resources that best
fit them considering the execution time. This method is also
known in the literature as LBA (Limited Best Assignment)
and UDA (User Directed Assignment).

SA: This method tries to overcome some limitations of
MET and MCT methods by combining their best features.
More precisely, MET is not good for load balancing while
MCT does not take into account execution times of jobs into
machines. Essentially, the idea is to use MET till a thresh-
old is reached and then use MCT to achieve a good load
balancing. SA method combines MET and MCT cyclically
based on the workload of resources.

In order to implement the method, let 7, be the max-
imum ready time and 7,;, the minimum ready time; the
load balancing factor is then 7y /Tmax, Which takes val-
ues in [0, 1]. Note that for » = 1.0 we have a perfect load
balancing and if » = 0.0 then there exists at least one idle
machine. Further, we use two threshold values r; (low) and
rp, (high) for r, 0 < r; < 7 < 1. Initially, » = 0.0 so
that SA starts allocating jobs according to MCT until r be-
comes greater than r,; after that, MET is activated so that r
becomes smaller than 7; and a new cycle starts again until
all jobs are allocated.

kPB: For a given job, this method considers a subset
of candidate resources from which the resource to allo-
cate the job is chosen. The candidate set consists of
nb_machines - k/100 best resources (with respect to exe-
cution times) for the given job, for k, nb_machines/100 <
k < 100. The machine where to allocate the job is the
one from the candidate set yielding the earliest completion
time. Note that for &k = 100, kPB behaves as MCT and
for k = 100/nb_machines it behaves as MET. It should be
noted that this method could perform poorly if the subset of
resources is not within k% best resources for none of jobs
implying thus a large idle time.

Notice that both kPB and SA combine the best features
of MCT and MET, however, only kPB tries to simultane-
ously optimize the objectives of MCT and MET while as-
signing a job to a machine. Nonetheless, kPB has an im-
portant drawback in case a subset of machines is not among
the k% best for none of the jobs, implying thus a large idle
time.

4 A simple working example

One characteristic that can be observed from the descrip-
tion of all considered methods is that they use concrete
strategies, which could work good for some grid systems
instances and poorly for some others. To illustrate this, let
us consider the following example [15]. Suppose we have
three resources with ready times (current workload) given
in Table 1.

Table 1. Ready times of three machines (in
arbitrary time units).

mo mq mo
70 | 110 | 200

Further, suppose that three jobs jg, j1 and jo arrive in the
systems in this order whose expected time to compute are
given in Table 2.

Table 2. ETC values for 3 machines and 3 jobs
(in arbitrary time units).

mo mq mao
jo | 50 | 20 | 15
ji 120 |60 15
jo | 20 | 50 | 15

By applying the immediate mode methods, we obtain the
following results.

OLB: This method assigns jg to mg because mgy will be
the earliest idle machine. Similarly, it assigns j; to m;
and jo to mg. The resulting makespan is 170 time units
(see Eq. 2).

MCT: This methods finds out that the earliest completion
time for jy is achieved in machine m and thus assigns
jo to mq despite that its expected time to compute is
almost three times the expected time to compute of jg
in my. Next, MCT assigns j; to mg and js to m;. The
resulting makespan is 160 time units.

MET: This method finds out that all jobs have the least ex-
pected time to compute in mg, but it does not take into
account that ms is the most overloaded resource and
assigns all three jobs to this machine. The resulting
makespan is 245 time units!

SA: This methods first computes the load balancing factor
r = 75/200 = 0.38. By letting ; = 0.40 and r;, =
0.70, and since r < r;, SA chooses MCT to obtain
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MET

task 2
task 1
task 0 OLE UCTSR KPR
task 2 | R 1 task 2
task 0 task 0
task 2
200 | |task 0 200 200 200
task 1 task 1
110 110 110 110
5 5 5 5
m0 ml n2 mo ml n? L] ml m2 no ml m2

Figure 1. An example of immediate mode
methods.

the first assignment, namely, it assigns jg to mg. Af-
ter this assignment, 7 becomes 110/200 = 0.55 < rp,
hence SA continues to use MCT for the second assign-
ment. It is after the third assignment when r becomes
145/200 = 0.725 > r}, that SA will use MET method
for the assignment of the forth job (still to be arrived in
the system). The resulting makespan is 160 time units,
the same as in the case of MCT.

kPB: By letting k = 2/3, for each job the method con-
siders two resources having the smallest ETC value.
Thus, for jo, these machines are m; and mo, from
which m; is chosen to assign jg. Note that this allows
the machine my to be available for other jobs (e.g. j2)
that would take longer execution times in other ma-
chines. The resulting makespan is 130 time units, the
best among all considered methods.

