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Abstract—There have been a few literature published about 

the security risks expected on the implementations of SDN and 
NFV (SN), however, no formal Security Architecture with 
practical attributes was proposed until recently. The first of its 
kind SN-SECurity Architecture (SN-SECA) was presented as an 
IETF draft. This draft presents the architecture with specific 
ascription to ensure effective security evaluation and integration 
on the SDN/NVF designs and implementations.  This paper 
briefly introduces the proposed architecture and employs 
methods to analyze and verify its underlying security attributes. 
A unified method to review SN-SECA through symbolic analysis 
previews traffic process flow behavior across an infrastructure 
with SDN and NFV frameworks. The result of this work 
highlights the fundamental but important role of each attribute 
and its flow, and overall viability of the proposed architecture for 
SDN and NFV that protractedly useful to security practitioners.  
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I.  INTRODUCTION  
Software Defined Network (SDN) and Network Function 

Virtualization (NFV) frameworks [3] have been creating 
paradigm shifts across industries. In recent years, these two 
novel frameworks attracted interests throughout many 
academic institutions and communities of practice.      

They may be considered disruptive to major network 
infrastructures operating on status quo, but SDN and NFV offer 
network resiliency, manageability, and, most importantly, 
affordances –lowering long-term operational expenditures 
when implemented properly. They create opportunities for 
innovation that result from providing platforms where key 
players from networks, security, and software groups develop 
new controllers, APIs, networks, and technologies. However, 
new innovations come with associated risks and security 
issues.  

A. SDN 
In 2012, it was widely speculated that Google implemented 

SDN and OpenFlow into their networks, and created their own 
OpenFlow-enabled switches due to the limited vendors 
supporting this protocol. This speculation and clear benefits of 
deploying SDN and OpenFlow have since gained significant 
interests across many industries.  

     

Bee Bee Chua 
University of Technology Sydney 

Sydney, AUSTRALIA 
 

To understand SDN is to review the OSI layer, where concepts 
of abstraction and separation, are similar to tiering and 
layering, which determined by the layers of the stack. 

     In SDN, control and data planes are separated, centralizing 
the control and programmability of the network. To connect 
applications across the upper and lower planes, Application 
Program Interfaces (APIs), which a few were successfully 
standardized (eg. OpenFlow) are utilized.  

     The components of the SDN framework are composed of 
Northbound and Southbound APIs.   

     Northbound APIs achieve abstraction to the top of the 
framework while the Southbound APIs achieve the same at the 
bottom of the framework.  

      Additionally, East and Westbound APIs, which are 
formally introduced in the IETF draft [3], are used for 
horizontal communications across devices, systems, or 
software on a given plane.  

Summarily, the Northbound and Southbound APIs are used 
for vertical connections, while the East and Westbound APIs 
are for horizontal connections. Notably, the application tier 
/plane can host a variety of business applications and 
application-based security systems.  

The Application plane normally composes of application 
driven engines. The control plane on the other hand, composes 
controllers or orchestrators, where routing and security policies 
are implemented. The data plane is basically the infrastructures 
composing network devices, such as routers, switches, and 
security devices. Each plane can be virtualized as and when 
needed.  

Initially, the implementations of SDN targeted campuses, 
Data Centres and Cloud, but eventually expanded to other areas 
and adapted by service and network providers. 

B.  NFV 
NFV was formalized in 2012. Its goal is to relocate network 

functions from dedicated hardware appliances to generic 
servers. It is initially intended for routers, firewalls, and 
gateways, but can be expanded to include load balancers and 
other intermediary devices [3]. 
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Unlike SDN, NFV does not have a specific protocol. 
However, both SDN and NFV create open innovation by third 
parties, reducing capital and operational expenditures.   

C. Security Architecture 
 A formal security architecture (SN-SECA) that overarches 

important aspects of SDN and NFV's frameworks was 
proposed to aid practitioners integrate security in their 
SDN/NVF designs and implementations. This architecture, 
which is considered first to be proposed through IETF draft [3], 
can be elaborated and modified as the frameworks mature over 
time. 

