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Abstract—Benchmark suites are significant for evaluating var-
ious aspects of Cloud services from a holistic view. However,
there is still a gap between using benchmark suites and achieving
holistic impression of the evaluated Cloud services. Most Cloud
service evaluation work intended to report individual benchmark-
ing results without delivering summary measures. As a result, it
could be still hard for customers with such evaluation reports to
understand an evaluated Cloud service from a global perspective.
Inspired by the boosting approaches to machine learning, we pro-
posed the concept Boosting Metrics to represent all the potential
approaches that are able to integrate a suite of benchmarking
results. This paper introduces two types of preliminary boosting
metrics, and demonstrates how the boosting metrics can be used
to supplement primary measures of individual Cloud service
features. In particular, boosting metrics can play a summary
Response role in applying experimental design to Cloud services
evaluation. Although the concept Boosting Metrics was refined
based on our work in the Cloud Computing domain, we believe
it can be easily adapted to the evaluation work of other computing
paradigms.

Index Terms—Cloud Computing; Cloud Services Evaluation;
Benchmark Suite; Boosting Metric; Experimental Design

I. INTRODUCTION

As Cloud Computing becomes one of the most promising
computing paradigms in industry [4], numerous vendors have
started to supply public Cloud infrastructures and services
[28]. Since most providers do not reveal details about their
infrastructures [5], customers have little knowledge and control
over the precise nature of public Cloud services even in the
“locked down” environment [31]. As such, Cloud services
evaluation would be crucial and beneficial for both service
customers (e.g. cost-benefit analysis) and providers (e.g. di-
rection of improvement) [21].

When it comes to evaluating a Cloud service, a benchmark
suite is usually required to cover and test various aspects of the
service from a holistic view [12], [29]. In practice, however,
there is still a gap between using benchmark suites and achiev-
ing such holistic impressions. Through reviewing the existing
studies of Cloud services evaluation [22], we found that, even
if benchmark suites were adopted to evaluate Cloud services,
most evaluators intended to report individual benchmarking
results with a lack of visibly integrated measurements. As a
result, customers with such evaluation reports could have to
further summarize various evaluation results by themselves.

Although it is possible and sometimes flexible for customers
to balance tradeoffs in employing a Cloud service, it is often
useful and convenient to compare alternatives by using a single
index [13], and such a single index can act as a supplementary
to individual benchmarking results for customers’ decision
making. More importantly, a single measurement that reflects
the overall performance of a Cloud service can play a summary
Response role in experimental design and analysis [24] for
evaluating the Cloud service. Therefore, to facilitate measuring
Cloud service performance as a whole, it is valuable and
necessary to investigate approaches to integration of a suite
of benchmarking results.

Inspired by the boosting approaches to machine learning
that combine weak rules into a single more accurate one [30],
we proposed the concept Boosting Metrics to represent all
the potential approaches that are able to integrate a suite of
benchmarking results. A boosting metric can then be viewed as
a secondary measure by manipulating the primary metrics that
directly measure individual Cloud service aspects. To clearly
demonstrate this proposed concept, this paper rationalizes
several common and straightforward approaches to boosting
metrics instead of demonstrating sophisticated ones. Moreover,
a real case of investigating global performance of two Amazon
EC2 instances is studied to show how the boosting metrics
can help facilitate the corresponding experimental design and
analysis. Note that, although the concept Boosting Metrics was
refined based on our work in the Cloud Computing domain,
we believe it can be easily adapted to the evaluation work of
other computing paradigms.

The remainder of this paper is organized as follows. The
existing Cloud services evaluation work related to Boosting
Metrics are briefly summarized in Section II. Section III
specifies the proposed concept Boosting Metrics, and then
introduces two types of preliminary approaches to boosting
metrics. Section IV employs a case study of evaluating Ama-
zon EC2 to demonstrate how a boosting metric can be used in
evaluation and how it can help analyze experimental results.
Conclusions and some future work are discussed in Section
V.
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II. RELATED WORK

According to the review on evaluating commercial Cloud
services [22], most of the existing studies employed bench-
mark suites or multiple benchmarks to evaluate Cloud services,
while only several practices directly showed overall measure-
ments by using boosting metrics.