A graphical illustration of the example is shown in Fig-
ure 1.

Implementation. We have efficiently implemented the
presented methods in C++. It can be shown that for im-
mediate mode methods, their time complexity is O(N - M),
except kPB, which has time complexity O(N - M -log M);
N denotes the number of scheduled jobs and M the number
of machines. As can be observed from this time complex-
ity, the presented immediate mode methods have low com-
putational costs, being thus very appropriate for dynamic
heterogenous systems, such as computational grids.

5. Computational results

In this section we present some computational results
obtained with the implementations of the immediate mode
methods using a benchmark of instances by Braun et al. [2]

for distributed heterogenous systems. The simulation model
of Braun et al. allows us to establish a fair comparison of the
presented methods. Moreover, different grid scenarios can
be considered by combining different characteristics of the
grid systems such as computing consistency, heterogeneity
of resources and jobs.

The instances of this benchmark are classified into 12
different types of ET'C' matrices, each of them consisting
of 100 instances, according to three parameters: job hetero-
geneity, machine heterogeneity and consistency. Instances
are labelled as u_x_yyzz.k where:

- u means uniform distribution (used in generating the
matrix).

- ¢ means the type of consistency (c—consistent, i—
inconsistent and s means semi-consistent). An ETC
matrix is considered consistent when, if a machine
m,; executes job j faster than machine m;, then m;
executes all the jobs faster than m;. Inconsistency
means that a machine is faster for some jobs and slower
for some others. An ETC matrix is considered semi-
consistent if it contains a consistent sub-matrix.

- yy indicates the heterogeneity of the jobs (hi means
high, and lo means low).

- zz indicates the heterogeneity of the resources (hi
means high, and o means low).

Note that all instances consist of 512 jobs and 16 ma-
chines. For each method we compute the makespan, flow-
time, resource utilization and matching proximity.

We give in Tables 3, 4, 5 and 6 the computational results
obtained from immediate mode methods for makespan,
flowtime, resource utilization and matching proximity, re-
spectively, for a set of 12 instances of the Braun et al. bench-
mark. In order to have a representative set of instances,
three groups of four instances having consistent, semi-
consistent and inconsistent E7C matrices are chosen. For
each group, we have chosen instances having different types
of heterogeneity of jobs and heterogeneity of resources.

6. Evaluation

In this section we evaluate the computational results?
obtained from immediate mode methods regarding four
parameters: makespan, flowtime, resource utilization and
matching proximity. As can be seen from the description of
the considered methods, they use concrete strategies there-
fore the objective is to evaluate their performance, from
which we could deduce which method to use for certain

3Note that the presented methods are deterministic. Their execution
times are given by their time complexity.
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grid systems characteristics (configurations), especially if
we knew such characteristics in advance.

From Tables 3, 4, 5 and 6 we can easily draw the follow-
ing conclusions.

e Makespan: The methods that best perform regarding
the makespan are MCT and kPB. Moreover, a care-
ful examination of the results show that MCT obtains
better results for consistent matrices while kPB per-
forms better for semi-consistent and inconsistent ma-
trices. SA shows a good performance, except for in-
consistent matrices. MET shows a good performance
for inconsistent matrices and poor solutions for semi-
consistent matrices (see Table 3).

e Flowtime: The performance of these methods regard-
ing this parameter are not as good as for makespan;
rather small reductions of flowtime are obtained. For
consistent matrices SA performs better followed by
MCT. For semi-consistent matrices the best perfor-
mance is shown by SA and kPB while for inconsis-
tent matrices MET outperforms all the other methods.
OLB shows a poor performance (see Table 4).

e Average resource utilization: The MET method ob-
tains the worse resource utilization overall (the re-
source utilization is 1.0 for consistent matrices, as ex-
pected). kPB performs better for consistent matri-
ces, however, MCT and OLB achieve a better load
balancing for inconsistent matrices. Overall, OLB is
the method that performs best, in particular, for semi-
consistent matrices. Nonetheless, MCT and kPB be-
have quite similarly. Observe also that though OLB
achieves very good resource utilization, its makespan
values are not good. Thus, we could say that for
very heterogenous systems, resource utilization is not
a good indicator for makespan. Finally, SA performs
rather poorly (see Table 5).

e Matching proximity: Except for MET (which shows
perfect proximity matching), the best matching prox-
imity is obtained by kPB and SA. In particular, kPB
performs better for consistent matrices and SA per-
forms better for semi and inconsistent matrices. MCT
performs poorly and OLB shows the worst matching
proximity values (see Table 6).

