
Introduction and Analysis of SDN and NFV Security
Architecture (SN-SECA)

Danilo V. Bernardo

Sydney, AUSTRALIA
e-mail:bernardan@gmail.com

Abstract—There have been a few literature published about

the security risks expected on the implementations of SDN and
NFV (SN), however, no formal Security Architecture with
practical attributes was proposed until recently. The first of its
kind SN-SECurity Architecture (SN-SECA) was presented as an
IETF draft. This draft presents the architecture with specific
ascription to ensure effective security evaluation and integration
on the SDN/NVF designs and implementations. This paper
briefly introduces the proposed architecture and employs
methods to analyze and verify its underlying security attributes.
A unified method to review SN-SECA through symbolic analysis
previews traffic process flow behavior across an infrastructure
with SDN and NFV frameworks. The result of this work
highlights the fundamental but important role of each attribute
and its flow, and overall viability of the proposed architecture for
SDN and NFV that protractedly useful to security practitioners.

Keywords—SDN; NFV;SN-SECA; OpenFlow; Security

Architecture; rewrite; symbolic analysis

I. INTRODUCTION
Software Defined Network (SDN) and Network Function

Virtualization (NFV) frameworks [3] have been creating
paradigm shifts across industries. In recent years, these two
novel frameworks attracted interests throughout many
academic institutions and communities of practice.

They may be considered disruptive to major network
infrastructures operating on status quo, but SDN and NFV offer
network resiliency, manageability, and, most importantly,
affordances –lowering long-term operational expenditures
when implemented properly. They create opportunities for
innovation that result from providing platforms where key
players from networks, security, and software groups develop
new controllers, APIs, networks, and technologies. However,
new innovations come with associated risks and security
issues.

A. SDN
In 2012, it was widely speculated that Google implemented

SDN and OpenFlow into their networks, and created their own
OpenFlow-enabled switches due to the limited vendors
supporting this protocol. This speculation and clear benefits of
deploying SDN and OpenFlow have since gained significant
interests across many industries.

Bee Bee Chua
University of Technology Sydney

Sydney, AUSTRALIA

To understand SDN is to review the OSI layer, where concepts
of abstraction and separation, are similar to tiering and
layering, which determined by the layers of the stack.

 In SDN, control and data planes are separated, centralizing
the control and programmability of the network. To connect
applications across the upper and lower planes, Application
Program Interfaces (APIs), which a few were successfully
standardized (eg. OpenFlow) are utilized.

 The components of the SDN framework are composed of
Northbound and Southbound APIs.

 Northbound APIs achieve abstraction to the top of the
framework while the Southbound APIs achieve the same at the
bottom of the framework.

 Additionally, East and Westbound APIs, which are
formally introduced in the IETF draft [3], are used for
horizontal communications across devices, systems, or
software on a given plane.

Summarily, the Northbound and Southbound APIs are used
for vertical connections, while the East and Westbound APIs
are for horizontal connections. Notably, the application tier
/plane can host a variety of business applications and
application-based security systems.

The Application plane normally composes of application
driven engines. The control plane on the other hand, composes
controllers or orchestrators, where routing and security policies
are implemented. The data plane is basically the infrastructures
composing network devices, such as routers, switches, and
security devices. Each plane can be virtualized as and when
needed.

Initially, the implementations of SDN targeted campuses,
Data Centres and Cloud, but eventually expanded to other areas
and adapted by service and network providers.

B. NFV
NFV was formalized in 2012. Its goal is to relocate network

functions from dedicated hardware appliances to generic
servers. It is initially intended for routers, firewalls, and
gateways, but can be expanded to include load balancers and
other intermediary devices [3].

2015 IEEE 29th International Conference on Advanced Information Networking and Applications

1550-445X/15 $31.00 © 2015 IEEE

DOI 10.1109/AINA.2015.270

796

Unlike SDN, NFV does not have a specific protocol.
However, both SDN and NFV create open innovation by third
parties, reducing capital and operational expenditures.

C. Security Architecture
 A formal security architecture (SN-SECA) that overarches

important aspects of SDN and NFV's frameworks was
proposed to aid practitioners integrate security in their
SDN/NVF designs and implementations. This architecture,
which is considered first to be proposed through IETF draft [3],
can be elaborated and modified as the frameworks mature over
time.

