22nd International Conference on Advanced Information Networking and Applications

Efficient Peer Selection in P2P JXTA-based Platforms

Fatos Xhafa
Dept. of Languages and Informatics Systems, UPC
Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, Spain
fatos@lsi.upc.edu

Thanasis Daradoumis
Department of Information Sciences, UOC
Av. Tibidabo, 39-43, 08035 Barcelona, Spain
adaradoumis@uoc.edu

Leonard Barolli
Dept. of Information and Communication Engineering
Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
barolliefit.ac.jp

Raul Fernandez, Santi Caballé
Department of Information Sciences, UOC
Av. Tibidabo, 39-43, 08035 Barcelona, Spain
{rfernandezco, scaballe}@uoc.edu

Abstract

P2P systems are nowadays being used not only for
file sharing but also for developing large-scale dis-
tributed applications. As an emerging paradigm for
distributed computing, P2P systems are raising impor-
tant issues as many novel aspects have to be dealt with
in such systems. One key issue in P2P distributed com-
puting is the efficient discovery and selection of peers,
which is needed for many purposes such as efficient
allocation of jobs to peers, load balancing, efficient
file transfer, etc. Existing P2P distributed applications
use ad hoc ways to discover and select peers, usually
without any performance guarantee. In this paper we
address the problem of the efficient peer selection in
P2P distributed platforms. To this end, we have de-
veloped a P2P distributed platform using Sun’s JXTA
technology, which is endowed with resource broker-
age strategies to efficiently select peers using four se-
lection models: (a) economic scheduling model; (b)
priced-based model; (c) peer-priority selection model;

1550-445X/08 $25.00 © 2008 IEEE

DOI 10.1109/AINA.2008.10

1013

Vladi Kolici
Department of Electronics
Polytechnic University of Tirana
Mother Teresa Square, Nr.4, Tirana, Albania

and, (d) random selection model. These different mod-
els are aimed to match different needs of P2P applica-
tions. Next, we have deployed the P2P JXTA platform
in a real network using nodes of the PlaneLab —a plan-
etary scale distributed infrastructure— and have exper-
imentally evaluated the performance of the peer selec-
tion models by using a distributed application for pro-
cessing large size log files of a virtual campus, which
requires both efficient file transmission and process-
ing in P2P nodes. The results of our work showed
the need to develop, implement and evaluate appro-
priate models for efficient peer selection to match the
different requirements of large-scale P2P distributed
applications. Although we have used a concrete tech-
nology such as JXTA, our approach is applicable in a
more general context of P2P and Grid computing do-
main. Finally, our approach to peer selection through
brokerage services is very flexible allowing extensions
with other models.

IEEE
computer
® psouety

1. Introduction and motivation

P2P systems are evolving as new a distributed com-
puting paradigm for the development of large-scale
distributed applications for solving complex problems
from science and engineering by exploiting the large
computing capacity offered by the nodes of the sys-
tem altogether. The improvement of P2P protocols is
enabling the development of P2P applications others
than the well-known file-sharing applications. How-
ever, there is still few work to bring P2P system to
real word applications, mainly due to the lack of ro-
bust P2P platforms that would allow the deployment
of large P2P systems, in particular for efficiently dis-
covering and selecting peers. Some advances are be-
ing done in this direction; for instance, the JXTA plat-
form [4, 16, 17] is making possible the development of
P2P real-world applications. Moreover, projects such
as seti@home [20] are showing the feasibility of using
P2P platforms for real life applications.

This work is motivated by the need to design and
implement several models for peer selection in P2P
applications. The aim is to implement and evaluate
these models independently of P2P application do-
mains in a way that they could serve to the develop-
ment of high performance P2P application in general,
that is, to facilitate the use of P2P infrastructures as
distributed computing environments. The need for ef-
ficient peer selection arises in many P2P applications
such as for job allocation, fast file transfer, etc. There-
fore, no one model would be able to match the re-
quirements of different scenarios/applications; rather,
several models must be studied in order to identify
which of them works best under which P2P infras-
tructure and/or job characteristics. The peer selec-
tion models considered in this work range from a sim-
ple random model to more advanced economic-based
models. These models are the following. (a) Eco-
nomic scheduling model [7]: in this model the idea
is to find/provision as many as possible available idle
peers to which the new incoming jobs can be allo-
cated. Crucial to this model is the ready time of peers
in order to plan in advance the allocation of jobs to
P2P nodes. (b) Priced-based model (e.g. [22]): in this
model peers are associated a cost, which is computed
using different criteria that range from peer’s state to
P2P infrastructure parameters. (c) Peer-priority selec-

