
 
 

 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

Xhafa, F.; Bogza, A.; Caballé, S. (2017) Performance evaluation of 
Mahout clustering algorithms using a twitter streaming dataset. 31st 
IEEE International Conference on Advanced Information Networking 
and Applications, IEEE AINA 2017, Taipei, Taiwan, March 27-29, 
2017: proceedings. [S.l.]: IEEE, 2017. Pp. 1019-1026 Doi: 
http://dx.doi.org/10.1109/AINA.2017.50. 

 

© 2017 IEEE. Es permet l'ús personal d'aquest material. S’ha de 
demanar permís a l’IEEE per a qualsevol altre ús, incloent la 
reimpressió/reedició amb fins publicitaris o promocionals, la creació 
de noves obres col·lectives per a la revenda o redistribució en 
servidors o llistes o la reutilització de parts d’aquest treball amb drets 
d'autor en altres treballs. 

 

 

 

 

 

 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints


 
 
 

 

Xhafa, F.; Bogza, A.; Caballé, S. (2017) Performance evaluation of 
Mahout clustering algorithms using a twitter streaming dataset. 31st 
IEEE International Conference on Advanced Information Networking 
and Applications, IEEE AINA 2017, Taipei, Taiwan, March 27-29, 
2017: proceedings. [S.l.]: IEEE, 2017. Pp. 1019-1026 Doi: 
http://dx.doi.org/10.1109/AINA.2017.50. 

 

(c) 2017 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other users, including reprinting/ 
republishing this material for advertising or promotional purposes, 
creating new collective works for resale or redistribution to servers or 
lists, or reuse of any copyrighted components of this work in other 
works. 

 



Performance Evaluation of Mahout Clustering Algorithms Using a Twitter
Streaming Dataset

Fatos Xhafa, Adriana Bogza
Universitat Politècnica de Catalunya

Barcelona, Spain
Email: fatos@cs.upc.edu

Santi Caballé
Universitat Oberta de Catalunya

Barcelona, Spain
EMail: scaballe@uoc.edu

Abstract—Big Data has become commonplace in most
Internet-based applications, which by delivering services to
planetary scale numbers of users generate very large data
sets. Such data sets are considered as a valuable source of
analytics information and knowledge for many purposes and
domains. It is claimed each time more that Big Data and
machine learning, especially data mining, are the basis for
developing advanced analytics platforms for turning data into
valuable assets, gaining competitive advantage and make better
decisions. At the same time, however, Big Data applications are
showing to be killer applications for the state of the art machine
learning and data mining algorithms. Indeed, traditional data
mining frameworks such as WEKA, R, etc. and those from big
companies such as IBM SPSS Modeler, SAS Enterprise Miner,
Oracle Data Mining, etc. are facing the challenges of 1) coping
with mining large data sets within short times and 2) under
high rates of data generation. The way envisaged ahead to
effectively deal with such challenges is to move to Cloud-
based versions of such frameworks and development of new
frameworks implemented using Cloud platforms. In either case,
data mining and machine learning algorithms are being fully
implemented in Cloud platforms under new requirements of
Big Data for efficiency and performance. In the group of newly
developed frameworks there is Apache Mahout, whose goal is
“to build an environment for quickly creating scalable performant
machine learning applications". In this paper we analyse the
performance of some clustering algorithms of Apache Mahout
using a Twitter streaming dataset under a Hadoop MapReduce
cluster infrastructure according to various evaluation criteria.

Keywords: Big Data, Machine Learning, Data Mining,
Apache Mahout, Performance, Hadoop Cluster.

I. INTRODUCTION

As Internet-based applications have embraced all appli-
cation domains they generate all kinds of data, at very
large quantities and at very high rates, known as Big Data
and Big Data Streams. Traditional data analysis based on
querying and reporting cannot discover the insights in such
very large and often continuous data sets. Therefore, Big
Data calls for more advanced methods and algorithms, which
give quantitative information from data, and, on turn, when
combined appropriately from various data sources yields to
relevant information, knowledge and intelligence (in a vari-
ety of analytics such as business analytics, social analytics,

environmental analytics, etc.). Such advanced methods are
designed from a combination of a plethora of algorithms
and techniques developed so far by different research and
developing communities including statistics, data mining and
machine learning, simulation and optimization [1], [2], [6],
[10], [19]. Additionally, such advanced methods (broadly
referred to as “advanced analytics") need to be implemented
on large scale platforms such as Cloud-computing ones, so
that requirements for unlimited storage capacity, memory
and high performance processing can be satisfied.