7. Immediate scheduling and Grid services

Grid systems are expected to provide a large variety of
complex services [18] whose interactions require schedul-
ing and resource allocation policies. At present, coordi-
nated scheduling of services in grid systems is not yet
available despite the existence of several middleware (e.g.

Globus Toolkit #) or brokerage examples (e.g. Nimrod/G
Resource Broker® [4]).

One approach to scheduling services is that of a decen-
tralized schedulers or brokers that will integrate local sched-
ulers, also known as distributed scheduling components,
which will be in charge for the scheduling of user jobs to
idle computers in a LAN (for instance, Nimrod/G Resource
Broker system incorporates such a component). In this con-
text, immediate mode schedulers presented here are appro-
priate for local schedulers and could be thus integrated in a
more complex scheduler system as well as with higher-level
scheduling services. Indeed, as shown by the study of this
work, immediate mode methods explore the characteristics
of the grid system and thus if we knew in advance some of
these characteristics, for instance the degree of heterogene-
ity of jobs and resources or the degree of consistency we
could adaptively choose the appropriate immediate method.
This is possible for LANs since we could know in advance
the characteristics of the LAN at the institution or enter-
prise. Grid scheduling architectures then should support co-
operation between different scheduling instances. We could
think also of job submission service responsible for manag-
ing jobs: it receives a job request from users/applications,
requests scheduling to a grid scheduling service® and re-
quests job execution to local scheduler; this last could be
immediate mode-based scheduler since this sort of sched-
ulers are especially efficient on LANs due to their small or
moderate size and for sites with high throughput.

Immediate mode schedulers are dynamic and hence they
could be also useful in scheduling of workflow applica-
tions [22] since in such applications the workflow sched-
uler must be able to adapt and update the schedule based on
resource dynamics.

All in all, given that for a large family of grid applica-
tions requests for resources could be immediate, the pre-
sented immediate mode methods are potentially useful in
scheduling jobs originated by such applications.

8. Conclusions and future work

In this work we have presented a family of methods for
dynamic scheduling of independent jobs in computational
grids, known as immediate mode methods. The main char-
acteristic of these methods is that they schedule the jobs as
soon as the jobs arrive in the system. Five methods (Oppor-
tunistic Load Balancing, Minimum Completion Time, Min-
imum Execution Time, Switching Algorithm and k-Percent
Best) have been presented and studied.

“http://www.globus.org/toolkit/

Shttp://www.csse.monash.edu.au/~davida/nimrod/

SExamples of integrating batch mode schedulers with grid services al-
ready exit in the literature. Condor system [9] is one such example.
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The implementations of these methods have been tested
using the most difficult benchmark in the literature for the
problem, by Braun et al. [2]. The computational results
show that none of the methods performs best; rather, their
performance depends on the grid scenarios based on het-
erogeneity of the jobs (high, low), heterogeneity of the re-
sources (high, low) and consistency (consistent, inconsis-
tent and semi-consistent). It should be noted that consis-
tency allow to simulate real grid environments in which re-
strictions job-resource could exist.

Thus it is very interesting to dispose implementations of
such a variety of methods so that we could choose and apply
the appropriate method if we knew in advance some of the
grid characteristics, and also if we were interested in a con-
crete parameter (makespan, flowtime, resource utilization
or matching proximity). Also, these methods are very in-
teresting if there are time restrictions because they are very
fast. Finally, our implementations are ready to use as part
of more sophisticated heuristics.

We are currently testing a discrete-event grid simulator
based on HyperSim package [17, 7] that we will use to
study the performance of the presented methods and address
the issue of experimenting in a dynamic grid environment.
Additionally, we plan to extend this work in designing and
implementing some hyper-heuristic using the methods pre-
sented here so that the appropriate immediate methods will
be adaptively chosen according to the grid characteristics.
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Table 3. Makespan values obtained with immediate mode methods (in arbitrary time units).

Instance OLB MCT MET SA (r=0.6, 7r,=0.9) | kPB (k=20%)
u_c_hihi.0 | 14376662.175 | 11422624.494 | 47472299.429 12613221.101 12496863.706
u_c_hilo.0 221051.823 185887.404 1185092.968 194549.794 201153.956
u_c_lohi.0 477357.019 378303.624 1453098.003 426271.390 400291.050
u_c_lolo.0 7306.595 6360.054 39582.297 8167.052 6846.273
u_i_hihi.0 | 26102017.618 | 4413582.982 4508506.791 4692192.006 4508655.928
u_i_hilo.0 272785.200 94855.913 96610.481 102980.982 93005.897
u_i_lohi.0 833605.654 143816.093 185694.594 143905.246 143816.093
u_i_lolo.0 89380.269 3137.350 3399.284 3485.290 3122.956
u_s_hihi.0 | 19464875.910 | 6693923.896 | 25162058.136 7127729.951 6514162.148
u_s_hilo.0 250362.113 126587.591 605363.772 149050.289 123543.792
u_s_lohi.0 603231.467 186151.286 674689.535 194318.366 187955.955
u_s_lolo.0 8938.389 4436.117 21042.413 5836.962 4405.247

Table 4. Flowtime values obtained with immediate mode methods (in arbitrary time units).