SN-SECA was developed based on general practices (use-
cases [22,24]) on traditional networks across different 
industries. It is presented with supplemental information on the 
attributes, which can provide a basis for basic, if not 
comprehensive security profile for each plane within SDN and 
NFV. Essentially, the idea is to use a common baseline design 
that, on one hand, provides a sufficient level of protection of 
systems and devices within the plane, but which, on the other 
hand, is deemed practical and deployable to infrastructures that 
operate on SDN and NFV. 

D. Contributions 
 The following contributions to the analysis of the proposed 
SN-SEC are presented.   

• The formalization of SN-SECA for inductive analysis 
and automata of its security attributes by proving 
connections between selected trace properties of 
implementation and non-selected theoretic properties 
standard in the literature; 

• Introduction of a type of retrofit: a revision and 
replication. This type of retrofit implies changes to 
planes of the architecture which must be articulated for 
a validity requirement to be constructed and evaluated. 
As is true in architecture design, the paper highlights a 
method, which traces the (TP) flow that does not limit 
validation scenarios surrounding the intended effect of 
the architecture to specific implementations. 

• Security validity to support SDN /NFV 
implementations. 

II. ORGANIZATION 
     Firstly, the paper presents the architecture that published 
recently as an IETF informational draft [3]. Secondly, it   
describes selected methods of analyses, and how these are 
employed to review the architecture design. Then lastly, it 
describes and illustrates the layers of validating the 
architecture and its design; and discusses the concept of 
architectural retrofit, which is the process of altering the 
architecture after it has been put into operational use.   

III. ARCHITECTURE 
The development of the architecture was based on the use-

cases of traditional security implementations across many 
industries. We use use-cases [22,24] on SDN/NFV, which are 
limited at this stage.  

The industries discussed in this work, are not limited to 
academe, financial, government, manufacturing, retail and 
telecommunications, where specific infrastructures and 
business requirements certainly vary depending on their 
existing networks and on their maturity to achieve a 
consolidated security overview of infrastructures to form an 
architecture that is generalizable to most community of 
practices. 

Attributes of the proposed architecture are composed of 
APPS – Applications, Northbound APIs, Application Tier, 
Extensive Validation, East and Westbound APIs, Control 
Plane, Data Plane, SDN Controller, Open Flow enabled 
devices, Governance and Frameworks, other virtual and 
physical devices, and Best practices.  

 

 
Figure 1. Plane-to-Plane High-level SN-SEC Architecture. In this architecture, 
the application plane hosts security functionalities to protect applications. The 
security schemes that can be implemented on this layer are application-based 
security such as application firewalls and IPS.  
 

The Northbound APIs can be implemented for applications 
to work with SDN controller, thus in absence of existing 
standards, an external validation is necessary. On the SDN 
control plane, various attributes can be introduced, provided 
they enforce security policies through OpenFlow to the virtual 
devices. SDN controllers utilized as orchestrators and unified 
management systems can enforce security to other devices 
through other Southbound APIs.  

 The link between the controller and the remaining plane 
can be protected using IPSec (securing end-to-end), TLS or 
HTTPS. Other intermediary security devices, such as IPS/IDS, 
can be deployed across the planes. 

The following are the risks identified on SDN/NFV based on 
the traditional network designs. 

a. Adversarial traffic flows - traffic passing through 
network  devices,  interfaces, and hosts. 
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b. Attacks on vulnerabilities in network devices - not 
updated patch  and  version  

c. Attacks on vulnerabilities in orchestrators and 
administrative  servers - unsecure servers, lacks 
security on admin profile  

d. Attacks on control plane communications- single 
point of failures, unreliable controllers and unsecure 
connections  

        The following are identified and considered new (non-
traditional) risks associated with SDN/NFV 
implementations, and as follows: 

e.     Attacks on SDN controllers - unreliable software   
       APP/SDN controller 
 
f.     Attacks on Southbound interfaces - exposed interfaces 
 
g.     Unsecure OpenFlow traffic - unencrypted /unsecure  
        traffic 
 
h.     Unreliable North/East-West APIs - unreliable software          
        installed across the same broadcast domain 
 
i. Vulnerable Programming models – inadequate 
         security involvement in the Software Development        
         Lifecycle. 
 