Big Data applications are showing to be killer applications
for the state of the art machine learning, data mining algo-
rithms and combinations of methods. The reason being that
such new methods have to meet a variety of requirements:

• coping with mining large volumes of data, which in
many case are of unprecedented scale (for instance
data from billion node social networks, data streaming,
etc.) [2], [6], [13], [19], [21].

• dealing with data processing under high rates of data
generation [26], i.e., not only to be able to effectively
and efficiently process and analyse data at present/short
term by also to keep the efficiency according to high
data generation at mid and long term.

• processing within short times so that important deci-
sions can be taken in real or almost real time as could
be needed by application domain (e.g. healthcare [22],
businesses [23] to gain competitive advantage. etc.)

• cost-effective processing, i.e., while processing and
analysing Big Data can lead to turning data into valu-
able assets, this should be kept at affordable costs for
organisations, institution, enterprises, etc. [12].

The way envisaged ahead to effectively deal with such
challenges is, on the one hand, to move to Cloud-based
versions of existing frameworks (WEKA, R, etc. and those
from big companies such as IBM SPSS Modeler, SAS
Enterprise Miner, Oracle Data Mining, etc., which already
count on with Cloud-based versions), and, on the other, to
develop new frameworks fully implemented using Cloud
platforms under new requirements of Big Data for efficiency

mailto:fatos@cs.upc.edu
mailto:scaballe@uoc.edu


and performance. In the group of newly developed frame-
works there is Apache Mahout [4], whose goal is “to build
an environment for quickly creating scalable performant
machine learning applications".

In this paper we analyse the performance of some cluster-
ing algorithms of Apache Mahout using a Twitter streaming
dataset under a Hadoop MapReduce cluster infrastructure
according to efficiency of processing, scalability, memory
usage, etc. To that end, we design and implement a persistent
data layer based on Yahoo! S4 stream processing engine [17]
and Twitter Stream API. The persistence layer is in charge
of gathering tweets in order to be processed later on in
batches by the Mahout data mining algorithms. To enable
processing by such algorithms, pre-processing, formatting
etc. are accordingly done.

The rest of the paper is organized as follows. In Sec-
tion II we overview some basic concepts from Hadoop
and MapReduce, including some examples of applications.
The conceptual model, requirements and architecture are
presented in Section III. Section IV presents the Twitter
stream processing using Yahoo!S4 and Section V describes
the data layer of the system. The performance analysis is
given in Section VI and some conclusions and future work
in Section VII.

II. HADOOP MAPREDUCE FOR BIG DATA PROCESSING

The need to handle, store and process large dataset is
quickly expanding to many sectors, not just to IT-related
fields. For example, the amount of patient data gathered over
the years can lead in discovering better treatments in the
health sector, but this amount of data is overwhelming to
be processed by human power only. Hadoop is a commonly
used framework for data mining and Big Data processing.
There are many different fields in which the usage of Hadoop
brings a considerable contribution in extracting relevant
information from large datasets.

A. Hadoop and MapReduce

Hadoop is an open-source Apache software framework
used for distributed processing of large datasets across large
clusters. It is used for extensive data analytics and high
performance computing. Hadoop at its core is made up of
a distributed file system (Hadoop Distributed File System -
HDFS), a processing framework called MapReduce and a
job scheduling and resource manager framework, Hadoop
YARN.

The Hadoop Distributed File System is designed to run
over commodity hardware and ensures high fault tolerance
and high throughput access at lowcost. Its architecture is
based on the master-slave model. The master server is
called the NameNode, while the slaves are DataNodes. The
NameNode is the central machine of the cluster and it
contains the file system metadata. Each DataNode manages
the data stored on them and the computations over that data

are made locally, in order to avoid data movement across the
network. Usually files are divided in chunks of 64 to 512
MB (configurable) and the chunks are replicated in order to
avoid data loss caused by system or network failures.