A. Usage of Benchmark suites in Cloud Services Evaluation

Since one Cloud service may have various features and
aspects, it has been identified that benchmark suites are usually
required for Cloud services evaluation to cover and test various
service aspects from a holistic view [12], [29]. In fact, different
benchmark suites have already been widely employed in the
existing practices of Cloud services evaluation. For example,
the kernel benchmarks in NPB have been used to reveal
different micro features of Amazon EC2 like computation,
communication and storage respectively [1]; while six scale-
out workloads are collected to simulate different macro appli-
cation scenarios in today’s Cloud infrastructure [10]. In par-
ticular, for verifying scientific computing in the Cloud, HPCC
seems a popular benchmark suite to show high performance
computing capabilities of Cloud services[15], [27]. In addition
to those predefined benchmark suites, the evaluator-selected
application sets were also commonly adopted to evaluate
Cloud services [8], [15]. Essentially, each application set here
can be viewed as an individual benchmark suite.

B. Usage of Boosting Metrics in Cloud Services Evaluation

Although not common, the idea of boosting metrics has
been intuitively employed in some Cloud services evaluation
work, together with a little preliminary discussion about the
merits of employing boosting metrics. For example, the geo-
metric mean of eight NAS Parallel Benchmarks (NPB) results
(BT, CG, FT, IS, LU, MG, SP, UA) was used to measure
the computational performance of Amazon EC2 on a wide set
of model applications and kernels [9]. A more sophisticated
sample is the usage of metric Sustained System Performance
(SSP), which combined a set of application measurements to
give an aggregate measure of overall performance of a Cloud
service [15]. In detail, the calculation of SSP is to multiply the
geometric mean of individual applications’ performance per
CPU core by the number of computational cores, which can
also be viewed as a Geometric Mean-based boosting metric
with respect to the application benchmark suite.

III. PRELIMINARY APPROACHES TO BOOSTING METRICS

As mentioned previously, we borrowed the “boosting” idea
from the machine learning field to our Cloud services evalua-
tion work. In machine learning, boosting refers to the method
of producing a more accurate prediction rule by combining
a set of rough and less accurate rules of thumb [30]. By
analogy, in Cloud services evaluation, we treat “boosting” as
integrating a suite of local benchmarking results into a single
global measurement, namely boosting metrics, to reflect the
overall performance of a Cloud service. In particular, boosting
metrics can be regarded as secondary measures based on the

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Benchmarkin  g 
ts 
nt 

Resul
Poi

Aspect Z  
 
 
 
 
 
 
 

 
 
 
 

   

Aspect Y
. 

Aspect X

Fig. 1. The benchmarking results point in a Cloud service aspect space.

primary metrics that measure individual Cloud service aspects.
When measuring different Cloud service aspects, benchmark
suites may adopt homogeneous primary metrics (e.g. NPB
[25]) or inhomogeneous primary metrics (e.g. HPCC [23]).
Correspondingly, here we show two types of boosting metrics,
as described in the following two subsections respectively.

A. Mean as a Boosting Metric from a Spatial Perspective

In a benchmark suite, a set of different benchmarks are
generally expected to be able to reflect different aspects of
a Cloud service in an evaluation. If we imagine every single
service aspect as an individual dimension, a Cloud service with
n aspects can be represented as a Euclidean n-space. As such,
when evaluating a Cloud service, the benchmarking results
together would identify a particular point in the Euclidean
n-space, which essentially uses a tuple to reflect the overall
feature of the Cloud service with respect to the corresponding
benchmark suite, as illustrated in Figure 1.