Instance OLB MCT MET SA (11=0.6, 7,=0.9) | kPB (k=20%)
u_c_hihi.0 | 1995375910.590 | 1815882056.432 | 4844329725.992 | 1846422579.779 | 2002538268.654
uc-hilo.0 | 35915700.026 35394474.558 | 195784905.697 34901832.621 37220460.128
uc_lohi.0 | 66414109.547 65625471.648 | 156597212.675 63250093.468 66422481.844
uclolo.0 | 1189657.523 1193304.135 6399549.478 1181075.902 1255064.070
wi_hihi.0 | 3578545420915 | 591703697.305 | 369819381.995 557457024.518 596857288.709
wihilo.0 | 40168914.127 16309961.615 12778823.342 15027765.500 16093172.399
wilohi0 | 112209075410 | 18954137.704 12686655.759 18900796.619 18552145.175
wilolo.0 | 1380271.657 545326.248 443305.108 498180.120 548765.218
us_hihi.0 | 2711172017.693 | 964163417.887 | 1559122316.924 |  949405775.550 907398445.237
ws-hilo.0 | 36996922.147 22357619.927 57134246.084 21369485.252 22056448.264
us_lohi.0 | 83583290.767 27064495376 | 43054529.545 25883799.205 27266722.451
us_lolo.0 | 1395727.226 797285.039 1973399.444 791072.307 780609.157

Table 5. Average resource utilization values
obtained with immediate mode methods (see

Eq. 3).

Instance OLB | MCT | MET SA kPB
r=0.6 | (k=20%)
rh=0.9

u_c_hihi.0 | 0.946 | 0.953 | 1.000 | 0.890 0.972
u_c_hilo.0 | 0.920 | 0.970 | 1.000 | 0.920 0.974
u_c_lohi.0 | 0.928 | 0.969 | 1.000 | 0.832 0.969
u_c_lolo.0 | 0.923 | 0.951 | 1.000 | 0.727 0.960
u_i_hihi.0 | 0.951 | 0.932 | 0.628 | 0.846 0.929
u__hilo.0 | 0.955 | 0.959 | 0.750 | 0.816 0.954
ui_lohi.0 | 0.934 | 0.949 | 0.536 | 0.948 0.937
u.ilolo.0 | 0.979 | 0.965 | 0.740 | 0.797 0.968
u_s_hihi.0 | 0.967 | 0.928 | 0.197 | 0.863 0.928
u_s_hilo.0 | 0.924 | 0938 | 0.214 | 0.781 0.951
u_s_lohi.0 | 0.961 | 0.953 | 0.216 | 0.891 0.946
u_s_lolo.0 | 0.951 | 0.951 | 0.221 0.708 0.950

Table 6. Matching proximity values obtained
with immediate mode methods (see Eq. 4).

Instance OLB | MCT | MET SA kPB
r=0.6 | (k=20%)
Th=0.9
u_c_hihi.0 | 0.217 | 0.272 | 1.000 | 0.264 0.300
u_c_hilo.0 | 0.364 | 0.410 | 1.000 | 0.413 0.464
u_c_lohi.0 | 0.204 | 0.247 | 1.000 | 0.255 0.287
u_c_lolo.0 | 0.366 | 0.408 | 1.000 | 0.416 0.463
u.i_hihi.0 | 0.114 | 0.688 | 1.000 | 0.713 0.675
u_i_hilo.0 | 0.278 | 0.796 | 1.000 | 0.862 0.816
ui_lohi.0 | 0.127 | 0.729 | 1.000 | 0.730 0.739
u._lolo.0 | 0.287 | 0.830 | 1.000 | 0.905 0.831
u_s_hihi.0 | 0.148 | 0.448 | 1.000 | 0.453 0.461
u_s_hilo.0 | 0.315 | 0.614 | 1.000 | 0.626 0.620
u_s_lohi.0 | 0.141 | 0.463 | 1.000 | 0.474 0.462
u_s_lolo.0 | 0.308 | 0.620 | 1.000 | 0.633 0.625
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