MapReduce is a programming model that it designed to
be executed in parallel on large clusters over large datasets.
The model is made up from two main functions: map and
reduce. The map step can be seen as a preprocessing data
step, while the reduce step can be associated with the actual
computation and aggregation of results. Multiple map or
reduce jobs are launched in parallel across multiple nodes
in the cluster and each node receives a chunk of the input
data to process, usually the one that is actually stored on
that node. MapReduce follows the master-slave architecture
also. The master node in this context is called the Resource-
Manager and it manages the existing jobs. Once a job is
submitted, it is divided into tasks and the ResourceManager
decides where to run each task and ensures continuous
communication with each NodeManager. A NodeManager
is associated with the slave and monitors the execution of
the tasks on that node (there can be multiple tasks per node)
and sends continuous feedback to the ResourceManager.

Hadoop was designed to be fault tolerant, which means
that even if some of the nodes fail, there should be no
data loss. This is possible through data replication across
DataNodes and through task, job and nodes management. If
a task fails, the NodeManager detects the failure, sends a
message to the ResourceManager, which later reschedules
the task. If an entire DataNode fails, the NameNode and
the ResourceManager detect the failure, all the tasks that
were running on that node are rescheduled and the data
is already replicated on other nodes. The NameNode and
the ResourceManager are single point of failures in this
architecture, if the master fails all the cluster becomes
unavailable, even if the slaves are running.

There are multiple file systems that Hadoop can integrate
with. These do not necessarily replace HDFS, but can be
a source of data for Hadoop or a destination for Hadoop
MapReduce jobs for example. One of them is FTPFS (File
Transfer Protocol File Systems) which is a file system that
supports access to a FTP server through standard file system
APIs. Another example would be Amazon S3 (Amazon
Simple Storage Server), which is mostly targeted for Hadoop
clusters who are kept on Amazon EC2 (Amazon Elastic
Compute Cloud) infrastructure.

Hadoop was designed to be deployed inside a cluster.
Such clusters can be physically located in an on-site data-
center, but can also be deployed in a cloud infrastructure.
There are multiple cloud vendors who offer the possibility
of deploying a Hadoop cluster without having to acquire any
hardware or needing specific setup expertise, like Amazon,
Microsoft and Google.



B. Application examples

1) Log data processing: The processes that govern the
world are getting more computerized every day, requiring
tracking of the users’ actions. There are many software
applications that replaced human actions. Among many
other advantages, like speed of completing a task or easiness
of interaction, software application offer the possibility of
tracking the actions completed through logs [18]. The prob-
lem that arises is that there is a lot of log data generated and
it is difficult to extract relevant information from it. Hadoop
can be used for large log data processing [8], [24], [25].

2) Healthcare and Bioinformatics: It is estimated [11]
that the volume of medical data available worldwide pro-
vided by PACS (Picture Archiving and Communication
Systems) vendors is around 150 Exabytes and is increasing
at an approximate rate of x1.8 each year. PACS are only one
of the sources of medical data, that contains different types
of scans as images, such as ultrasounds, magnetic resonance
(MR), computed tomography (CT), endoscopy and others.
Besides PACS there are a lot more medical data sources, like
patient medical history or treatments evaluation [15], [16]
and therefore large scale processing is sought [7]. Given this
high data volume, several experiments that used the Hadoop
framework in order to extract relevant medical data have
been conducted so far. One example would be the usage
of the MapReduce algorithms to identify unproven cancer
treatments on the health web, a study of great importance
regarding to dealing with the dissemination of false and
dangerous information to vulnerable health consumers [3].
Another example would be DNA sequencing [20]. Cloud-
Burst is an algorithm for these types of studies that makes
use of the MapReduce framework in order to parallelise
computation. The experiment conducted proved that the time
it takes to make the computation scales linearly with the
number of nodes inside the Hadoop cluster. DNA fragment
assembly algorithms have also been implemented using
MapReduce [27].

3) Text Mining: The discovery of recurrent phrases in
documents is an interesting research area in text mining and
can be used for document summarization, clustering or topic
search in a larger dataset. An experiment was conducted
in [5] in order to use the MapReduce framework for de-
veloping an algorithm to discover such recurrent phrases.
The MapReduce solution proved to scale well for this
experiment and to be fault tolerant, but the challenge was the
maintenance of a large distributed table in HBase that needs
to be frequently read by map jobs. The results proved that
the MapReduce solution decreased the application runtime
up to six times, than a naive distributed implementation over
HBase.