As previously mentioned, a boosting metric is supposed
to represent overall service feature by using a single number
instead of using a tuple. Thus, seeking boosting metrics here
is to find single-number representations of the benchmarking
point in the service-aspect space. Since the benchmarking
point and the origin can determine a rectangular parallelepiped
in the Euclidean n-space (cf. Figure 1), we can switch our
focus from the coordinates of the point to the attributes
of the corresponding rectangular parallelepiped, such as the
perimeter, surface area, volume, etc. Furthermore, given the
related work, we tried to rationalize several “classic” means [6]
to suit the rectangular parallelepiped’s attributes, rather than
re-inventing “new” measures. The equations of the selected
means are listed below, where Benchmarkingi denotes the
benchmarking result by using the ith benchmark in a suite.

1) Arithmetic Mean: Corresponding to that the perimeter of
a rectangular parallelepiped is the sum of its side lengths, we
may use the arithmetic mean as a potential boosting metric,
as shown in Equation (1).

A =

n∑
i=1

Benchmarkingi

n
(1)



2) Geometric Mean: Corresponding to that the volume of a
rectangular parallelepiped is the product of its side lengths, we
may use the geometric mean as a candidate boosting metric,
as shown in Equation (2).

G = n

√√√√ n∏
i=1

Benchmarkingi (2)

3) Harmonic Mean: In particular, corresponding to the
rate between the volume and surface area of a rectangular
parallelepiped, we may use the harmonic mean as a candidate
boosting metric, as shown in Equation (3).

H =

n×
n∏
j=1

Benchmarkingj

n∑
i=1

n∏
j=1

Benchmarkingj

Benchmarkingi

=
n

n∑
i=1

1
Benchmarkingi

(3)

4) Quadratic Mean: Corresponding to the distance between
the benchmarking point and the origin, we may use the
quadratic mean as a candidate boosting metric, as shown in
Equation (4).

Q =

√√√√ n∑
i=1

Benchmarking2i

n
(4)

As can be seen, it is convenient to calculate these means of
a set of benchmarking results to reflect the summary feature
of a Cloud service. Interestingly, the Geometric Mean seems
the most popular one in practice [9], [15]. Nevertheless, there
is a default constraint when employing means as boosting
metrics: different Cloud service aspects should be homoge-
neously measured by using different benchmarks in a suite. In
other words, to calculate means (secondary metrics), different
benchmarking results for different Cloud service aspects must
adopt the same primary metric. If the constraint cannot be
satisfied, we may employ a more generic solution – Radar
Plot, as specified in the following subsection.

B. Radar Plot as a Boosting Metric

Radar plot is a simple but intuitive graphical tool that can
simultaneously depict a group of different types of values
relative to a central point. When a benchmark suite uses
different primary metrics to measure different Cloud service
aspects, we can use radar plot to represent the benchmarking
results over a predefined baseline. In particular, we can also
portray several groups of standardized benchmarking results in
one radar plot without predefining any baseline (cf. Figure 2).
Given the analysis of the existing metrics for Cloud services
evaluation [19], here we elaborate two standardization methods
only for Higher Better (HB) metrics and Lower Better (LB)
metrics [26] respectively.

TABLE I
ORIGINAL HPCC BENCHMARKING RESULTS FOR VARIOUS EC2

INSTANCE TYPES

Name m1.large m1.xlarge c1.medium c1.xlarge
HPL (GFLOPS) 7.15 11.38 3.91 51.58

STREAM
(GBps) 2.38 3.47 3.84 15.65

RandomAccess
(MUPs) 54.35 168.64 46.73 249.66

Latency (µs) 20.48 17.87 13.92 14.19

Bandwidth
(GBps) 0.7 0.92 2.07 1.49

HB Standardizedi =
Benchmarkingi

MAX(Benchmarking1,...,n)
(5)