SN-SECA was developed based on general practices (use-
cases [22,24]) on traditional networks across different
industries. It is presented with supplemental information on the
attributes, which can provide a basis for basic, if not
comprehensive security profile for each plane within SDN and
NFV. Essentially, the idea is to use a common baseline design
that, on one hand, provides a sufficient level of protection of
systems and devices within the plane, but which, on the other
hand, is deemed practical and deployable to infrastructures that
operate on SDN and NFV.

D. Contributions
 The following contributions to the analysis of the proposed
SN-SEC are presented.

• The formalization of SN-SECA for inductive analysis
and automata of its security attributes by proving
connections between selected trace properties of
implementation and non-selected theoretic properties
standard in the literature;

• Introduction of a type of retrofit: a revision and
replication. This type of retrofit implies changes to
planes of the architecture which must be articulated for
a validity requirement to be constructed and evaluated.
As is true in architecture design, the paper highlights a
method, which traces the (TP) flow that does not limit
validation scenarios surrounding the intended effect of
the architecture to specific implementations.

• Security validity to support SDN /NFV
implementations.

II. ORGANIZATION
 Firstly, the paper presents the architecture that published
recently as an IETF informational draft [3]. Secondly, it
describes selected methods of analyses, and how these are
employed to review the architecture design. Then lastly, it
describes and illustrates the layers of validating the
architecture and its design; and discusses the concept of
architectural retrofit, which is the process of altering the
architecture after it has been put into operational use.

III. ARCHITECTURE
The development of the architecture was based on the use-

cases of traditional security implementations across many
industries. We use use-cases [22,24] on SDN/NFV, which are
limited at this stage.

The industries discussed in this work, are not limited to
academe, financial, government, manufacturing, retail and
telecommunications, where specific infrastructures and
business requirements certainly vary depending on their
existing networks and on their maturity to achieve a
consolidated security overview of infrastructures to form an
architecture that is generalizable to most community of
practices.

Attributes of the proposed architecture are composed of
APPS – Applications, Northbound APIs, Application Tier,
Extensive Validation, East and Westbound APIs, Control
Plane, Data Plane, SDN Controller, Open Flow enabled
devices, Governance and Frameworks, other virtual and
physical devices, and Best practices.

Figure 1. Plane-to-Plane High-level SN-SEC Architecture. In this architecture,
the application plane hosts security functionalities to protect applications. The
security schemes that can be implemented on this layer are application-based
security such as application firewalls and IPS.

The Northbound APIs can be implemented for applications
to work with SDN controller, thus in absence of existing
standards, an external validation is necessary. On the SDN
control plane, various attributes can be introduced, provided
they enforce security policies through OpenFlow to the virtual
devices. SDN controllers utilized as orchestrators and unified
management systems can enforce security to other devices
through other Southbound APIs.

 The link between the controller and the remaining plane
can be protected using IPSec (securing end-to-end), TLS or
HTTPS. Other intermediary security devices, such as IPS/IDS,
can be deployed across the planes.

The following are the risks identified on SDN/NFV based on
the traditional network designs.

a. Adversarial traffic flows - traffic passing through
network devices, interfaces, and hosts.

797

b. Attacks on vulnerabilities in network devices - not
updated patch and version

c. Attacks on vulnerabilities in orchestrators and
administrative servers - unsecure servers, lacks
security on admin profile

d. Attacks on control plane communications- single
point of failures, unreliable controllers and unsecure
connections

 The following are identified and considered new (non-
traditional) risks associated with SDN/NFV
implementations, and as follows:

e. Attacks on SDN controllers - unreliable software
 APP/SDN controller

f. Attacks on Southbound interfaces - exposed interfaces

g. Unsecure OpenFlow traffic - unencrypted /unsecure
 traffic

h. Unreliable North/East-West APIs - unreliable software
 installed across the same broadcast domain

i. Vulnerable Programming models – inadequate
 security involvement in the Software Development
 Lifecycle.