1014

tion model: in this model it is the user who selects the
peer, among different candidate peers, based on previ-
ous traces/experiences of job allocations submitted by
the user. And, (d) random selection model: this is the
simplest model in which a peer is selected uniformly
at random among several peer candidates. It should be
noted that the use of economic models in P2P systems
is a hot research topic nowadays [5, 9, 21, 13, 18].

Our approach is exemplified using the Sun’s JXTA
open protocols and has been validated using a simple
distributed application scenario. We have joined the
PlanetLab platform [14] —a planetary scale distributed
infrastructure— and used a slice of nodes to deploy a
P2P network and have experimentally evaluated the
performance of the proposed peer selection models.
A distributed application for processing large size log
files of a virtual campus, which requires both efficient
file transmission and processing was chosen for the ex-
perimental evaluation.

The rest of the paper is organized as follows. We
briefly describe some related work in Section 2. The
architecture of the P2P platform is presented in Sec-
tion 3. In Section 3.2 we give the peer selection mod-
els considered in this work. The evaluation of the pro-
posed models is given in Section 4. Finally, we con-
clude in Section 5 with some remarks and indicate di-
rections for future work.

2. Related work

P2P systems are novel in both technological aspects
and design/implementation issues. Recently, consid-
erable research effort is being done on several im-
portant issues related P2P systems. Much of this ef-
fort has been addressed on overlay networks [2, 3, 1]
and quite a few address the design and implementa-
tion of libraries to support the development of dis-
tributed applications. Also, the issue of discovery, re-
source location and allocation is addressed in several
recent works [12, 11]. Buyya et al. [6] addressed is-
sues for P2P systems by putting special emphasis on:
(a) deploying internet services by overlaying; (b) the
need for scalability of P2P applications that would re-
quire keeping knowledge of a small fraction of global
state in each peer; and, (c) the need for load balanc-
ing, this should be separated from the P2P applica-

tions. Regarding the efficient allocation of tasks to
computational resources, most of the ideas from the
Grid computing domain are also applicable to P2P do-
main, although some differences related to existing
policies on resources should be taken into account.
Given that P2P networks are usually large or very large
as they are based on contributions of individuals, the
peer selection model should be able to find/provision
as many idle peers as possible while allocating tasks
to P2P nodes. On the other hand, because P2P re-
sources belong to different individuals and/or insti-
tutions around the world, the peer selection models
based on economic-like models are quite desirable for
P2P systems since they allow to easily incorporate in-
centive mechanisms, which are important for the de-
ployment of P2P systems. One such interesting selec-
tion model is the one proposed by Ernemann et al. [7]
for economic scheduling in Grid computing. Other
related approaches are by Yu et al. [22] and Ping et
al. [18]; in this later work JXTA technology is used.

3. The architecture of our P2P platform

In this section we present the architecture of the P2P
distributed platform!, called JXTA-OVERLAY [?], we
have developed using JXTA technology. The main
building blocks of the platform are: (a) the Broker
module; (b) the Primitives module; and, (c) the Client
module. Altogether this three modules form a new
overlay on top of JXTA (see Fig. 1).

=

% ‘ CLIENT ‘

|

&

z ‘ BROKER ‘ ‘ PRIMITIVES ‘
[JXTA J
[JAVA VIRTUAL MACHINE J
[OPERATING SYSTEM J

Figure 1. The Architecture of the P2P Overlay.

Importantly, the new overlay is designed and imple-
mented to be totally independent of any possible P2P
applications, which will be built on top of the over-
lay. Clearly, one of the characteristics of the primitives

"For more details and updated information on this platform,
please refer to http://jxta-overlay.dev.java.net

1015

module (see below) is their independence from the ap-
plications that will be using them. We give next a basic
description of the three modules of the overlay.