LB Standardizedi =

1
Benchmarkingi

MAX( 1
Benchmarking1,...,n

)
(6)

Equation (5) is for the standardization of HB metrics, while
Equation (6) for LB metrics. Here Standardizedi refers to the
stardardized ith benchmarking result Benchmarkingi. In fact,
Equation (6) offers LB metrics a higher better representation
through reciprocal standardization, so that all the standardized
benchmarking results can be settled homogeneously higher
better in a radar plot, and meanwhile construct a bigger-area
better polygon. As such, we can intuitively contrast the areas of
different polygons to compare different groups of benchmark-
ing results. Moreover, the area of a polygon can be regarded
as a single numerical Response to facilitate experimental
design and analysis. Suppose there are n benchmarking results
standardized and marked in a radar plot, we can calculate the
area of the corresponding polygon by summing up areas of
the n adjacent triangles, as shown in Equation 7.

n∑
i=1

sin( 2π
n
)× Standardizedi × Standardizedmod(i+1,n)

2
(7)

Here we employ a real case to demonstrate the radar plot
as a boosting metric. For our convenience, the evaluation data
reported in [27] are directly reused, as shown in Table I.
Given the various types of benchmarking results, such as HPL,
STREAM, RandomAccess, Latency, and Bandwidth, within
the HPCC benchmark suite [23], it is hard to compare the
summary performance as a whole when evaluating different
types of EC2 instances.

Thus, we first standardize those benchmarking results re-
spectively, as listed in Table II. Note that the generated
numbers in Table II do not come with any benchmarking unit.
Then, the standardized benchmarking results are represented in
a radar plot, as illustrated in Figure 2. Through this radar plot,
we can intuitively and conveniently identify that: c1.xlarge
has absolutely better overall performance than m1.large and



TABLE II
STANDARDIZED HPCC BENCHMARKING RESULTS FOR VARIOUS EC2

INSTANCE TYPES

Name m1.large m1.xlarge c1.medium c1.xlarge
HPL 0.1386 0.2206 0.0758 1

STREAM 0.1521 0.2217 0.2454 1

RandomAccess 0.2177 0.6755 0.1872 1

Latency 0.6797 0.779 1 0.981

Bandwidth 0.3382 0.4444 1 0.7198
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Fig. 2. The benchmarking results point in a Cloud service aspect space.

m1.xlarge; c1.xlarge is also better than c1.medium in general,
while slightly poorer in terms of Bandwidth and Latency. In
particular, the areas of different benchmarking polygons in the
radar plot are further calculated to quantitatively reflect the
summary performance of the four types of EC2 instances, as
bracketed beside the legend entries. Essentially, the numerical
areas may play a Response role in the design of experiments
for Cloud services evaluation. A complete experimental design
and analysis sample by using boosting metrics is elaborated
in the next section.

IV. A CASE STUDY OF USING BOOSTING METRICS IN
EXPERIMENTAL DESIGN AND ANALYSIS

A. Problem and Motivation

We proposed to use a set of Amazon EC2 instances to
perform a small-scale parallel computing project. According to
the estimation of our project and the predefined EC2 instance
types [3], we initially selected m1.xlarge and m2.xlarge as
two candidate types of parallel computing nodes. The spec-
tifications and prices of these two EC2 instance types are
listed in Table III. When making decision to choose the most
suitable alternative from these two options, we found that it
was hard to directly distinguish the better one based on their
specifications. Unlike the clear differences between the other
types of EC2 instances, each of these two options has its own

TABLE III
SPECIFICATIONS AND PRICES OF TWO EC2 INSTANCE TYPES

Specification m1.xlarge m2.xlarge
Core Amount 4 2

ECU Amount 8 6.5

Network I/O Performance High Moderate

Memory Size 15 GB 17.1 GB

Platform 64 bit 64 bit

Storage Size 1690 GB 420 GB

Windows Usage Cost $0.92 per Hour $0.57 per Hour

distinctions. For example, m1.xlarge seems overall better than
m2.xlarge, while m2.xlarge has faster single CPU core, larger
memory, and lower price. As such, we decided to evaluate
these two types of EC2 instances to roughly compare their
potential performance in our project. It is then suitable to
consider boosting metrics for summary measurement in this
case.

B. Evaluation Preparation

Given the above discussion about the evaluation require-
ment, a series of prerequisites can be set up as preparation for
implementing evaluation experiments.

1) Experimental Environment: As mentioned previously,
the evaluation requirement in this case can be viewed as
merely a rough understanding of the parallel computing ca-
pability of those two instance types. To save time, we decided
to perform evaluation for each option only on a single EC2
instance rather than on a real parallel cluster environment. In
detail, we applied one m1.xlarge instance and one m2.xlarge
instance respectively from Amazon’s US-EAST-1 region, and
both instances came with the same quick launch Amazon
Machine Image (AMI) – 64 bit Windows Server 2008 Base.

2) Benchmark and Metrics Selection: As a well-known and
well-accepted parallel computing benchmark suite, NPB has
been widely used for Scientific Computing evaluation in the
public Cloud [1], [7], [9], [11], [32]. Therefore, we also em-
ployed NPB as the benchmark suite to evaluate the summary
performance of EC2 instances for our project. In particular,
since the software system in our project was implemented
using JAVA, we selected the latest JAVA version of NPB,
namely NPB3.0-JAV [25]. Although different benchmarks in
NPB are used to reflect different features of a computing
system like computation, communication and storage, all
the NPB benchmarking results adopt the same format with
homogeneous metrics, such as benchmark runtime (time in
seconds) and benchmark FLOP rate (floating point Mops
total). Following the popular choice (cf. Subsection II-B), we
also chose Geometric Mean as the boosting metric over the
primary metrics benchmark runtime and benchmark FLOP
rate in this case study.

3) Experimental Factors Identification: Before evaluating
a system, experimental factors identification is a tedious but
necessary task [18]. Factors here refer to the elements in the
system or the workload that may influence the evaluation



result. In fact, our previous work has established a factor
framework for Cloud services evaluation, and the latest frame-
work version capsules the state-of-the-practice of performance
evaluation factors that people currently take into account in
the Cloud Computing domain [20]. Since this evaluation work
would also measure performance of EC2 instances, we con-
ventionally identified experimental factors within the proposed
framework. In detail, we explored experimental factors related
to Cloud resource and benchmark’s workload respectively:
Instance Type (m1.xlarge vs. m2.xlarge), Thread Number (2
vs. 4), and Workload Size (Class W vs. Class A)

C. Experimental Design

When it comes to experimental design, there are three
basic principles: Randomization, Replication, and Blocking
[24]. In this case, we only focus on the Randomization and
Replication. Although an entire NPB suite run can be treated
as a block, here we try to simplify the demonstration without
elaborating sophisticated design approaches. The detailed de-
signing process is then composed of three steps, as specified
below.

1) Determining Individual Experimental Trials: In this
evaluation work, an experimental trial indicates a specific
benchmark run on an EC2 instance. In practice, we used one
batch command to drive a single NPB benchmark run during
the experiments. Thus, a series of batch commands were listed
to represent different individual experimental trials.

2) Determining Amount of Experimental Trials: As men-
tioned previously, we decided to investigate two levels of
Workload Size (Class A and W) and two levels of Thread
Number (2 and 4) for two Instance Types (m1.xlarge and
m2.xlarge). To facilitate the investigation, we also planned
benchmarking with single thread as a reference baseline.
On the other hand, the JAVA-version NPB suite comprises
seven benchmarks. According to our pilot test of running
those seven benchmarks on a local machine, we decided to
replicate all the different trials five times. Therefore, there are
2×3×7×5 = 210 experimental trials in total on each instance.

3) Determining Sequence of Experimental Trials: To
achieve a randomized trial sequence, we assigned two random
numbers to each trial-associated batch command in EXCEL.
The 210 batch commands can be ordered by one random
number and another in turn, to run experiments on the
m1.xlarge and m2.xlarge instances respectively. Through such
a randomization, we made individual trials as independent
as possible between each other to reduce the experimental
sequence-related bias.

D. Experimental Result

Due to the limit of space, the specific experimental results
from individual NPB benchmarks are not reported in this
paper. In summary, by averaging results of identical experi-
mental trials, and dividing the trials into different workload-
size, thread-number, and instance-type groups, we obtained a
set of Runtime and FLOP Rate geometric means with respect

to the NPB suite under different conditions, as listed in Table
IV.

To intuitively show the instances’ performance changing
when varying conditions, we also used four line charts to
represent the boosting metric’s measurements, as illustrated in
Figure 3. It is not surprising that, benefiting from the faster sin-
gle core, the m2.xlarge instance defeats the m1.xlarge instance
for running NPB suite before over-saturating its CPU cores,
while the m1.xlarge instance performs better with four-thread
trials. Nevertheless, it is still hard to tell whether Instance
Type is a significant factor or not in general. Therefore, we
employed formal experimental-analysis techniques to unfold
further investigation, as explained in the following subsection.

E. Experimental Analysis

Since only two levels of an experimental factor were par-
ticularly concerned in this case (cf. Subsection IV-B3), we
naturally adopted the optimal design and analysis technique,
namely Full-factorial 2k Design [24], to analyze the experi-
mental results. Given the three factors considered, a pseudo
23 design matrix was generated as shown in Table V. The
response columns in the matrix were filled with pseudo-trial
results that correspond to eight geometric means in Table
IV. For conciseness, we further assigned aliases to those
experimental factors and responses, as listed below.

• Factor A: Instance Type (m1.xlarge vs. m2.xlarge).
• Factor B: Thread Number (2 vs. 4).
• Factor C: Workload Size (Class W vs. Class A).
• Response R1: NPB Runtime (seconds).
• Response R2: NPB FLOP Rate (Mops).

Recall that the analysis is to investigate if Instance Type (A)
(or other factors) significantly influences the benchmarking
results. By setting the significance level α as 0.05 [14], we
can draw Pareto plots [2] to detect the factor and interaction
effects that are important to the parallel computing (NPB suite
in this case), as shown in Figure 4. To save space, we do not
elaborate the backend statistics here. In brief, given a particular
significance level, Pareto plot displays a red reference line
besides the effect values. Any effect that extends past the
reference line is potentially important [2].

Since the effect of factor Workload Size (C) is beyond the
reference line in Figure 4a, it is apparent that Workload Size
(C) dominates the runtime of NPB suite. On the contrary, the
factor Instance Type (A) has little influence on the benchmark
runtime in this case. As for the FLOP Rate analysis in
Figure 4b, we show that none of the factor or interaction
effects significantly influences the transaction speed. However,
relatively speaking, Thread Number (B) is the most important
to the NPB FLOP Rate, while Instance Type (A) is still the
least important factor. Therefore, for our proposed parallel
computing project, we are now suggested to pay more attention
to the workload size to distinguish between those two EC2
instance types.

From Figure 3, it is clear that increasing thread numbers
will not increase computing performance if an instance’s



TABLE IV
GEOMETRIC MEANS OF NPB3.0-JAV BENCHMARKING RESULTS WITH DIFFERENT CIRCUMSTANCES

Workload
Boosting Metric

(Geometric Mean)

Cloud Resource
EC2 Instance m1.xlarge EC2 Instance m2.xlarge

1 Thread 2 Threads 4 Threads 1 Thread 2 Threads 4 Threads

Class W
NPB Runtime (second) 6.215 3.727 2.73 4.808 3.401 2.987

NPB FLOP Rate (Mops) 179.706 299.813 412.717 236.363 351.003 373.948

Class A
NPB Runtime (second) 60.889 31.176 18.138 47.221 24.537 25.32

NPB FLOP Rate (Mops) 153.017 298.949 513.873 197.354 379.765 368.289
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(a) Geometric means of NPB runtime with workload Class W.
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(b) Geometric means of NPB runtime with workload Class A.
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Fig. 3. Illustration of geometric means of NPB3.0-JAV benchmarking results with different circumstances.
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TABLE V
A FULL-FACTORIAL (23) DESIGN MATRIX FOR THIS CASE STUDY

trial A B C R1(seconds) R2(Mops)
1 m1 2 W 3.727 299.813
2 m1 4 A 18.138 513.873
3 m2 2 W 3.401 351.003
4 m1 2 A 31.176 298.949
5 m2 2 A 24.537 379.765
6 m2 4 A 25.32 368.289
7 m1 4 W 2.73 412.717
8 m2 4 W 2.987 373.948


TABLE VI

PERFORMANCE IMPROVEMENT OF SWITCHING FROM M2.XLARGE TO
M1.XLARGE AT 4 THREADS

Workload
Performance Improvement

NPB Runtime NPB FLOP Rate
Class W 9.4% 10.4%

Class A 39.6% 39.5%

Class B 48.4% 48.4%

CPU cores are already saturated, especially with larger work-
load. However, increasing workload size seems to be able to
continually increase the performance difference between two
instances at 4 or more threads, which was further confirmed
by running a supplementary experiment with NPB’s 4X larger
workload Class B. To facilitate analysis, we calculated differ-
ent performance improvements of switching from m2.xlarge
to m1.xlarge at 4 threads by using Equation (8), as listed in
Table VI. Note that we use the minimum performance value
between the two instances as the denominator to avoid the
Ratio Game bias [16].

I =
|Performancem2 − Performancem1|

MIN(Performancem1, P erformancem2)
× 100% (8)

Given the price increase of switching from m2.xlarge to
m1.xlarge ((0.95−0.57)/0.57×100% = 61.4%), the instance-
hour for running m2.xlarge is 1.614 times higher than running
m1.xlarge within the same budget. In other words, m2.xlarge
always has a cost advantage over m1.xlarge until the perfor-
mance improvement reaches 61.4%, although the total runtime
may be longer. According to the previous analysis, we finally
decided to choose m2.xlarge as the cost-wise option for our
small-scale parallel computing project.

V. CONCLUSIONS AND FUTURE WORK

Although benchmark suites have been identified as sig-
nificant for, and been widely employed in, Cloud services
evaluation, most evaluation studies intended to report indi-
vidual benchmarking results without summarization. To help
customers understand the holistic performance of a Cloud ser-
vice, we suggest to adopt Boosting Metrics to depict summary
measures as single scores when using a suite of benchmarks
to perform evaluation. In fact, delivering a single score is also
a usual benchmarking strategy to facilitate drawing simple

conclusions from evaluation results [13], which can further
facilitate applying experimental design and analysis to the
evaluation work, as demonstrated in Section IV. Moreover,
the idea of boosting metrics can be used to help measure
a complex Cloud service feature involving multiple service
properties. For example, although evaluating Elasticity of a
Cloud service (covering both provisioning latency and cost)
is not trivial [17], by integrating relevant basic QoS metrics
to monitor the requested Cloud resources, our colleagues have
developed a Penalty Model to measure the imperfections in
elasticity of Cloud services for a given workload in monetary
units [13].

Our future work will be unfolded along two directions.
Firstly, we plan to gradually collect, propose, and report new
boosting metrics to supplement primary measures of individual
Cloud service features. Secondly, we will concentrate on the
Elasticity of Cloud services, and help improve the current
approach [13] to Elasticity evaluation by employing suitable
boosting metrics.
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