 A few mitigation guidelines have been identified that must 
be considered     when implementing SDN/NFV. 

 
     j.       Hypervisors must be secure   
 
     k.      Controllers must be secure 
 
     l.       Hardening OS security 
 
    m.      Extensive API validations  
 
    n.       Extensive APPs penetration tests 

 
    o.     Monitor traffic 
    p.     Protocol must be secure 
    q.     Session establishment protocol for communication and  
             traffic flow  must be secure 
      
     r.      Multiple authentication 
      
     s.      Limited time options for messaging  
      
     t.      Network devices must be secure 
      
     u.     Separation/segmentation of networks and subnets 
 

These attributes (see figure 2) are introduced in the SN-
SECA. They are inclusive of the security mitigations that 
must be considered in specific network implementations. 

IV. APPROACH 

In the succeeding sections, the approach and methods of 
analyses presented were tested and employed in other security 
architecture [4]. Thus follow the same logic with different 
variables for SN-SECA. 

A. Traffic and Process (TP) Flow 
          In this approach, TP flow is represented as algebraic 
term. Its symbolic representation is based on the following 
signatures: 
 
Left, right:   attribute�  attribute 
Right, left:   attribute� attribute 
Up, down   :   attribute � attribute 
Down, up   :   attribute � attribute 
#          :        � attribute 
From       :   attribute x attribute � TP-source 
Dest       :   attribute x attribute� TP-destination   
TP flow :flow-source x flow-destination� TP flow a,b        :   
attribute�attribute 

 
Figure 2. Practical SN-SECArchitecture [3] 
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Attributes: ab(1) j, ab(2)k, ab(3)l, ab(4)m, ab(5)n, ab(6)o, 
ab(7)p,ab(8)q,ab(9)r,ab(10)s,ab(11)r,ab(12)t    
    
  There are various possibilities to describe how the TP flow 
passes through the attributes. The flow, however, only relies 
on the given flow source. To distinguish which attributes is 
used, they are presented as words over {a,b} and a constant # 
(1,2..n). We limit our representation of data as TP flow, flow-
source, flow-destination, and # to specific attributes we 
proposed.  
 
Example 1. 
 
    For example the term t=ab(#). # identifies as an attribute, 
example ab(1) is assigned to a specific attribute j. This 
representation allows us to build a tree automata recognizing 
TP flow and attributes to analyze the architecture as a state. 
 
     Data are terms of sort TP flow for example, the term TP 
flow (from(ab,x),dest(ab,x)) represents a TP flow 
(from(ab(1),x),dest(ab(1),x’)) to the set of data whose flow-
source comes from a security attribute ab# and flow-
destination exits to the same attribute is a given flow. 
 
     In the preceding section , we define how the flow can be 
analyzed across ab(#) attributes (using the symbols flow-
source and flow-destination) thus allows us to encode and 
assume a symbolic attack by appropriate tree automata[15], 
which we use for the analysis. 

B. Architecture Traffic Flow 
  Furthermore, to represent the TP flow in the proposed 
architecture, we add the following symbols. 
 
Enter or accept, Exit or reject : � Decision 
 
  From a rewriting point of view, the flow rewrites a TP flow 
into enter, exit or reject. However, the security attributes 
(j…u) do not necessarily reject each other, if and when one of 
them do not exist (i.e.,caused by its absence or by an 
anomaly). 
Definition 1 (Attribute). An attribute is composed of three 
ordered rewrite systems Prem, Processm, and Exitm such that: 
 

• flows of Prem are of the form of p� d where p is a 
linear term of sort TP flow and d a (ground) term  

        of sort Decision; 
• flows of Prem and Exitm are, respectively, of the 

form:  
 
From(attribute, x) � From(attribute’, x’) 
Dest(attribute, x) � Dest(attribute’, x’) 
 
Where attribute, x are linear terms and attribute’, x’ 
are ground terms. 
 

Example 2.  The attribute described in Example 1 can be 
specified as follows: 

{  
TP 
flow 

( From (ab[x],attribute) )   
� 
accept 

Dest (ab[y],z) 

TP flow (x,y)� exit 
• X, Y (number=1...n) and Z =attribute 

 
Definition 2 (Semantics). For any attribute [1…n], its 
semantics is denoted by [m] and defined as follows: 
 
[m] = [m]accept U [m]exit OR [m] reject 
 
With R:{x�x} is the rewrite system R in which the flow x�x 
has been added as the last flow. 
[m] accept = {(t,u)  TTP flow x TTP flow |  v  TTP flow, t� 

Prem;{ x�x } v� Processm enter  v � Exitm;{ x�x } u} 
[m] exit ={(t, exit)  TTP flow x TDecision |  v  TTP flow, t� 
Prem;{ x�x }u � Processm exit} 
 
     From an abstract point of view, a attribute can be seen as a 
partial or total function which takes an input (data / TP flow) 
and returns either exit/reject. 
 