 A few mitigation guidelines have been identified that must
be considered when implementing SDN/NFV.

 j. Hypervisors must be secure

 k. Controllers must be secure

 l. Hardening OS security

 m. Extensive API validations

 n. Extensive APPs penetration tests

 o. Monitor traffic
 p. Protocol must be secure
 q. Session establishment protocol for communication and
 traffic flow must be secure

 r. Multiple authentication

 s. Limited time options for messaging

 t. Network devices must be secure

 u. Separation/segmentation of networks and subnets

These attributes (see figure 2) are introduced in the SN-
SECA. They are inclusive of the security mitigations that
must be considered in specific network implementations.

IV. APPROACH

In the succeeding sections, the approach and methods of
analyses presented were tested and employed in other security
architecture [4]. Thus follow the same logic with different
variables for SN-SECA.

A. Traffic and Process (TP) Flow
 In this approach, TP flow is represented as algebraic
term. Its symbolic representation is based on the following
signatures:

Left, right: attribute� attribute
Right, left: attribute� attribute
Up, down : attribute � attribute
Down, up : attribute � attribute
: � attribute
From : attribute x attribute � TP-source
Dest : attribute x attribute� TP-destination
TP flow :flow-source x flow-destination� TP flow a,b :
attribute�attribute

Figure 2. Practical SN-SECArchitecture [3]

798

Attributes: ab(1) j, ab(2)k, ab(3)l, ab(4)m, ab(5)n, ab(6)o,
ab(7)p,ab(8)q,ab(9)r,ab(10)s,ab(11)r,ab(12)t

 There are various possibilities to describe how the TP flow
passes through the attributes. The flow, however, only relies
on the given flow source. To distinguish which attributes is
used, they are presented as words over {a,b} and a constant #
(1,2..n). We limit our representation of data as TP flow, flow-
source, flow-destination, and # to specific attributes we
proposed.

Example 1.

 For example the term t=ab(#). # identifies as an attribute,
example ab(1) is assigned to a specific attribute j. This
representation allows us to build a tree automata recognizing
TP flow and attributes to analyze the architecture as a state.

 Data are terms of sort TP flow for example, the term TP
flow (from(ab,x),dest(ab,x)) represents a TP flow
(from(ab(1),x),dest(ab(1),x’)) to the set of data whose flow-
source comes from a security attribute ab# and flow-
destination exits to the same attribute is a given flow.

 In the preceding section , we define how the flow can be
analyzed across ab(#) attributes (using the symbols flow-
source and flow-destination) thus allows us to encode and
assume a symbolic attack by appropriate tree automata[15],
which we use for the analysis.

B. Architecture Traffic Flow
 Furthermore, to represent the TP flow in the proposed
architecture, we add the following symbols.

Enter or accept, Exit or reject : � Decision

 From a rewriting point of view, the flow rewrites a TP flow
into enter, exit or reject. However, the security attributes
(j…u) do not necessarily reject each other, if and when one of
them do not exist (i.e.,caused by its absence or by an
anomaly).
Definition 1 (Attribute). An attribute is composed of three
ordered rewrite systems Prem, Processm, and Exitm such that:

• flows of Prem are of the form of p� d where p is a
linear term of sort TP flow and d a (ground) term

 of sort Decision;
• flows of Prem and Exitm are, respectively, of the

form:

From(attribute, x) � From(attribute’, x’)
Dest(attribute, x) � Dest(attribute’, x’)

Where attribute, x are linear terms and attribute’, x’
are ground terms.

Example 2. The attribute described in Example 1 can be
specified as follows:

{
TP
flow

(From (ab[x],attribute))
�
accept

Dest (ab[y],z)

TP flow (x,y)� exit
• X, Y (number=1...n) and Z =attribute

Definition 2 (Semantics). For any attribute [1…n], its
semantics is denoted by [m] and defined as follows:

[m] = [m]accept U [m]exit OR [m] reject

With R:{x�x} is the rewrite system R in which the flow x�x
has been added as the last flow.
[m] accept = {(t,u) TTP flow x TTP flow | v TTP flow, t�

Prem;{ x�x } v� Processm enter v � Exitm;{ x�x } u}
[m] exit ={(t, exit) TTP flow x TDecision | v TTP flow, t�
Prem;{ x�x }u � Processm exit}

 From an abstract point of view, a attribute can be seen as a
partial or total function which takes an input (data / TP flow)
and returns either exit/reject.