Text mining can be defined as a knowledge-intensive
process in which a user interacts with a document collection
over time by using a suite of analysis tools and seeks to

extract useful information from data sources through the
identification and exploration of interesting patterns [9]. In
the case of text mining, the data sources are document
collections and patterns are found in unstructured text data.
For this reason, the preprocessing step is essential in the text
mining process, because it transforms the unstructured text
data into a more explicitly structured format.

The concepts the text mining operates with are document
collection, document, character, word, term and concept. A
document collection is a grouping of text-based documents.
These documents can be grouped by any criteria and usually
text mining techniques aim to discover patterns across such
collections. A document collection can be either static, if
the set of documents doesn’t change over time, or dynamic,
if documents can be added or updated frequently in that
collection.

In our case, the document collection would be the collec-
tion of tweets we gather via the Yahoo!S4 application and
it can be both static or dynamic, depending of the type of
algorithm we are running against it. If we were to use regular
clustering algorithms, the document collection would have
to be static, that means that the stream of tweets received
via Yahoo!S4 has to be processed and the tweets stored in
some persistent manner in order to be able to retrieve them
as a whole to be processed via Mahout algorithms. There
are also streaming algorithms that can run on continuous
streams of data and in that case the document collection
would be dynamic, since new documents can be received
constantly. In the second case, the Yahoo!S4 application
would probably have to do some pre-processing on the data
and then redirect the tweets received to the algorithm that
processes them in order to extract valuable information. A
document is the element that has to be processed by the text
mining algorithms. It is an ordered collection of words that
are usually constructed by a defined grammar and that make
sense together. In our case, a tweet could be considered a
document, since it is an entry inside the document collection
which has to be processed to add value to the result.

A character is the basic element from a document and
can be a letter, a number, a special symbol or a white-
space. One or multiple characters can form words. Words
are the element that provides meaning to letters grouped
together and delimited by other types of characters. In order
to facilitate the document processing step, a document could
be represented in a more structured manner as a set of all
the words in the document for example. It is important to
note however that it is recommended to optimize the set of
words generated for that document in order to ignore stop
words (common words that bring no value to the meaning
of the document), symbolic characters and numerics.

A term can be a single word or a multi-word phrase that
has a specific meaning within the collection of documents
in which is encountered.

Concepts are “features generated for a document by means



Figure 1: Conceptual model.

of manual, statistical, rule-based, or hybrid categorization
methodologies" [9]. It is not unusual that the concepts
describing a particular document collection are not actually
frequent words in that collection.

III. CONCEPTUAL MODEL, REQUIREMENTS AND
ARCHITECTURE

The system is made of three basic conceptual entities (see
Fig. 1):

• The stream processing system that listens to the Twitter
streaming API and processes the events received

• The persistent storage layer that gathers the tweets
• The processing environment inside which the Mahout

algorithms are to be evaluated
The stream processing system: it has to be able to listen

to the Twitter Streaming API and process the events that are
received. Processing these events implies executing some
data clean-up operations over the text content of a tweet
and write them to the persistent storage layer. It needs to
be able to handle the rate of the events as sent by Twitter
via the Streaming API. In our case, the stream processing
system will be deployed inside a cluster with multiple nodes.
One node will receive the Twitter events and several others
will process them.

The persistence storage layer: it has to store the tweets
in a format that is easily readble using the Mahout frame-
work. Since we are handling large datasets, the persistence
storage layer should also be scalable and distributed. For
the clustering algorithms we will evaluate, the output of
the preprocessing steps should be the TF-IDF vectors in a
SequenceFile format stored in HDFS (see later).

The processing environment: it should be scalable in
order to be able to handle larger batches of data. It should
also ensure quick access to the persistent storage layer,
since the data mining algorithms can be considered I/O
intensive. All data must be passed through at least once and
intermediary results need to be stored sometimes directly on
disk which can lead to a considerable number of read/write
operations. Since the system needs to handle large datasets,
computation could be divided into independent chunks to
be executed in parallel and then the partial results could
be merged into a final one. This means that we could

Figure 2: Enhanced conceptual model.

use multiple workers to execute the Mahout algorithms on
chunks of data.

Based on the above requirements, the conceptual can be
enhanced further (see Fig. 2).