V. ANALYSIS OF THE ARCHITECTURE 
 
     We show that this rewrite specification allows not only to 
automatically check properties concerning the semantics of a 
attribute as part of the overall architecture but also to perform 
structural and query analysis [1,15-20] on the architecture 
itself. 
 

A.Semantics Analysis 
     A attribute can be seen as a decision process which 
associates to TP flow with data that could be either accept or 
reject/exit, and therefore the following properties need 
verification: consistency, which indicates that at most, one 
decision is taken for a given TP flow; termination, [1-7-10-
12,14,17,19-20] which ensures that an attribute computes a 
decision in a finite time; and completeness,[1,16-20] which 
signifies that for any TP flow, the attribute returns a decision. 
     As discussed, by construction, any attribute that denotes a 
terminating and consistent decision process is a function. The 
completeness can be therefore defined as follows: 
 
Definition 3 (Completeness). We state that an attribute (m) as 
part of the whole architecture (a), is a complete iff [m], which 
is a total function. 
 
     The particular shape of the flows defining a attribute allows 
us to represent the semantics of an attribute as a regular 
relation and to verify its completeness. 
 
Proposition 1. Completeness is decidable [1-2,10-18,20]. 
 
Proof. The proof relies on the regularity of the relations 
involved in the definition of the semantics of an attribute as 
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part of the architecture. Since the left-hand sides of all the 
rewrite flows composing a particular attribute are linear and 
share no variable with their right-hand sides [1,16-17,19-20], 
we can show that � Prem;{ and � Exitm;{are regular trees 
relations. Since the identity is a regular relation, it follows that 
Prem;{ x�x } and Exitm;{ x�x } are also regular. By composition and 
restriction, we obtain that [m] accept and [m] exit/reject are regular 
tree (functional) relations. Subsequently, [m] is a regular tree 
(functional) relation. The completeness can be tested by 
checking that the first projection of [m] covers the (regular) set 
of all possible incoming data transported by the TP flow. 
 
     In case of a complete architecture, yet selecting only the 
applicable attributes in either in isolation or in compositional 
groups, where these are used at the same time, but 
independently operate on a given speed, it is important to 
determine if the chosen attribute is applicably stronger than 
the others. This can be achieved, through verification, based 
on specifications of the attributes.  
 
Definition 4 (Order). We define a partial order over complete 
attribute within a complete architecture as follows: for any m 
and m’,m m’ (m’ is more permissive than m) iff 
[m]accept [m’] accept. We write m m’ iff m m’ and m’ m. 
A attribute m’ is thus permissive than a attribute m if it 
accepts all TP flow that m accepts. Note that m m’ iff 
[m]=[m’]. 
 
      For the same reasons, we can decide whether a attribute is 
more or less permissive than the other within the architecture. 
Proposition 2. The order relation  is decidable [1,3-
5,16,18-20]. 
 
Proof. As we have already shown, for any attribute [m], 
[m]accept/enter and [m]exit/reject and [m] are regular relation. 
Consequently, the inclusion [m]accept/enter  [m’]accept/enter is 
decidable. Note that two attributes may have the same 
semantics even if their flows are different. This is particularly 
interesting since it allows to simplify and optimize the flows 
of an attribute [4,19-20] and check if the succeeding attribute 
has the same semantics as the preceding one. 
 
B. Structural Analysis 
 
     Structural analysis [15-20] refers to the detection of so-
called anomalies in (the implementations of) attribute. We 
look at these anomalies as properties expressed as 
relationships between the flows of attributes within the 
proposed architecture. Examples of anomalies are superseding 
(a flow leads to decisions contradictory to decisions of prior 
flows [18-20] of prior attributes), redundancy (a flow can be 
removed without any impact to other attributes and TP flow), 
generalization (a flow matches a superset of the set of data 
matched by a prior flow with a different decision). We should 
mention that although several approaches have been 
developed for the detection of the above anomalies, they are 

often intentionally introduced in order to obtain more compact 
or more effective flow sets. Detecting anomalies is still 
interesting since it can outline some mitigation. We only 
discuss here our approach for detecting superseding; the other 
anomalies can be treated in a similar way. Let us recall the 
definition of the superseding anomaly [18-20] in this context: 
we say that a attribute superseding iff it contains at least one 
flow such that all TP flow it allows and accepts are dropped 
by a prior flow. In such a case, the concerned flow is said to 
be superseded. 
 