V. ANALYSIS OF THE ARCHITECTURE

 We show that this rewrite specification allows not only to
automatically check properties concerning the semantics of a
attribute as part of the overall architecture but also to perform
structural and query analysis [1,15-20] on the architecture
itself.

A.Semantics Analysis
 A attribute can be seen as a decision process which
associates to TP flow with data that could be either accept or
reject/exit, and therefore the following properties need
verification: consistency, which indicates that at most, one
decision is taken for a given TP flow; termination, [1-7-10-
12,14,17,19-20] which ensures that an attribute computes a
decision in a finite time; and completeness,[1,16-20] which
signifies that for any TP flow, the attribute returns a decision.
 As discussed, by construction, any attribute that denotes a
terminating and consistent decision process is a function. The
completeness can be therefore defined as follows:

Definition 3 (Completeness). We state that an attribute (m) as
part of the whole architecture (a), is a complete iff [m], which
is a total function.

 The particular shape of the flows defining a attribute allows
us to represent the semantics of an attribute as a regular
relation and to verify its completeness.

Proposition 1. Completeness is decidable [1-2,10-18,20].

Proof. The proof relies on the regularity of the relations
involved in the definition of the semantics of an attribute as

799

part of the architecture. Since the left-hand sides of all the
rewrite flows composing a particular attribute are linear and
share no variable with their right-hand sides [1,16-17,19-20],
we can show that � Prem;{ and � Exitm;{are regular trees
relations. Since the identity is a regular relation, it follows that
Prem;{ x�x } and Exitm;{ x�x } are also regular. By composition and
restriction, we obtain that [m] accept and [m] exit/reject are regular
tree (functional) relations. Subsequently, [m] is a regular tree
(functional) relation. The completeness can be tested by
checking that the first projection of [m] covers the (regular) set
of all possible incoming data transported by the TP flow.

 In case of a complete architecture, yet selecting only the
applicable attributes in either in isolation or in compositional
groups, where these are used at the same time, but
independently operate on a given speed, it is important to
determine if the chosen attribute is applicably stronger than
the others. This can be achieved, through verification, based
on specifications of the attributes.

Definition 4 (Order). We define a partial order over complete
attribute within a complete architecture as follows: for any m
and m’,m m’ (m’ is more permissive than m) iff
[m]accept [m’] accept. We write m m’ iff m m’ and m’ m.
A attribute m’ is thus permissive than a attribute m if it
accepts all TP flow that m accepts. Note that m m’ iff
[m]=[m’].

 For the same reasons, we can decide whether a attribute is
more or less permissive than the other within the architecture.
Proposition 2. The order relation is decidable [1,3-
5,16,18-20].

Proof. As we have already shown, for any attribute [m],
[m]accept/enter and [m]exit/reject and [m] are regular relation.
Consequently, the inclusion [m]accept/enter [m’]accept/enter is
decidable. Note that two attributes may have the same
semantics even if their flows are different. This is particularly
interesting since it allows to simplify and optimize the flows
of an attribute [4,19-20] and check if the succeeding attribute
has the same semantics as the preceding one.

B. Structural Analysis

 Structural analysis [15-20] refers to the detection of so-
called anomalies in (the implementations of) attribute. We
look at these anomalies as properties expressed as
relationships between the flows of attributes within the
proposed architecture. Examples of anomalies are superseding
(a flow leads to decisions contradictory to decisions of prior
flows [18-20] of prior attributes), redundancy (a flow can be
removed without any impact to other attributes and TP flow),
generalization (a flow matches a superset of the set of data
matched by a prior flow with a different decision). We should
mention that although several approaches have been
developed for the detection of the above anomalies, they are

often intentionally introduced in order to obtain more compact
or more effective flow sets. Detecting anomalies is still
interesting since it can outline some mitigation. We only
discuss here our approach for detecting superseding; the other
anomalies can be treated in a similar way. Let us recall the
definition of the superseding anomaly [18-20] in this context:
we say that a attribute superseding iff it contains at least one
flow such that all TP flow it allows and accepts are dropped
by a prior flow. In such a case, the concerned flow is said to
be superseded.