Architecture: For the stream processing system, the
Apache Yahoo! S4 was chosen. This is a distributed stream
processing solution, which uses Apache Zookeeper for clus-
ters management. The architecture of the S4 environment
is based on the actor model, where there are several nodes
with different responsibilities that communicate with each
other via messages, or in our case events. Inside the S4 en-
vironment there are two types of nodes, which are deployed
inside two different clusters. The first one receives events
from the Twitter Streaming API and converts them to S4
events that are to be used internally. The second one gathers
the S4 events and processes them and then stores them to
the persistence storage layer.

For processing the twitter stream we used three logical
nodes for the S4 environment and deployed all of them on
the same physical node. One node acts as a twitter-adapter
and two others as twitter-processors. We discovered that
a rate of approximately 900 tweets to process per second
(as observed through our experiments), having two twitter-
processor nodes is enough to handle the load.

For the processing environment, we used the Hadoop en-
vironment. The Hadoop architecture is based on the master-
slaves model and used HDFS for the persistent storage layer.
In HDFS data is stored into chunks and distributed across the



Figure 3: System architecture.

nodes inside the Hadoop cluster. This brings the advantage
of data proximity when performing computing operations.
Inside our Hadoop cluster, we used a variable number of
nodes throughout the experiments we conducted. An overall
architecture of the system is presented in Fig. 3.

IV. PROCESSING THE TWITTER STREAM WITH
YAHOO!S4

There are two application which are deployed inside two
different clusters: twitter-adapter and twitter-processor. The
overall model of the Yahoo!S4 system for processing Twitter
stream can be seen in Fig. 4.

A. Twitter-adapter

This is the adapter application, used to convert the Twitter
stream into a stream of S4 events. Filtering the tweets that
are received by the twitter-adapter module by the language
in which they are written could be possible, via the Twitter
Stream API, since the request can receive filtering param-
eters for language and other attributes, but in practice it
doesn’t seem to work as expected. In our attempt of filtering
the Twitter Stream using the language=en parameter using
the HTTP POST API, the stream continued receiving tweets
in Japanese or other non-English languages. So we decided

Figure 4: S4 model.

Figure 5: Data flow in the Twitter Processor S4 module.

to receive all tweets in all languages and do a filtering before
sending the tweets to the twitter-processor application, using
the language attribute of the Tweet. The twitter-adapter
application communicates with the twitter-processor one via
a remote data stream. The process is pretty straight-forward,
when an application inside the ZooKeeper cluster creates a
new output stream, it is exposed in ZooKeeper and other
applications that define input streams with the same name
are automatically connected.

B. Twitter-processor

The twitter-processor application receives the Tweets as
S4 events and uses two Processing Elements in order to
forward data to the Hadoop cluster: TweetCleanerPE and
TweetWriterPE (the data flow through the twitter-processor
application can be seen in Fig. 5).

V. DATA SETS AND PERSISTENCE LAYER

The dataset is obtained from tweets received via the
Twitter Streaming API, which is further transformed into
suitable formatting in order to be used later on by the
Mahout data mining algorithms.

Data structure: The tweets received via the Twitter
Streaming API contain, besides the text content, a lot of
meta-data that can provide additional information about the
popularity of the tweet or the context in which it was
published.

Examples of meta-data for a tweet are, among others:
• language – described in a BCP 47 format or equal to

“und" if the language could not be detected.
• coordinates – the geo-location from which the tweet

was published.



Figure 6: Sequence of changes applied to tweet structure.

• creation date.
• entities – special entities, which are extracted from the

tweet content: urls, hashtags, user mentions.
• re-tweeted – true/false, indicates if the tweet has been

re-tweeted or not.
• re-tweet counter – the number of times this tweet has

been re-tweeted.
• user – the profile of the author of the tweet, which con-

tains: id, creation time for the user account, description.
• followers counter – indicates the number of followers

the user has.
• friends counter – indicates the number of friends the

user has (which is equivalent to the number of accounts
the user is following).

• profile image.
• status – the most recent tweet that the user has pub-

lished.
• statuses count – the total number of tweets that the user

has published over time.

In the twitter-processor module there are two processing
elements, as discussed above. In the TweetCleanerPE there
are some data cleaning operations executed over the text
content and then the tweet id and the cleaned tweet content
data is sent further on to the TweetWriterPE. The other meta-
data information that was extracted from the original tweet
content in the tweet objects we previously described reaches
the twitter-processor module, but currently it is not persisted
anywhere.