Primitives: The objective of the overlay is to pro-
vide a set of basic functionalities, that we call prim-
itives since they will be part of any P2P application,
as regards the discovery and allocations of resources.
This set of primitives is intended to be as complete as
possible as regards the functionalities for the discov-
ery and allocations of resources. Roughly speaking,
the set of primitives includes functionalities that al-
low: peer discovery, peer’s resources discovery, peer
selection, resource allocation, file/data sharing, dis-
covery and transmission, instant communication, peer
group functionalities. The primitives are designed to
be generic in a way that any application built on top of
the overlay can use it as a “black box”. To this end, we
observed that the overlay should include, apart from
primitive functionalities, two other modules: a broker
layer and a client layer.

Broker layer: This layer is in charge of achieving
the resource allocation functionalities, resource moni-
toring, management of executable tasks defined in the
set of primitives. Note that the broker peers do not
interact with final user applications therefore they rep-
resent just one layer.

Client layer: This layer is in charge of receiving and
managing all events produced in any application built
on top of the overlay due to calls to the primitives.

By using the above architecture, we achieved the
set of primitives to be completely independent of any
application as the client layer will allow (final) user
applications to communicate with the overlay. More-
over, the primitives allow to keep the intrinsic decen-
tralized nature of Grid/P2P systems. The idea of the
architecture using brokers has been initially explored
in [19]. The set of primitives that allow to accomplish
the aforementioned functionalities is organized in in-
terfaces according to an affinity criterion. Thus we
have the interfaces authentication, resource discovery
and information, management of executable tasks, file
sharing, discovery and transmission, resource statis-
tics, among others. An important place in the primi-
tives is given to functionalities related to the manage-
ment of executable tasks. These functionalities are in-
tended to give service to users/applications on top of
the overlay that submit executable tasks and receive

results in turn. It should also be mentioned that the
file sharing and transmission functionalities extend ex-
isting JXTA functionalities of sharing in P2P systems
since an efficient file transmission is necessary for sub-
mitting tasks to resources. Resource statistics is an-
other important interface in the overlay, and it is partic-
ularly useful for the selection of peers (statistics about
the peers, the peergroups, the brokers and the clients.)

3.1. Peers, brokers and discovery using JXTA

Now we show how is implemented the set of the
primitives. We take advantage that JXTA allows dif-
ferent types of peers in order to classify them into two
groups: client peers and broker peers. The former are
complete edge peer while the latter act as rendezvous
and relays.

Broker peers. Brokers are the governors of the
network: they are connected to the to P2P platform
and are in charge of receiving and allocating the re-
quests sent by clients of the peerGroup. Whenever a
broker receives a request, it selects, according to one
or more peer selection models, the best peer candidate
for processing that request and makes the allocation. It
should be noted that the definition of the broker peers
allows to keep the control on the resource allocation.
Thus, any peerGroup has (at least) a broker to which
client peers get connected and send their resource allo-
cation petitions. This is done by redefining the JXTA
rendezvous, the Pipe, Discovery and Rendezvous of
JXTA (denoted RendezvousOV -rendezvous overlay—
, PipeOV, etc.). This is mainly done to ensure reliabil-
ity of the overlay. Among broker’s functionalities we
distinguish: (a) event management; (b) controlling the
resources connected to the broker; (c) maintaining the
organization of resources in groups; (d) find the best
resource for the file sharing; (e) find the best resource
(according to scheduling policy/economic models) for
task execution; and, (f) maintain updated statistic in-
formation (as regards task executions, file transfers,
etc.). Further, we also note that the design of the broker
is organized in several layers/modules: brokerCore,
brokerManager and brokerFunctions (we omit the de-
tails.)

Client peers. These are peers that instantiate the
Client module, which serves as a communication layer
between the primitives and the final user application.

1016

A client peer is in charge of receiving and managing all
events produced in any application (built on top of the
overlay) due to calls to the primitives. It is organized in
a similar way as the broker: clientCore, clientManager
and clientFunctions.