 The detection of the superseded flows, as well as of the
other anomalies, is based on the regularity of the sets of terms
associated to a given flow. More precisely, each flow r is
associated to several sets: rec(r), denoting the set of data
matching r; rec(r=Processm), denoting the set of data
matching r that match no S prior flow of Processm (i.e. rec(r)\

r’<r rec(r’)) and rec(r=Processm [d]) denoting the set of
data matching r that match no other flow of Processm
associated to the decision d. Since the left-hand sides of the
processing flows are linear terms, all the sets rec(r) are
regular; the other sets are also regular since they can be built
starting from rec(r) and using operations which preserve
regularity. Anomalies can then be detected using inclusion or
emptiness tests. For example, to detect if a flow r is
superseded, it suffices to check the emptiness of
rec(r=Processm[accept/enter]) if the right-hand side of r is
drop [18-20] and the emptiness of rec(r=
Processm[exit/reject]) otherwise.

C. Query Analysis

 Another kind of analysis we attempted is query analysis.
This kind of analysis provides a way to assist researchers in
understanding the behavior of an attribute within our
architecture through deriving outputs based on pre-determined
and pre-defined queries, such as “which attribute will receive
the TP flowing from left to the right side of the architecture?”
[3,7,6-9,11-16,19,20.] We introduced earlier the semantics of
the attributes and the architecture as regular relation. The
following therefore can be built on for any query expressed as
first order formula [17-20]:

• variables, ground terms or terms whose head is
symbol data or TP flow and whose sub terms are
variables of ground terms [1-7,11-20].

• membership constraints w.r.t. to one of the relations
defined in Definition 2 and [11-18]

• membership constraints [11-18,20] w.r.t, to a linear
term.

 All can be written into tree automaton [1-5,20] recognizing
the set of solutions of the query, that is values of free variables
verifying the formula as true [1-6, 11-19].

800

D. Retrofit

Retrofit allows continuous reviews and adjustments on the

architecture after its implementations.

In this case, the complexity of the needed operations

strongly depends on the representation of data and, in
particular, on the representation of TP flow. The choice of TP
flow as words over {a,b} (or equivalently as terms built from
the monadic symbols a and b, and the constant #) is indeed
made in order to obtain efficient implementations of the
corresponding automata operations.

To simplify, consider the word automata: the

correspondence with tree automata is straightforward. Due to
the representation of ab(i…n) ranges, we are confronted with
n-prefix (or simply prefix) languages, i.e. regular languages of
the form or (a,b}*. A good property of the manipulated
ranges is that corresponding minimal and deterministic
automata have no loop except at their unique final state, which
loops over itself for any word.

Moreover, the sets of TP flow of a given attribute are 1-

prefix. It follows that rec(r), rec(r=Processm),…, are prefix
languages. Consequently, anomalies can be efficiently
detected using this approach.

VI. CONCLUSION
 In verifying our proposed architecture, we use symbolic
analysis of each attribute across the plane of TP flow.
 We described the architecture using structural, semantics,
and query analyses aside from using rewrite systems, which
interpreted relevant properties through classical, theoretical
and practical methods. We have shown that these approaches
and analyses underscored any foreseen anomalies such as
absence of the recommended attributes, or lack of secure
traffic flow that require adequate processes, which can be
utilized to assist in the implementation of selected attributes
across the planes in the architecture.
 Future work to survey better ways to understand and address
security threats and vulnerabilities essential to enhance the
proposed SDN/NFV security architecture is being explored.

REFERENCES
[1] T. Aoto, J. Yoshida, and Y. Toyama, Proving confluence of term

rewriting systems automatically. In Rewriting Techniques and
Applications, pages 93-102. Springer, 2009

[2] F. Baader, F., and T., Nipkow, Term rewriting and all that. C.U.Press,
1998. [5] Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E.

[3] D.V. Bernardo, “Software-Defined Networking and Network Functions
Virtualization Security Architecture” Working paper IETF, 2014.