Given the simplified data structure we have obtained, the
information could be stored in a key-value format, where the
key is the tweet id and the value is the tweet text content.
Data changes to tweet structure throughout several steps
before being permanently stored in the persistence layer can
be seen in Fig. 6.

Data size: Given the length limitation of a tweet
content, the size of one data entry is very small. Tweets
contain UTF-8 characters which can be represented on 32
bits (i.e. 4 bytes). A maximum length of 140 characters
means a maximum size of 560 bytes. A tweet id can be
represented as a long number, so it requires up to 8 bytes.
Based on this values, the maximum memory space size
required for storing a tweet is around 568 bytes.

Taking into consideration the clean up operations per-
formed over the text content of a tweet before storing it, the

Figure 7: Tweet events rate over 20 hours window.

size of a data entry is most likely smaller than this amount.
So we decided to compute the average size of an actual
tweet based on the disk space size the dataset occupies and
the total number of stored tweets:

avg tweet size =
used disk space

total number of stored tweets

Using the above formulae, the average memory size
required for storing a single data entry resulted to be around
91 bytes, which is around 6 times smaller than the worst
case scenario we assumed initially and one of the reasons
that explains this is the fact that the urls and user mentions
in the tweet content can take more than 50% of the entire
text.

Data reception rate: There may be multiple events
coming from via the Twitter Streaming API to the twitter-
adapter module, but only tweets written in English are
passed further on to the twitter-processor module. The
average number of events per second is 16.21 (see Fig. 6
for a graphical representation).

VI. PERFORMANCE EVALUATION

A. Apache Mahout and Clustering Algorithms

The Apache Mahout project is an open source project
under the Apache umbrella, which provides a framework
for building scalable algorithms and also offers built-in
algorithms that can be run on top of Hadoop MapReduce
as well as on top of Apache Spark, H2O or Flink. The main
focus in this paper is on using the MapReduce algorithms



Table I Cluster processors
Processor Number Frequency

model of cores
Intel(R) Xeon(R) CPU X3230 4 2.66GHz
Intel(R) Xeon(R) CPU 3070 2 2.66 GHz

Intel(R) Xeon(R) CPU X5550 4 (8 threads) 2.66 GHz
Intel(R) Xeon(R) CPU X3363 4 2.83GHz
Intel(R) Xeon(R) CPU X5670 6 (12 threads) 2.93 GHz
Intel(R) Xeon(R) CPU E5450 4 3.00 GHz
Intel(R) Xeon(R) CPU X3220 4 2.40 GHz
Intel(R) Xeon(R) CPU X3350 4 2.66 GHz
Intel(R) Xeon(R) CPU 5130 2 2.00 GHz
Intel(R) Xeon(R) CPU 5160 2 3.00 GHz
Intel(R) Xeon(R) CPU 5110 2 1.60 GHz

that are implemented in Mahout, which can be run in-
memory, but for large datasets they need to be executed in
a Hadoop environment. In this study we consider clustering
algorithms, namely, k−Means and Fuzzy k−Means.

B. The HPC Infrastructure

We used RDLab as distributed infrastructure1 for pro-
cessing and analysing the data. The RDLab infrastructure
aggregates hardware resources for research and project de-
velopment:

• Over 160 physical servers.
• Over 1000 CPU cores and more than 3 TBytes of RAM

memory.
• Over 130 TBytes of disk space.
• High speed network at 10Gbit.
The RDLab High Performance Cluster (HPC) offers sev-

eral software packages such as Lustre High Performance
Parallel file system, Hadoop support, SMP and MPI parallel
computation, etc. We have used up to 52 nodes in the cluster
during the experimental study (see Table I).

C. Computational results

At first, we run several experiments on 4 nodes in the
Hadoop cluster (four LXC containers deployed on the same
physical machine, so there was no network latency) to
observe the processing time and in-memory usage of the
clustering algorithms according to file sizes, starting from a
smallest size of 256MB. The processing time and in-memory
usage showed to be very large even for such a small data set
(see Table II), the reason being that the 256MB file contained
about 3 million entries. The clustering algorithms have to
iterate through all the points and compute their distance
to the centres of the cluster, etc.; the complexity of these
algorithms is obviously influenced by the number of entries
in the data set.

We summarise here some computational results measuring
the scalability of the Mahout library with regard to different

1http://rdlab.cs.upc.edu/index.php/en/

Table II Processing time and in-memory usage for 256MB
dataset size.