3.2. Peer selection models

As part of the set of primitives we have imple-
mented four models for peer selection. These primi-
tives are then used as resource brokerage strategies by
the broker peers. The peer selection models consid-
ered in this work range from a simple random model to
more advanced economic-based models. These mod-
els are: Economic scheduling model; (b) Priced-based
model; (c) Peer-priority selection model; and, (d) ran-
dom selection model.

Economic scheduling model. In this model [7] the
idea is to find/provision as many as possible available
idle peers to which the new incoming jobs can be allo-
cated. Crucial to this model is the ready time of peers
in order to plan in advance the allocation of jobs to P2P
nodes. Thus, many parts of the problem are processed
in parallel in different peers and peers can communi-
cate among them during task realization. In this model
is crucial the expected starting time to compute of a
given peer for a given task. In the case of task execu-
tion this information is either extracted from historical
data or is specified by the user’. On the other hand
the peer advertisements are very important to know
the state information of peers. However, this could be
problematic for tasks needing a short or very short ex-
ecution time since advertisement are periodically up-
dated. In this case, and estimated time is computed by
the broker based on historical data kept for the peers.
In case several peers are available candidates for exe-
cuting the task, some additional criteria such as CPU
speed are used.

Priced-based model. In this model® peers are as-
sociated a cost, which is computed using different cri-
teria that range from peer’s state to P2P infrastructure
parameters. The set of criteria used to identify the best
peer(s) are classified into: (a) global criteria (percent-
age of successfully sent messages in the current ses-

>The reader is also referred to [10] (The Cornell Theory Cen-
ter) and the Parallel Workload Archive [15].
3 Also referred to as Data model.

sion, percentage of successfully sent messages in all
sessions (total), percentage of successfully sent mes-
sages during the last k-hours; number of messages in
the outbox queue now, average number of messages
in the outbox queue, number of messages in the inbox
queue now, average number of messages in the inbox
queue, average number of attempts in outbox in the
current session, average number of attempts in outbox
in all sessions (total), etc.; Amount of sent bytes in the
current session, similarly for all sessions (total); Peer’s
bandwidth IN, Peer’s bandwidth OUT, etc. (b) spe-
cific task execution criteria® (percentage of success-
fully executed tasks in the current session, percentage
of successfully executed tasks in all sessions (total),
percentage of tasks accepted by the peer for execution
in the current session, percentage of tasks accepted by
the peer for execution in all sessions (total), percentage
of cancelled tasks in the current session, percentage of
cancelled tasks in all sessions (total), etc.. (¢) specific
file request criteria® (percentage of sent files in this
session, percentage of sent files in all sessions (total),
percentage of cancelled file transfers in the current ses-
sion; Average file transfer ratio, etc.

Each of the above criteria is given a certain weight
(either user defined or pre-specified) meaning that
some criteria are more important than others or even
some are negligible (of zero weight). The broker, upon
receiving a request (task execution or file transfer)
from a peer, evaluates the above criteria, applies the
weights and thus assigns a price (a score) to each can-
didate peer. The best score peer is then chosen for exe-
cuting the task. The user can specify two ways of com-
puting the peer’s score, namely fixed point (w.r.t. abso-
lute position in the peer list) and variable point (w.r.t
relative position in the peer list). Regarding the cri-
teria’s weights, the following specific ways have also
been implemented: all disabled (no weights are con-
sidered, the peer is randomly chosen); same priority
(the weights are the same, i.e., criteria are equally im-
portant); quickest peer (only the criteria related to task
execution performance and file transmission are con-
sidered independently of the peer reliability); reliable
peer (only criteria related to peer reliability w.r.t. task

“A total of 47 criteria has been implemented in this model for
peer selection for task execution.

3 A total of 39 criteria has been implemented in this model for
peer selection for file transmission

1017

execution/file transmission are considered, indepen-
dently of peer’s performance); balancing peer (only
the criteria related to load balancing are considered).

Peer-priority selection model. In this model it is
the user who selects the peer, among different can-
didate peers based on previous traces/experiences of
request (task execution or file transmission) submit-
ted by the user. This model is useful when the user
knows the performance of some peers in advance, for
instance, from previous submissions of the tasks. In
this case, the broker has to just assure that the selected
peer is available for executing the task and therefore
this model has a very low computational cost as op-
posed to the previous models.