      The detection of the superseded flows, as well as of the 
other anomalies, is based on the regularity of the sets of terms 
associated to a given flow. More precisely, each flow r is 
associated to several sets: rec(r), denoting the set of data 
matching r; rec(r=Processm), denoting the set of data 
matching r that match no S prior flow of Processm (i.e. rec(r)\ 

r’<r rec(r’)) and rec(r=Processm [d]) denoting the set of 
data matching r that match no other flow of Processm 
associated to the decision d. Since the left-hand sides of the 
processing flows are linear terms, all the sets rec(r) are 
regular; the other sets are also regular since they can be built 
starting from rec(r) and using operations which preserve 
regularity. Anomalies can then be detected using inclusion or 
emptiness tests. For example, to detect if a flow r is 
superseded, it suffices to check the emptiness of 
rec(r=Processm[accept/enter]) if the right-hand side of r is 
drop [18-20] and the emptiness of rec(r= 
Processm[exit/reject]) otherwise. 
  
 
C. Query Analysis 
 
   Another kind of analysis we attempted is query analysis. 
This kind of analysis provides a way to assist researchers  in 
understanding the behavior of an attribute within our 
architecture through deriving outputs based on pre-determined 
and pre-defined queries, such as “which attribute will receive 
the TP flowing from left to the right side of the architecture?” 
[3,7,6-9,11-16,19,20.] We introduced earlier the semantics of 
the attributes and the architecture as regular relation. The 
following therefore can be built on for any query expressed as 
first order formula [17-20]:  
 

• variables, ground terms or terms whose head is 
symbol data or TP flow and whose sub terms are 
variables of ground terms [1-7,11-20]. 

• membership constraints w.r.t. to one of the relations 
defined in Definition 2 and [11-18] 

• membership constraints [11-18,20] w.r.t, to a linear 
term. 
 

     All can be written into tree automaton [1-5,20] recognizing 
the set of solutions of the query, that is values of free variables 
verifying the formula as true [1-6, 11-19]. 
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D. Retrofit 
 
Retrofit allows continuous reviews and adjustments on the 

architecture after its implementations.  
 
In this case, the complexity of the needed operations 

strongly depends on the representation of data and, in 
particular, on the representation of TP flow. The choice of TP 
flow as words over {a,b} (or equivalently as terms built from 
the monadic symbols a and b, and the constant #) is indeed 
made in order to obtain efficient implementations of the 
corresponding automata operations. 

 
To simplify, consider the word automata: the 

correspondence with tree automata is straightforward. Due to 
the representation of ab(i…n) ranges, we are confronted with 
n-prefix (or simply prefix) languages, i.e. regular languages of 
the form   or (a,b}*. A good property of the manipulated 
ranges is that corresponding minimal and deterministic 
automata have no loop except at their unique final state, which 
loops over itself for any word.  

 
Moreover, the sets of TP flow of a given attribute are 1-

prefix. It follows that rec(r), rec(r=Processm),…, are prefix 
languages. Consequently, anomalies can be efficiently 
detected using this approach. 

VI. CONCLUSION 
 In verifying our proposed architecture, we use symbolic 
analysis of each attribute across the plane of TP flow. 
   We described the architecture using structural, semantics, 
and query analyses aside from using rewrite systems, which 
interpreted relevant properties through classical, theoretical 
and practical methods. We have shown that these approaches 
and analyses underscored any foreseen anomalies such as 
absence of the recommended attributes, or lack of secure 
traffic flow that require adequate processes, which can be 
utilized to assist in the implementation of selected attributes 
across the planes in the architecture.  
   Future work to survey better ways to understand and address 
security threats and vulnerabilities essential to enhance the 
proposed SDN/NFV security architecture is being explored. 
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