Evaluated steps Processing time In-memory usage
Data pre-processing 73 min. 168 GB
Centroid generation 294 min. 6.17 GB
kMeans Algorithm 27.28 hours 2.93 GB

Figure 8: Performance comparison of Data pre-processing,
Centroid generation, kMeans and Fuzzy kMeans

numbers of nodes inside the Hadoop cluster. Several inde-
pendent runs were conducted and processing time for 1) data
pre-processing, 2) centroid generation, 3) kMeans algorithm
and 4) Fuzzy kMeans algorithm were measured (see Fig. 8).
The experiment was conducted for 160k and 320k data set
sizes.

As can be seen from Fig. 8, the processing time sig-
nificantly reduces for both the kMeans the Fuzzy kMeans
(about 40% reduction when comparing 4 nodes processing
with 32 node processing). Also, it can be observed that the
processing time of Fuzzy kMeans is order of magnitudes
larger than that of kMeans.

VII. CONCLUSIONS AND FUTURE WORK

Several Cloud-based implementations of machine learn-
ing (ML) and data mining (DM) algorithms are emerging
after the Big Data. Such implementations aim to overcome
limitations of traditional ML and DM frameworks to handle
Big Data. Mahout is one such Cloud-based implementation
of ML and DM algorithms to efficiently deal with Big
Data. Among interesting algorithms there are the clustering
algorithms whose performance is affected by the number of
entries in the data set. We have presented some performance
evaluation results for Mahout cluster algorithms using Twit-
ter Stream data set. We observed that significant reduction
in processing time can be achieved for clustering algorithms
executed on Hadoop MapReduce.

In our future work we plan to study the performance of
some classification algorithms from Mahout library.

http://rdlab.cs.upc.edu/index.php/en/


REFERENCES

[1] Agrawal, R., Imielinski, T. and Swami, A. Mining association
rules between sets of items in large databases. In Proceedings
1993 ACM-SIGMOD International Conference on Manage-
ment of Data (SIGMOD’93), pp. 207-216, 1993.

[2] Agrawal, R. and Srikant, R. Fast algorithms for mining associ-
ation rules. In Proceedings of 1994 International Conference
on Very Large Data Bases (VLDB’94), pp. 487-499, 1994.

[3] Aphinyanaphongsa, Y., Fua, L.D.and Aliferisa, C. F. Identify-
ing unproven cancer treatments on the health web: Addressing
accuracy, generalizability and scalability, IMIA and IOS
Press, 2013.

[4] Apache Mahout: http://mahout.apache.org

[5] Balkir, A. S., Foster, I. and Rzhetsky, A. A distributed look-up
architecture for text mining applications using MapReduce,
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–11, 2011.

[6] Bayardo, R.J. Efficiently mining long patterns from databases.
In Proceedings of ACM-SIGMOD International Conference
Management of Data (SIGMOD’98), pp. 85-93, 1998.

[7] Boyd, T., Brian Lee, B., Savel, Th., Stinn, J. and Kesarinath,
G. An example of the use of Public Health Grid (PHGrid)
technology during the 2009 H1N1 influenza pandemic. Inter-
national Journal of Grid and Utility Computing, Vol. 2 No.
2, pp. 148-155, 2011.

[8] Caballé, S. and Xhafa, F. Distributed-based massive process-
ing of activity logs for efficient user modelling in a Virtual
Campus. Cluster Computing 16(4): 829-844 (2013)

[9] Feldman R. and J. Sanger, J. The Text Mining Handbook.
Advanced Approaches in Analyzing Unstructured Data. Cam-
bridge University Press, 2006.

[10] Han, J., Pei, J., Yin, Y. and Mao, R. Mining Frequent
Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach. Data Mining and Knowledge Discovery vol.
8, no. 1 , 53-87, 2004.

[11] Hudges, G. How big is ‘big data’ in
healthcare? 2011. [Online]. Available:
http://blogs.sas.com/content/hls/2011/10/21/how-big-is-
big-data-in-healthcare/

[12] Kiran, M., Murphy, P., Monga, I., Dugan, J. and Baveja, S.
Lambda architecture for cost-effective batch and speed big
data processing. IEEE International Conference on Big Data
(Big Data), 2785 - 2792, 2015.