[4] D.V. Bernardo ‘Network Security Mechanisms and Implementations for
the Next Generation Reliable Fast Data Transfer Protocol - UDT ‘, PhD
Thesis, 2012

[5] D.V. Bernardo. and D.B. Hoang, International Journal of Security and
its Applications, “A Pragmatic Approach, Achieving Acceptable
Security Attributes for High Speed Data Transfer Protocol – UDT”,
SERSC, Vol. 4, no. 3, 2010 ISSN 1738- 9976

[6] D.V. Bernardo and D.B. Hoang ,. Empirical Survey, Protecting Data
Transfer in a High Speed Protocol for GRID, Presented at 25th IEEE
AINA Conference, Singapore.

[7] D.V. Bernardo, and D.B. Hoang, “Security Requirements for UDT”,
IETF Internet-Draft – working paper, September 2009

[8] D.V. Bernardo, and D.B. Hoang, Formalization and Information-
Theoretic Soundness in the Development of Security Architecture for
Next Generation Network Protocol - UDT. 183-194, SecTech 2011,
Jeju, South Korea Dec. 8-10, LNCS, Springer

[9] P. Borovansky, C. Kirchner, H. Kirchner, P.E Moreau and C.
Ringeissen, An overview of elan. Electronic Notes in Th. Comp. Sci.,
15:329-344, 1998.

[10] A.C. Caron, "Linear bounded automata and rewrite systems: Influence
of initial configurations on decision properties" TAPSOFT '91 LNCS,
Vol 493/1991, 74-89, DOI 10.1007/3-540-53982-4_5

[11] H. Comon, M.Dauchet , R. Gilleron, F. Jacquemard, D. Lugiez, S.
Tison, and M. Tommasi, Tree automata techniques and applications.
Available on: htTP://www.grappa.univ-lille3.fr/tata, 2008.

[12] E. Contejean, A. Paskevich, X. Urbain, P. Courtieu , O. Pons and J.
Forest, PAT, an approach for certified automated termination proofs. In
ACM SIGPLAN Work. on Partial evaluation and program manipulation,
pages 63-72. ACM, 2010.

[13] I. Durand, Autowrite: A tool for term rewrite systems and tree automata.
Electronic Notes in Th. Comp. Sci., 124(2):29-49, 2005.

[14] I. Durand, and Meseguer,J ., A Church-Rosser checker tool for
conditional order-sorted equational Maude specifications. pages 69-85.
Springer, 2010.

[15] G. Feuillade, T. Genet, and T. Viet Triem, Reachability analysis over
term rewriting systems. 33(3):341-383, 2004.

[16] J. Giesl, P. Schneider-Kamp, and R. Thiemann, AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Intl Joint Conf.
on Automated Reasoning, pages 281-286. Springer, 2006.

[17] O. Fiedrich, "On the connections between reqriting and formal language
theory " REWRITING TECHNIQUES AND APPS,11th International
Conf RTA 2000, Nowrich UK, July 20000 LNCS 1631/1999, 672,

[18] F. Jacquemard, Decidable approximations of term rewriting systems. In
Rewriting Techniques and Applications, pages 362-376. Springer, 1996.

[19] J.P. Jouannaud and C. Kirchner, Solving equations in abstract algebras:
a flow-based survey of unification. In Computational Logic: Essays in
Honor of Alan Robinson, chapter 8, pages 257-321. The MIT-Press,
1991.

[20] C. Kirchner, H. Kirchner, and A. de Oliveira, Analysis of rewrite-based
access control policies. Electronic Notes in Th. Comp. Sci., 234:55-75,
2009.

[21] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp, Tyrolean
termination tool 2. In R. Treinen, editor, Rewriting Techniques and
Applications, volume 5595 of Lecture Notes in Computer Science, pages
295-304. Springer Berlin / Heidelberg, 2009.

[22] P.Pan, T. Naduea, “Software-Defined Network (SDN) Problem
Statement and Use Cases for Data Center
Applications”htTPs://tools.ietf.org/html/draft-pan-sdn-dc-problem-
statement-and-use-cases-02 , Working paper IETF, 2012.

[23] S. Tison, " Tree Automata and Term reqrite systems Sophie Tison,
LNCS 1833, Bachmair, L. Editor REWRITING TECHNIQUES AND
APPS 11th International Conf RTA 2000, Nowrich UK, July 20000

[24] htTP://www.openflowhub.org/blog/blog/2012/12/03/sdn-use-case-
multipath-tcp-at-caltech-and-cern/,Visited Oct 10,2014

801