Random selection model. This is the simplest
model in which a peer is selected uniformly at ran-
dom among several peer candidates. Although simple,
this model could be useful when peer candidates are
almost homogeneous.

We show in Fig. 2 the UML diagram of the pro-
posed models instantiated by the broker module.

ginterfaces
O BrokerEvaluator

© findBestPeers(in candidetes: ArrayList <Ex, in object: Object,in variable: Long, In TypeTask: boolean) boolean
@ getEvaluation() String

@ getPeerD(in posttion: inty PesHD

@ getPeeriiame(in posiion: int). String

@ getPrevisionTime(in pesiin; inl: kng

© DataEvaluator @ EconomicEvaluator | = & RandomEvaluator || © SelectedPeerEvaluator

@ oreateEvalugtion() g ‘]]] @ fi 3
o fneBestPesrs() © getEvaluation() & getEvaluation()
& getEvalustion() © getPesnD() @ getPesrD0)

@ elPeerD) @ getpesriiame() o getPeerhlame()
@ getPeerhiamel) @ o) o o i)

evalusteCriterium()
o fincBestPesrs(y
u oelDatal)

@ getEvalustion)

o gelPeeriD() °)
B getTime()
setorderetPeer()

o gelPeariame()

@ getPrevisionTime()
B setOrderedPeer()
m setPuntustions()

Figure 2. Diagram of peer selection models.

4. Experimental evaluation

4.1. Deployment of the P2P network

In order to evaluate the performance of the pre-
sented peer selection models, first we deployed the
P2P network using nodes of the PlanetLab platform.

PlanetLab [14] is an open platform for developing, de-
ploying and accessing planetary-scale services. It is, at
the time of this writing, composed of 782 nodes at 382
sites. Each Planetlab node is an IA32 machine that
must comply with minimum hardware requirements
(i.e. 1GHz PIII + 1Gb RAM) running the same base
software, basically a modified Linux operating system
offering services to create virtual isolated partitions in
the node, called slivers, which look to users as the real
machine. Planetlab allows every user to dynamically
create up to one sliver in every node, the set of sliv-
ers assigned to a user form what is called a slice. It is
said that a Planetlab node can run up to 100 concurrent
slivers. The sample of PlanetLab’s machines forming
our slice is about 25 nodes. Moreover we used the
cluster nozomi.lsi.upc.edu (a main control node + five
computing nodes). The main node was used as one the
brokers of the P2P network.

4.2. The distributed application scenario

Next, we have chosen a simple but representative
application to run on the resulting P2P platform. This
application consists in processing large log files kept
by the Virtual Campus at the Open University of Cat-
alonia (http://www.uoc.edu), which offers distance ed-
ucation through the Internet in different languages. As
of this writing, about 40,000 students, lectures and tu-
tors from everywhere participate in some of the 23 of-
ficial degrees and other PhD and post-graduate pro-
grams resulting in more than 600 official courses.

All users’ requests are chiefly processed by a col-
lection of Apache [10] web servers. Each web server
stores in a log file all users’ requests received in this
specific server and the information generated from
processing the requests. Once a day , all web servers
in a daily rotation merge their logs producing a single
very large log file containing the whole user interac-
tion with the campus performed in the last 24 hours. A
typical daily log file size may be up to 10 GB. Log file
entries are structured following a type of format known
as Common Log Format [8]. Unfortunately the log file
is not human readable making thus indispensable its
processing to extract relevant information that would
serve as basis for later statistical processing. The prob-
lem of processing log files of the virtual campus rep-
resent several interesting characteristics. Log files are

1018

of large size making thus relevant a parallel processing
using the P2P network. Further, due to their structure
(Common Log Format) the log file can be very easily
parallelized using the Master-Worker paradigm since
the file can be split by a master node into many inde-
pendent parts and processed in parallel by other peer
nodes (slaves). Finally, the processing requires effi-
cient file transmission.

4.3. Computational results and evaluation

For the experimental study we used daily log files
and well-stratified short samples of about 100Mb con-
sisting of representative daily periods with different
activity degrees (e.g. from 7 p.m. to 1 a.m. as the
most active lecturing period). The computational re-
sults presented here are obtained by running the same
experiment five times and the results are averaged.

We show in Fig. 3 the time needed by the broker to
find the best candidate for each model when the log file
was split into 1, 4 and 16 parts. As can be seen from
this figure, the data model (price-based model) is the
most computationally expensive among the proposed
models.

01 candidatem4 candidates016 candidates’

8
7 4
6
54
2 44
& 3

24
14
0 4

©) Q\ D S N D ~ N

0606\ é’é\\ 'I’é\% '\\q"& &’ﬁ o‘}(\g e"’ég) &\é— @@}e @QQ
hd Q
F @ @ F ¢ o
W & N & & > N
& & \ & N £ & &
2 N <0 & L L & o
& 3 & & < 3 & RS
< & Q 5 32 32 @\ &
Q' < Q N 2
Q

Figure 3. Broker’s processing time for discov-
ering the best peer.

Two different modes for sending files to peers for
processing were used: the ftp transfer (that is, peers
download the file chunks from an FTP site) and JXTA
file transfer. We show in Fig. 5 the resulting process-
ing time of log files of 100MB when using the best
peer found according to economic model and price-

based model® (the most relevant for this experimental
study.) Further, in Fig. 4 the processing time without
taking into account the file transmission time (from the
master node to peers and vice-versa) is shown.

‘n Complete Log File m Partition 4 chunks O Partitions 16 chunks ‘

Selection models

Figure 4. Total processing time of log files in
the P2P platform.

— & - Complete Log file ~ ===® = Partition 4 chunks = & = Partition 16 chunks

250

200 f-------- O o
N

150 o mmmmmm e
37 N
£3 N
S T
> 3
£ -—- .
= —--0
k 50 — - — = - = _

P
k--"""" Tm==-x l
0

Economic model Priced_same priority Priced_quick peer

Peer Selection models

Figure 5. Processing time of log files in the
P2P platform (without transmission time).

As can be seen from the above results, as expected,
it’s worth using the P2P network to process the log
files. In particular sending just one file via FTP takes
most of the overall processing time while it is much
more efficient to split the file into chunks and send

%The notation in the figure reads as follows: EconomyFTP: eco-
nomic model using ftp; EconomyTransfer: economic model using Jxta
transfer; PriceFTP_s: Price-based model with same priority using ftp;
PriceTransfer_s: Price-based model with same priority using Jxta transfer;
PriceFTP_q: Price-based model with quick peer using ftp; PriceTransfer_q:
Price-based model with quick peer using Jxta transfer.

1019

them at the same time to different peers, achieving
thus different degrees of granularity. Then, when par-
titioning the file into chunks, the direct JXTA transfer
seems to perform better than the FTP transfer. We no-
ticed however that the file transmission was the most
time consuming overall. Regarding the different se-
lection models, they showed different performance.
The price-based model with quick peer, which com-
putes the best peer w.r.t. the peer’s communication and
peer’s historical performance showed to perform bet-
ter. On the other hand, the price-based model with
the same priority performed not as good and showed
a higher computational cost.

It should be noted however that the performance of
different models depends on the state of the network;
in particular the economic model could perform bet-
ter if the provision of task allocation is relevant. To
see this effect, we considered the following simple
scenario: the log file was split into four chunks and
8 peers were candidates for processing them. The 4
chunks were submitted for processing twice. The re-
sults showed now to be different: the economic model
used the four best peers for processing the 4 chunks
and then used exactly the same peers for processing the
second battery of 4 chunks while the economic model
sent the 4 chunks to the four best peers and next sent
the second battery of four chunks to the four idle peers.

5. Conclusions and future work

In this work we have presented four models (eco-
nomic scheduling model, priced-based model, peer-
priority selection model and random selection model)
for peer selection in a P2P JXTA-based platform.
These models are implemented and a first evaluation
is done in a real P2P network that uses, among others,
nodes of the PlanetLab platform. The performance of
the proposed models is studied by using a distributed
application scenario for processing large size log files
of a virtual campus.

In our future work we would like to measure the
performance of the proposed peer selection models
in large scale distributed application involving a large
number of peers as well as a large number of tasks to
be allocated to the peer nodes. Also, we plan to in-
vestigate other peer selection models and extend the
experimental results of this study.

Acknowledgements

This work has been partially supported by the Span-
ish MCYT project TSI2005-08225-C07-05.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

L. Alima, A. Ghodsi, and S. Haridi. A framework
for structured peer-to-peer overlay networks. In
Global Computing, 223-249, 2004.

D. Andersen, H.. Balakrishnan, M. Kaashoek,
and R. Morris. Resilient overlay networks. In
Proc. of the 18th ACM Symposium on Operating
Systems Principles, Canada, 2001.

D. Andersen, H. Balakrishnan, M. Kaashoek,
and R. Morris. Experience with an evolving over-
lay network testbed. ACM SIGCOMM Computer
Communication Review, 33(3):13-19, 2003.

D. Brookshier, D. Govoni, N. Krishnan, and
J. Soto. JXTA: Java P2P Programming. Sams
Pub., 2002.

R. Buyya, D. Abramson, J. Giddy, and
H. Stockinger. Economic models for resource
management and scheduling in grid computing.
Concurrency and Computation: Practice and
Experience, 14(13-15):1507-1542, 2002.

J. Crowcroft, T. Moreton, 1. Pratt, and A. Twigg.
Peer-to-Peer Technologies. In Foster and Kessel-
man, eds, The Grid: Blueprint for a New Com-
puting Infrastructure, chapter 29, 593-622. Mor-
gan Kaufmann, 2003.

C. Ernemann, V. Hamscher, and R. Yahyapour.
Economic scheduling in grid computing. In The
8th Int. Workshop on Job Scheduling Strategies
for Parallel Processing, 128—152, UK, 2002.

Common Log Format. (As of February 2007)
http://httpd.apache.org/docs/1.3/logs.html#common.

C. Grothoff. An excess-based economic model
for resource allocation in peer-to-peer networks.
Wirtschaftsinformatik, (3):285-292, 2003.

1020

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

(18]

[19]

[20]
[21]

[22]

S. Hotovy. Workload evolution on the Cornell
theory center ibm sp2. In Proc. of Job Scheduling
Strategies for Parallel Proc. Workshop,, 27-40,
1996.

H. Hsiao, M. Baker, and Ch. King. A peer-to-
peer mechanism for resource location and allo-
cation over the grid. In ISPA04, 604-614, 2004.

H. Hsiao and Ch. King. Similarity discovery in
structured P2P overlays. In ICPP03, 636—, 2003.

J. Hwang, Ch. Lee, J. Song, and K. Pyo. Grid and
p2p economics and market models. In Proc. of
the Ist Int. Workshop on Grid Economics and
Business Models, 3-18. IEEE Computer, 2004.

Planet Lab. http://planet-lab.org/.

Parallel workload archive. The Hebrew Univer-
sity Parallel Systems Lab. (As of February 2007.)
http://www.cs.huji.ac.il/labs/parallel/workload/

S. Li. Early Adopter JXTA. Wrox Press, 2003.

S. Oaks, B. Traversat, and L. Gong. JXTA in a
Nutshell. O’Reilly, 2003.

T. Ping, G. Sodhy, Ch. Yong, F. Haron, and
R. Buyya. A market-based scheduler for jxta-
based p2p computing system. In Int. Conf. Com-

putational Science and Its Applications, Proc.,
Part IV, vol. 3046 of LNCS. Springer, 2004.

J.E. Riasol and F. Xhafa. Juxta-cat: a jxta-based
platform for distributed computing. In Proc. of
the 4th Int. Symp. on Principles and practice of
programming in Java, 72-81, 2006. ACM Press.

Seti@Home. http://setiathome.berkeley.edu/.

0.4 Wolfson, B. Xu, and A. Sistla. An economic
model for resource exchange in mobile peer to
peer networks. Proc.of the 16th Int. Conference

on Scientific and Statistical Database Manage-
ment, 235-244. IEEE Computer Soc., 2004.

J. Yu, M. Li, Y. Li, F. Hong, and M. Gao. A
framework for price-based resource allocation on
the grid. Proc. of Parallel and Distributed Com-
puting: Applications and Technologies, vol. 3320
of LNCS, 341-344. Springer, 2004.