[13] Kolici, V., Xhafa, F., Barolli, L., Lala, A. Scalability, Mem-
ory Issues and Challenges in Mining Large Data Sets. In
Proceedings of 6th International Conference on Intelligent
Networking and Collaborative Systems (NCoS 2014), Italy,
September 10 - 12: 268-273, IEEE CPS, 2014.

[14] McCallum, A., Nigam, K. and Ungar L.H. Efficient Clus-
tering of High Dimensional Data Sets with Application to
Reference Matching, Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 169-178, 2000.

[15] Philip Moore, Ph., Qassem, T., Xhafa, F. ’NoSQL’ and Elec-
tronic Patient Record Systems: Opportunities and Challenges.
3PGCIC 2014: 300-307, IEEE CPS, 2014.

[16] Moore, Ph., Thomas, A.M., Tadros, G., Xhafa, F. and Barolli,
L. Detection of the onset of agitation in patients with de-
mentia: real-time monitoring and the application of big-data
solutions. International Journal of Space-Based and Situated
Computing (IJSSC) 3(3): 136-154, Inderscience, 2013.

[17] Neumeyer, L., Robbins, B., Nair, A. and A. Kesari. S4: Dis-
tributed Stream Computing Platform. In IEEE Data Mining
Workshops (ICDMW), Sydney, Australia, pp. 170 –177, 2010.

[18] Salfner, F., Tschirpke, S. and Malek, M. Comprehensive Log-
files for Autonomic Systems. 18th International Parallel and
Distributed Processing Symposium (IPDPS’04) - Workshop
11, 2004

[19] Savasere, A., Omiecinski, E., and Navathe, S. 1995. An
efficient algorithm for mining association rules in large
databases. In Proceedings of International Conference on
Very Large Data Bases (VLDB’95), Zurich, Switzerland, pp.
432-443, 1995.

[20] Schatz, M. C. “High performance computing for DNA se-
quence alignment and assembly,” Master’s thesis, Faculty of
the Graduate School of the University of Maryland, College
Park, US, 2010.

[21] Silverstein, C., Brin, S., Motwani, R. and Ullman, J. Scalable
techniques for mining causal structures. In Proceedings of In-
ternational Conference on Very Large Data Bases (VLDB’98),
New York, NY, pp. 594-605, 1998.

[22] Ta, V.D., Liu, Ch.M., and Nkabinde, G.W. Big data stream
computing in healthcare real-time analytics. IEEE Interna-
tional Conference on Cloud Computing and Big Data Anal-
ysis (ICCCBDA), pp. 37 - 42, 2016.

[23] van der Schaar, M. Real-time discovery and decision making
from big data. IEEE International Conference on Consumer
Electronics. pp. 1 - 3, 2014.

[24] Xhafa, F., Lopez Martinez, A., Caballé, S., Kolici, V. and
Barolli, L. Mining Navigation Patterns in a Virtual Campus.
In Proceedings of the 3rd International Conference on Emerg-
ing Intelligent Data and Web Technologies (EIDWT 2012), pp.
181-189, IEEE CPS, 2012.

[25] Xhafa, F., Garcia, D., Ramirez, D. and Caballé, S.: Perfor-
mance Evaluation of a MapReduce Hadoop-Based Imple-
mentation for Processing Large Virtual Campus Log Files.
3PGCIC 2015: 200-206, IEEE CPS, 2015.

[26] Xhafa, F., Naranjo, V. and Caballé, S.: Processing and Analyt-
ics of Big Data Streams with Yahoo!S4. AINA 2015: 263-270,
IEEE CPS, 2015.

[27] Xu, B., Gao, J. and Li, C. An efficient algorithm for DNA
fragment assembly in MapReduce, Biochemical and biophys-
ical research communications, vol. 426, no. 3, pp. 395–398,
2012.

http://mahout.apache.org
http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-healthcare/
http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-healthcare/

	Introduction
	Hadoop MapReduce for Big Data processing
	Hadoop and MapReduce
	Application examples
	Log data processing
	Healthcare and Bioinformatics
	Text Mining


	Conceptual model, requirements and architecture
	Processing the Twitter stream with Yahoo!S4
	Twitter-adapter
	Twitter-processor

	Data sets and persistence layer
	Performance evaluation
	Apache Mahout and Clustering Algorithms
	The HPC Infrastructure
	Computational results

	Conclusions and future work
	References
	caratulaIEEE.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints

	caratulaIEEE.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints


