
Monitoring dynamic mobile ad-hoc networks: A
fully Distributed Hybrid Architecture

Jose Alvarez and Stephane Maag
SAMOVAR, Telecom SudParis, Université Paris-Saclay

9 Rue Charles Fourier, 91000, Evry, FR
{Jose Alfredo.Alvarez Aldana,

Stephane.Maag}@telecom-sudparis.eu

Fatiha Zaı̈di
LRI-CNRS, Université Paris Sud, Université Paris-Saclay

15 Rue Georges Clemenceau, 91400, Orsay, FR
Fatiha.Zaidi@lri.fr

Abstract—The mobile ad-hoc networks (MANETs) represent
a broad area of study and market interest. They provide a
wide set of applications in multiple domains. In that con-
text, the functional and non-functional monitoring of these
networks is crucial. For that purpose, monitoring techniques
have been deeply studied in wired networks using gossip-based
or hierarchical-based approaches. However, when applied to a
MANET, several problematics arise mainly due to the absence of
a centralized administration, the inherent MANETs constraints
and the nodes mobility. In this paper, we present a hybrid dis-
tributed monitoring architecture for mobile ad-hoc networks in
context of mobility pattern. We get inspired of gossip-based and
hierarchical-based algorithms for query dissemination and data
aggregation. We define gossip-based mechanisms that help our
virtual hierarchical topology to complete the data aggregation,
and then ensure the stability and robustness of our approach in
dynamic environments. Further, we propose a fully distributed
monitoring protocol that ease the nodes communications. We
evaluate our approach through a simulated testbed by using NS3
and Docker, and illustrate the efficiency of our mechanisms.

I. INTRODUCTION

Wireless mobile ad hoc networks (MANETs) are collec-
tions of mobile nodes that communicate with each other,
representing thus a broad area of study and interest. They
provide wide sets of applications in multiple contexts like for
instance disaster recovery, military coalition, vehicular ad-hoc
networks, sensor networks, and many others. Besides, network
monitoring have been deeply studied in P2P, DTN or decen-
tralized static networks using gossip-based or hierarchical-
based approaches [1], [7], [10], [19]. However, when it is
applied to a MANET, new problematics arise mainly due
to the absence of a centralized administration, the inherent
MANETs properties and the node mobility. Some approaches
propose a coordinator, nevertheless, due to energy efficiency,
Internet access, infrastructure or various other parameters,
these solutions are not always applicable.

To monitor a network, it is often needed to be able to
find out the status of the network or some of its properties.
Generally, an intuitive approach is to define a central node as
a coordinator for storage and processing of the observations.
This is notably proposed by [5], where the author surveys the
different communication mechanisms for an optimal data inter-
change. There are multiple studies referring to the centralized
approaches that focus on different algorithms to enhance the

overall process. These centralized architectures are efficient
for certain types of topologies, but become critical when
considering dynamic topologies. This is why there has been a
lot of efforts on decentralized monitoring.

As stated in [15], the non-functional requirements of a
decentralized monitoring mechanism are: performance, costs,
fairness, scalability, robustness and stability. When we refer
to performance, we refer to the accuracy of the delivered
results and how fast are the results delivered. The costs refer
to the overhead by the communication or processing of the
data. Fairness can be analyzed in respect of performance and
cost. The scalability refers to the ability to work in large and
dense networks as well as in small networks. The robustness
deals with the behavior of external and unpredictable events.
And the stability is the ability to address random behavior of
autonomous nodes.

Based on these requirements, we can observe the existing
solutions which rely on gossip-based or hierarchical-based
approaches. Each of them provides a specific set of features
and also downsides for the monitoring process, as studied by
[15]. Gossip-based approaches demonstrate their robustness
and stability in dynamic scenarios and changing topologies.
Nonetheless, depending on the scalability, the cost and per-
formance can be impacted. On the other side, hierarchical
approaches show an efficient performance, cost and scalability,
although the robustness and stability may decrease in dynamic
scenarios. This shows that the two major categories perform
very good under different characteristics, requirements and
constraints of a network. Therefore, we guess that a more
prominent algorithm could be derived from these two ap-
proaches for wider scenarios.

The main contribution of this paper is the proposal of a
hybrid algorithm for decentralized monitoring of mobile ad-
hoc networks in dynamic context. We define an architecture
combining gossip-based and hierarchical-based algorithms for
query dissemination and data aggregation. We perform the
gossip-based approach to disseminate the query and in the
process to build a virtual hierarchical topology (VHT) for
a time window. Once the query is disseminated through all
the network, with the support of the VHT, a hierarchical-
based aggregation takes place. To provide robustness and
stability, we provide intermediary gossip-based mechanisms

ar
X

iv
:1

80
5.

03
51

3v
1

 [
cs

.N
I]

 7
 M

ay
 2

01
8

to complete the aggregation even in dynamic environments.
The second contribution of this paper is the definition of

a monitoring protocol that aims at helping a decentralized
monitoring process. We believe that many approaches propose
interesting techniques for querying and aggregating the data,
but from our knowledge, no ones propose any definition of
a protocol easing the nodes communications. In order to
define our monitoring protocol, we rely on the needs based
on our hybrid algorithms and through json (RFC 7159 [3]),
we characterize the structure. Our expectation is not just to
provide a structure but also a mathematical background for
further model checking and testing. Our protocol has been
successfully assessed using NS3 and Docker with mobility
patterns.

The remaining of our paper is as it follows. In Section II,
we discuss the monitoring, the different types of monitoring
and how that influences our decision for our algorithm. Then
in Section III, we present the hybrid algorithm. To provide a
clear explanation we use multiple examples to achieve it. In
Section IV, we present our implementation, with a semi-formal
support for our protocol. We also evaluate our approach using
NS3 and Docker through a configurable emulated testbed. We
illustrate and discuss the effectiveness of our mechanisms.
Next, in Section V, we present some interesting related works
from which we got inspired. After this, in Section VI we
present some discussions regarding the future works of our
research. And finally, we conclude our paper by presenting
our conclusions in Section VII .

II. PRELIMINARIES

Network monitoring is an extensive field of interest. It can
be described as “A number of observers making observations
and wish to work together to compute a function of the
combination of all their observations” ([5]). The observers
are here the nodes in a MANET. The goal is that all network
nodes compute a value f(t) in a given instant of time t in
a collaborative way. The function t 7→ f(t) [R+∗ → X , X
being the domain targeted by f], for our purposes, is a linear
and non-complex function like the average CPU, or any other
nominal value. There are actually multiple definitions but it
depends on the focus. We will present the basic terms for the
reader to understand the following sections.

A. Types of Monitoring
The classification of the monitoring process has been stud-

ied in [2]. For the purposes of this paper, we will consider
two major types: centralized and decentralized. The centralized
type of monitoring, as stated by [5], is when all the nodes
report their observations to a central entity, named centralizer
or coordinator. This entity will process all the observations
from all nodes in order to reach a global view of this property
of the network. The decentralized approach, the opposite of
the previously defined approach, deals with networks where
there is no centralizer entity. This implies that the network
by itself needs to achieve a global view of a property of the
network. The preferred approach is to get the global view of
a property of the network, and then disseminate it through the

entire network to assure that is available to all the network. As
stated by [15], the more noticeable approaches are currently
gossip and hierarchical.

1) Gossip-based approaches: The gossip approaches are
based on the gossip or epidemic algorithms. Gossip algorithms
rely on selecting, from a set of reachable nodes, a random or
a specific node (depending on the algorithm) to forward the
data packet. There are multiple types of gossip techniques, a
more detailed study can be found in [4]. In this publication,
the focus is on routing protocols. But it explains how gossip
based protocols implement through different techniques and
properties their goals. Epidemic algorithms try to forward the
packet not only to one but to multiple nodes. And they also
are considered the same or a subcategory of the gossip algo-
rithms. Flooding is the most common and simple algorithm
for epidemic algorithms. Gossip based monitoring algorithms
have the advantage of being highly stable and perform better in
increasing dynamic networks. However, it may generate lots
of traffic and, under certain scenarios, require more time to
compute a value.

2) Hierarchical-based approaches: Hierarchical
approaches commonly use tree structures in which the
leaf nodes communicate the values with their parent node.
This is done recursively until it reaches the root node of the
hierarchy. These approaches consider a mechanism of either
pulling data or pushing data with their nearby nodes. To apply
a hierarchical algorithm over a network, it is needed to build
the topology before being able to monitor. The advantages
of hierarchical based monitoring algorithms are that they
provide a fast convergence of the monitored property and
produce less traffic. The disadvantages of these solutions are
that they are prone to errors in the event of a crash in the
network. This means that it does not perform efficiently in a
highly dynamic environment.

III. HYBRID MONITORING APPROACH

The hybrid algorithm architecture herein proposed consists
in two network states, the “query state” and the “aggregate
state”. The election of the start node is out of the scope
of this publication and will be analyzed in future works.
The idea is to combine a gossip approach and a hierarchical
approach to achieve the monitoring of a property of the
network. The communication between the nodes to achieve
the monitoring of the network will be achieved through a
package previously defined. The idea is that a start node will
start the monitoring process by propagating a monitoring query
in a gossip approach. The approach chosen will be described
as epidemic, given that the idea is to share information in
an efficient, fast and simple way. Each hop, the nodes will
exchange information creating a VHT valid only during this
monitoring process. Then based on this topology, the nodes
will start aggregating the information by sending their results
to the parent node. Once the aggregation is done and has
reached the start node, there will be a global view of the
measured property and the VHT will no longer be usable.
If the process starts again, a new VHT will be derived.

A. Detailed Example
The overall process is exemplified in Figure 1. In Fig.

1a, the network is in the initial state. Node 0 starts and
changes its state to query state and it disseminates the query
to neighbors within its range, as it can be seen in Fig. 1b. The
query requests the computation of the value f(x) and contains
network information for the VHT. Then each of these nodes
repeats the same process, changes its state to query state and
disseminates the query. If we focus on one particular node,
e.g., 1.1, we can see that the query is communicated to 2.1
and 2.2, as it can be seen in Fig. 1c. After that, all the network
converges into the query state, as observed in Fig. 1d. Since
the edge nodes are reached, these nodes change from query
state to aggregate state and send their aggregation results to
the parent node. If we look at nodes 2.1 and 2.2 in Fig. 1e,
both share node 1.1 as the parent node, so each one of them
sends their information to the parent node. Then in Fig. 1f, we
can see that 2.1 and 2.2 are removed from the VHT, and that
1.1 changes his state to aggregate state. In this moment, node
1.1 aggregates the results from 2.1, 2.2 and itself, and sends
it to his parent node, i.e., node 0. Then the process repeats
itself with node 0 in Fig. 1g. Finally in Fig. 1h, the network
converged the monitoring process and node 0 has the global
view of the monitored property. The derived VHT that was
built to calculate the queried value, is dissolved and no longer
valid.

B. Hybrid Architecture
1) Virtual Hierarchical Topology: In our approach, a virtual

hierarchical topology (VHT) for a time window is built to pro-
cess a hierarchical based aggregation of the monitored values
through the network. The VHT concept has been introduced
in [8] and adapted by Google in one of his patents for cache
nodes [6]. The advantage of the VHT is its simple packet
forwarding configuration. Each child node only forwards data
packets to its parent node. The message will propagate in such
a manner until it reaches the root node. The following steps
summarize the VHT construction:
1- Each source node (chosen by the experts to aggregate the
collected monitored values) sends a query to its neighbors. A
timestamp information labels the time window.
2- Each node (that is not an edge node) receiving a query
forwards it if not already received before. The hierarchy
father/child and the timestamp are stored.
3- An edge node receiving a query does not forward it.

2) Query State: The query state refers to the process of
propagating in an epidemic way the monitoring packet. This
state goal is to disseminate the query and the VHT layout to
allow the nodes in the network to do an accurate and efficient
aggregation in the next state. This query will be forwarded in
an epidemic approach to the nodes in the relay set. Lets call A1

to the node sending the query and A1
i to the receiving nodes of

the query. In the exchange of information, A1 will be the father
node and A1

i will be the child nodes of A1, since they will
resemble the hierarchy of how the query is being propagated.
This will happen recursively until the edge of the network is

reached. This process is what creates the VHT. It is a virtual
representation, since given the mobility, it will not be able to
keep the same topology physically. The packet is explained
in depth in Section IV, containing the query itself but also
the information to generate the VHT. This will communicate
all the network information to create the VHT, which is the
foundation of the following state of the network. This process
will go on until a node on the edge of the network is reached.

Along this state, there are some specific challenges to
discuss. (i) The first challenge is if a node receives more than
one monitoring packet once it is already in a monitoring state.
This implies that a node is in the range of one or more probable
parent nodes. For this, the node will take the first monitoring
packet and will discard all the subsequent monitoring packets.
(ii) The second challenge is, what if the propagation of the
query is interrupted by a node that remains in a cyclic state.
For this, we introduce a timeout for the packet to avoid
these problems. This can be considered a time-to-live for the
packet. The idea is to provide a mechanism to avoid loops
in the communications. This means that a node, because of a
race condition, cannot continue disseminating the monitoring
packet, since all the nodes in his relay set are child nodes
of another node in the VHT. For this problem, the timeout
will be triggered and once reached, this node will start the
aggregation process by sending its result to the parent node.
This way avoiding infinite loops in the VHT. (iii) The third
challenge is the broadcast of the packet itself. Due to the nature
of the simple epidemic dissemination approach, a packet will
be forwarded to the next hop of nodes but also to the parent
node (because of the medium). To make good use of this, we
decided that this will work as an acknowledgment of the child
node to the parent node. This way, the parent node will receive
n amount of acknowledgments and he will know how many
packets he should wait for before changing to the aggregate
state. We are assuming that the sender and the receiver nodes
of this query packet will be within range to make a successful
exchange of packets. After this is achieved, this nodes could
get out of range and this will not affect our algorithm.

3) Aggregate State: Once the data is disseminated up to the
edge of the network, the edge nodes will change from query
state to aggregate state and will start sending recursively their
information to their parent up to the start node. This process
will be an aggregation of all the data of a node and his children
in order to collect the monitored values. The aggregation will
be computed in a hierarchical manner with a combination
when required of a gossip approach. A node will compute
based on his own observations the result of the function f(x)
that received from the query state. This information will be
aggregated with the same information of the child nodes. In
case of edge nodes, where this state starts, it will be done only
with information from themselves.

Along this state, there are specific challenges to discuss.
(i) The first one is when a parent node and a corresponding
child node goes out of range from when they first met.
When the child node sends an aggregate type of message and
receives no acknowledgment it will trigger a route packet to

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 1: Example of the hybrid monitoring approach

the corresponding node. Depending on the node mobility it
will be the time and the hops it will take in order to find the
node. For this, we will rely on the gossip routing protocol of
our approach. This will try to reach the parent node using a
random approach for gossiping the packet. This means that the
forwarder of the packet will be selected randomly, from the
available neighbors at the moment. (ii) The second challenge
is when a parent node is offline. It means that a child node
already tried to route the package to him and still had no
answer. For this, we propose that in the query state, a set of
nodes are communicated to every child node for them to have
an alternative path. Since the child node will have the relay
set of the parent node, he will fall back into one of these
nodes to send the information. This other node will continue
the aggregating process. Since it is a hierarchical approach, the
parent will send the information about his parents in the VHT.
(iii) The third challenge is when a node receives a grandchild
node aggregate information. For this, the node will assume
that the child node is offline and that he will be aggregating
that information. Given that the node does not know the
information of how many grandchild will send information, he
will also rely on the timeout before he sends his own aggregate
information. For every grandchild packet he receives, he will
restart the timeout to give time for additional packages. If
the timeout is reached, he will continue with his aggregation
process. If more information is received, he will forward it to
his parent and they will be aggregated ultimately by an upper
node in the hierarchy (eventually by the start node).

IV. EXPERIMENTS

To support our architecture, we start by defining a protocol
in a semi-formal way through a state automaton and also by
defining the packet data sent over the network. After this we
implemented and conducted some tests to provide the support
for the implementation. In future works, we plan to enhance
the tests to measure the scalability and the robustness under
different node densities, node populations and mobility among
other measures.

Initial Q1

Q2

A1A2A3

startMonitoring()/
SNDQuery

RCV Query/
SNDQuery

RCV QueryACK/
acc(ACK IP)

timeout()/
SNDAggregate

RCV QueryACK/
acc(ACK IP)

RCV Aggregate/
SNDAggregate

timeout()/
SNDAggregateRoute

timeout()/
SNDAggregateForward

timeout()/
AggregateForward

RCV AggregateACK/
done()

emptyForwards()/
error()

RCV AggregateACK/
done()

RCV AggregateACK/
done()

Fig. 2: State machine definition of our protocol

A. Protocol Definition
The protocol definition, depicted in Figure 2, shows the

expected behavior of the protocol to support as base ground
for the hybrid monitoring architecture. The set of states is
Q = (Initial,Q1, Q2, A1, A3, A3). Where Initial is the
initial state. The states Q1 and Q2 refer to the query states
of the network. And the states A1, A2 and A3 refer to the
aggregate states of the network. The internal operations of the
automaton are startMonitoring(), acc(IP), timeout(), done() and
error(). The startMonitoring() refers to the process of starting
the monitoring. The acc(IP) refers to the process of the node of
accumulating the IP of the acknowledgment messages source.
For the node to accumulate this IP, it is required that the
parent of the source node is the receiving node itself. If a node
receives an acknowledgment message with a different parent
of the source node, it means that other nodes are within range
but the messages do not correspond to the node itself. This
is used to identify while the query is propagating if there are
child nodes available for a given node. If a node does not
receive any acknowledgment, he will continue the monitoring
process by using a timeout. The timeout() refers to the process
of counting time since the last package received. The amount
of time to wait will be transmitted through the protocol itself

so it can be determined by the root node. The done() refers to
any internal process and manipulation of variables to restart the
state of the node. Meanwhile, error() refers to the process of
not being able to send a message, which if it happens, it means
that the node itself is out of the network range or a major
outage is happening with the network. So when this happens,
the node is expected to log the problem, go back to the initial
state and wait for further transmissions. The input and output
operations of the automaton are determined by sending (SND)
and receiving (RCV) messages. The possible messages to be
sent or received are the query, query ack, aggregate, aggregate
ack, agregate route and aggregate forward. The query message
refers to the query itself and the base ground of the query
state. For simplicity purposes, in the automaton, there is a
distinction between the query and the query ack message. But
in reality, they are meant to be the same package but received
by a different node. This is discussed in Section III-B2. For
example, if we refer to Figure 1c, we can see that node 1.1 is
sending the query message to nodes 2.1, 2.2 and 0. For nodes
2.1 and 2.2, it means to receive a query message, but for node
0, given the properties transmitted in the package, then node
0 can compute that this message is the acknowledgment of
his query message and that is why it is depicted as query
ack. The aggregate messages refer to the aggregation process
and the same principle applies as the query messages. The
aggregate ack message is an aggregate message but received
by a different node. In this case, the receiver node of the
aggregate ack is the child of a node, as opposite as the query
ack which the receiver is the parent of a node. Then we
also have two extra messages which are the aggregate route
and aggregate forward. The aggregate route message refers
to the process of routing a message through the network to
the corresponding parent node in the VHT. As explained in
Section III-B3, the idea is to make the hierarchical aggregation
more robust through the addition of a gossip routing approach
to route the package to the corresponding root node on the
fly. And finally, the aggregate forward message, whenever the
parent node is not found, probably since the parent node went
off line due to an outage or something similar. In this case,
the message will be forwarded to one of the nodes defined in
the relay set, which will be populated by the grandparents and
siblings.

B. Packet Definition
To have a successful communication, we need to define the

monitoring packet. The packet work equally in both states
of the network, query and aggregate states, but different
information are sent depending on the state containing a set of
common properties. It needs to contain some basic information
in order to be useful for the following nodes and hops. The
definition of such packet is done using json [3], given that it is
one of the most used data interchange formats. For each state
of the nodes, there is a set of transmitted properties. These
general properties are:
• Type: the type of message being sent, the set of values are

query, aggregate, aggregate route, aggregate forward.

TABLE I: Scenario 1 parameters
Parameter Name Value
Number of nodes 20, 25, 40, 50
Network Space 400x400, 600x600
Network Positioning Random
Emulation times 100 (60s each with init time 40s)
Mobility Random Waypoint Model at 5m/s

• Parent: the IP address of the parent node of the node
sending the message.

• Source: the IP address of the node sending the message.
• Destination: the destination IP, this for most of the cases

should be the parent IP, unless the parent node is off line,
then it will be a relay set IP.

• Gateway: the gateway IP, this is to support the routing
which identifies the next hop of the packet.

• Timeout: the timeout in ms to avoid infinite loops and to
support the aggregate state.

• Timestamp: a unique identifier calculated with the IP of the
source concatenated with the Unix time of the system.

For the query state, the specific properties transmitted are:
• Function: the function f to compute. We are considering

the basic functions like CPU average usage, RAM average
usage, or any other simple property.

• Relay Set: list of IPs for alternative paths. This list will
contain at most three items. It should correspond to the
parent, grandparent and great-grandparent node of a node.

For the aggregate state, the properties transmitted are:
• Result: the result of the aggregation of the function f . This

should be the aggregation of child nodes and the node itself.
• Observations: the number of observations aggregated. This

value will be aggregated from the incoming aggregate
packets.

The json definition of the complete package is the following:

{ "type": "query|aggregate|aggregate_route|aggregate_forward",
"parent": "<parent IP>", "source": "<source IP>",
"destination": "<destination IP>", "gateway": "<next hop IP>",
"timeout": <time in ms>, "timestamp": "<sourceIP + UnixTime>"
"query": { "function": "<monitoring function>",
"relaySet": ["<IPs of the source rely set>"] },

"aggregate": { "outcome": "<monitoring result>",
"observations": <number of observations> } }

C. Results
We evaluate our proposal using an emulator built

in-house based on DOCKEMU [17]. This emulator
(https://github.com/chepeftw/NS3DockerEmulator) is a
combination between Docker and NS3. Together they
provide an environment highly scalable, replicable and
robust to conduct experiments. The testbed consisted
in an implementation of the protocol in the language
Go(https://github.com/chepeftw/Treesip).The idea was to
determine the convergence time, by which we mean the
time it took from the moment that the monitoring started
by the root node, to the moment that the root node was
able to return a verdict. Along this, we also looked at
the number of observations collected, number of packets
sent, size of the packets per run and the accuracy of the
measurement. The accuracy is defined as the ratio between
the number of observations and the number of nodes. We
defined four scenarios with mobility. We compare different

Fig. 3: Scenario 1 convergence results

number of nodes, space, speed, mobility pattern and routing
protocol. For all scenarios the MAC protocol is 802.11a, the
application protocol is UDP and with a data rate of 54Mbps.
Each node had a range of ≈125m (theoretically by default
in NS3 is 200m). All scenarios were designed to test the
convergence time and accuracy in a mobile environment.
Given the mobility aspect of the scenarios, we assumed that
it is difficult to achieve a fully accurate measurement. But
the goal is to maximize the accuracy through the proposed
architecture.

The emulator was running on top of an Amazon EC2
instance of type t2.medium and Ubuntu 16.04 LTS. Versions in
use were Docker 1.12.1, NS3.25 and Go 1.6.2. The containers
were running as a base Ubuntu 16.04 LTS and IPv4. To collect
the measurements we relied on the logs of the containers which
were later parsed, exported to cvs and analyzed in R for further
analysis.

1) Scenario 1: As mentioned in Section III, the election
process of the root node is out of the scope from this study,
but for testing purposes, we decided to use different root node
selected randomly to prove that it will work independently of
who the root node is. The parameters for this scenario can
be seen in Table I. The results are summarized in Figure 3.
We can point out that there is a clear relationship between
the number of nodes and the time it takes to converge. It is
important to note that these times are subject to the defined
timeouts for each run. We based our timeouts in empirical
data based on the number of nodes on different emulations.
Trying to find a safe value that will allow the network to
converge without compromising the accuracy. In overall, the
average converge time it is approximately ≈7.51s. About the
number of packets sent, we empirically assumed that it would
increase depending on the number of nodes given the gossip
aggregation routing messages. For 20 nodes the average per
run was 89 packets, for 25 nodes it was 138 packets, for 40
nodes it was 226 packets and for 50 nodes it was 280 packets.
The average message size for all runs is approximately ≈98
bytes. The results collected by the monitoring process are
approximately ≈0.8 accurate.

2) Scenario 2: For this scenario, we utilized 25 nodes, a
350x350m space and the random waypoint mobility model.
We tested the speeds 5m/s, 10m/s and 15m/s. For each one,

TABLE II: Scenario 2 results
5m/s 10m/s 15m/s

Avg convergence time (ms) 6336.12 6245.542 9419.9
Avg observations (# nodes) 20 19.8 18
Accuracy ≈0.80 ≈0.79 ≈0.72

TABLE III: Scenario 3 results
Random Waypoint Random Walk

Avg convergence time (ms) 6336.12 8930.125
Avg observations (# nodes) 20 18
Accuracy ≈0.80 ≈0.72

we ran the simulations 25 times. The results are summarized
in Table II. We assumed that the converge time might remain
stable, but the accuracy could drop for a higher speed. We
can observe that the nodes converge about the same amount
of time in the first two scenarios but for the third one
increase significantly (≈3.2s). And contrary to our preliminary
expectations, the accuracy remained approximately the same
for 5m/s and 10m/s, and for 15m/s it slightly decreased. The
algorithm is capable of converging with nodes moving at
different speeds with a stable accuracy. This shows promising
results for higher mobility scenarios.

3) Scenario 3: For this scenario, we utilized 25 nodes, a
speed of 5m/s and a 350x350m space. We used the mobility
patterns from NS3 of random waypoint model and random
walk model. For each mobility pattern we ran the simulations
25 times. The results are summarized in Table III. We can
observe that the convergence time has a difference of ≈2.5s,
the average observations have a difference of 2 nodes and
consequently the accuracy is different by 0.08. This reflects,
in our opinion, a fairly similar result in general. But most
importantly, it shows that it works in different mobility patterns
whatever the properties are affected.

4) Scenario 4: For this scenario, we utilized 25 nodes,
a speed of 5m/s and a 350x350m space. In this simulation,
our intention is to compare the performance of our gossip
routing approach and the protocol OLSR. For each approach
we ran the simulations 25 times, giving one minute for OLSR
to have enough information. The results are summarized in
Table IV. The convergence times are slower in our approach
but more accurate, meanwhile in OLSR is faster but less
accurate. This results derives an interesting discussion. If we
use OLSR, our approach becomes dependent on the routing
layer, but at the same time it delegates this responsibility and
it allows our approach to focus on the monitoring process. If
we rely on our gossip routing approach, the solution becomes
independent but it adds more complexity. So there is a clear
trade-off that should be considered. After analyzing the logs
and the scenarios we concluded that some scenarios were not
so accurate because of the node reachability. This is something
we intend to study in depth in@ future works.

TABLE IV: Scenario 4 results
Gossip OLSR

Avg convergence time (ms) 6336.12 4272.65
Avg observations (# nodes) 20 14
Accuracy ≈0.8 ≈0.56

V. RELATED WORKS

MANET monitoring has been studied during several years
for many objectives like their performances [12], to test them
[11], their security [9] and more recently their energetic
efficiency [13]. While there have been many works on decen-
tralized monitoring approaches, There are multiple categories
of decentralized monitoring, but the two more prominent
are gossip and hierarchical based [15]. In the gossip based
categorization, we can discuss about Gossipico [18]. This is
an algorithm to calculate the average, the sum or the count
of node values in a large dynamic network. The main focus
is to count nodes in networks since this information can
be useful for the performance of routing protocols, topology
parameters or simply to determine how large a MANET is. The
combination of two mechanisms, count and beacon, provides
the networks nodes counting in an efficient and quick way.
This algorithm was tested in static networks with dynamic
scenarios.

After this study, there is a different paper that studied the
same approach but totally focused on ad-hoc networks. This al-
gorithm, relying on Gossipico, is called Mobi-G [16]. Mobi-G
is designed for urban outdoor areas with a focus on pedestrian
that moves around by foot. The idea is to create the global
view of an attribute, which is built ideally incorporating all
the nodes in the network. And this global view, disseminates
it to all the nodes in the network to inform the current system
state. Mobi-G can provide accurate results even for fluctuating
attributes. It also can reduce the communication cost. It does
not suffer from long range connectivity. Nevertheless the
accuracy decreases for an increasing spatial network size.

On the hierarchical categorization, we can mention Block-
Tree [14] that proposes a fully decentralized location-aware
monitoring mechanism for MANETs. The idea is to divide
the network in proximity-based clusters, which are arranged
hierarchical. Each cluster or block will aggregate the data
respecting a property. The algorithm requires that all nodes
from the same cluster or block are reachable within one hop.
This process will repeat among the hierarchy until a global
view is reached, and then this value will be disseminated
through the network. Even though the good performance, the
average power consumption increases directly proportional to
the spatial network size or node density.

In the literature, we can also find an interesting paper [15]
regarding a benchmark between the both categories. This study
states that the three main key points in architectural description
for decentralized monitoring mechanisms are: (i) Topology,
construction and maintenance (ii) Data collection (iii) Result
dissemination. The authors define quality aspects as per-
formance, cost, fairness, scalability, robustness and stability.
They also provide different workloads for the tests: baseline
(idealized conditions), churn, massive join or crash, increasing
number of attributes and increasing number of peers. Under
ideal conditions, the hierarchical approach outperforms the
gossip approach. In the presence of sudden topology changes,
the gossip approach performs well and is able to continue
working robustly. On the other side, the hierarchical approach

collapses during these changes. Nonetheless, this also depends
on the hierarchical approach, but a tree-based approach will
collapse. With vertical scalability workload the hierarchical
approach has smaller increases in traffic regarding the perfor-
mance, while the gossip approach must handle considerable
amounts of traffic. Another result from this benchmark is the
difficulty of comparing both categories.

VI. FUTURE WORK

We intend to study the selection of the root node. It
could be based on location, energy, computing power and
other parameters. It could also be an autonomous process,
proactively or reactively, or a manual process that needs to
be performed by an operator.

We will be looking for specific metrics under different
scenarios in a scalable way. In particular, we expect to assess
the performance in terms of convergence of communication
packets with a high node speed.

Lastly we intent to analyze and take into consideration
more complex functions. We are interested in monitoring the
interoperability within a MANET. For this we need to define
an optimal solution to propagate a more complex function
through our query mechanism. This requires to analyze mul-
tiple interoperability approaches to provide a proposal for
monitoring this process. To monitor interoperability we guess
that it is needed to analyze not all observation points, but more
specifically a subset of observation points.

VII. CONCLUSIONS

We have presented in this paper a hybrid algorithm for
monitoring decentralized networks. It consists on the com-
bination of gossip-based and hierarchical-based algorithms.
Providing a robust and scalable solution, taking advantage of
the best qualities of both approaches for wider scenarios. The
algorithm works on top of two major states, the query and the
aggregate. The gossip-based approach is applied to the query
state, to disseminate the query in an efficient way. Once the
query is propagated, the network changes to the aggregate
state. Besides, with the help of a time-based hierarchical
approach, the computation of a global property is achieved.
Based on our study, we concluded the recommendation of
a monitoring protocol and we defined the following: (i) an
automaton describing the protocol as a mathematical support.
Which provides an efficient way of representing a protocol and
a mathematical test ground. (ii) The protocol definition using
json [3]. (iii) The importance and the versatility of a novel
distributed monitoring architecture through the combination of
a monitoring protocol and a hybrid algorithm. We designed a
scalable and configurable testbed using NS3 and Docker, based
on DOCKEMU [17], that illustrates the effectiveness of our
approach for different number of nodes, speeds and mobility
patterns. Our approach and results are highly promising.

REFERENCES

[1] Marc S Artigas, Pedro Garcı́a, and Antonio F Skarmeta. Deca: A hierar-
chical framework for decentralized aggregation in dhts. In International
Workshop on Distributed Systems: Operations and Management, pages
246–257. Springer, 2006.

[2] Nadia Battat, Hamida Seba, and Hamamache Kheddouci. Monitoring
in mobile ad hoc networks: A survey. Computer Networks, 2014.

[3] T. Bray. The javascript object notation (json) data interchange format.
Technical report, RFC Editor, 2014.

[4] Nessrine Chakchouk. A survey on opportunistic routing in wireless
communication networks. IEEE Communications Surveys & Tutorials,
17(4):2214–2241, 2015.

[5] Graham Cormode. The continuous distributed monitoring model. ACM
SIGMOD Record, 2013.

[6] Google. Method and node for finding content in a content distribution
network, and method for creating a virtual representation of a content
distribution network, patent us 8665757 b2, 2014.

[7] Alessio Guerrieri, Iacopo Carreras, Francesco De Pellegrini, Daniele
Miorandi, and Alberto Montresor. Distributed estimation of global
parameters in delay-tolerant networks. Computer Communications,
33(13):1472–1482, 2010.

[8] Lican Huang. Virgo: virtual hierarchical overlay network for scalable
grid computing. In European Grid Conference. Springer, 2005.

[9] Yi-an Huang and Wenke Lee. A cooperative intrusion detection system
for ad hoc networks. In Proceedings of the 1st ACM workshop on
Security of ad hoc and sensor networks, 2003.

[10] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based com-
putation of aggregate information. In 44th Annual IEEE Symposium
Foundations of Computer Science., 2003.

[11] Stephane Maag and Cyril Grepet. Interoperability testing of a manet
routing protocol using a node self-similarity approach. In Proceedings
of the ACM Symposium on Applied Computing. ACM, 2008.

[12] Anand Mehrotra, Arti Saxena, and Manoj Tolani. Performance com-
parison of different routing protocols for traffic monitoring application.
International Journal of Computer Applications, 92(4), 2014.

[13] Senthilnathan Palaniappan and Kalaiarasan Chellan. Energy-efficient
stable routing using qos monitoring agents in manet. EURASIP Journal
on Wireless Communications and Networking, 2015(1):1, 2015.

[14] Dominik Stingl, Christian Gross, Leonhard Nobach, Ralf Steinmetz, and
David Hausheer. Blocktree: Location-aware decentralized monitoring in
mobile ad hoc networks. In IEEE 38th Conf. Local Computer Networks,
pages 373–381, 2013.

[15] Dominik Stingl, Christian Gross, Karsten Saller, Sebastian Kaune, and
Ralf Steinmetz. Benchmarking decentralized monitoring mechanisms in
peer-to-peer systems. In 3rd ACM/SPEC International Conference on
Performance Engineering, pages 193–204, 2012.

[16] Dominik Stingl, Reimond Retz, Björn Richerzhagen, Christian Gross,
and Ralf Steinmetz. Mobi-g: Gossip-based monitoring in manets. In
IEEE Network Operations and Management Symposium, 2014.

[17] Marco Antonio To, Marcos Cano, and Preng Biba. Dockemu–a network
emulation tool. In WAINA 2015 IEEE 29th International Conference on,
pages 593–598, 2015.

[18] Ruud Van De Bovenkamp, Fernando Kuipers, and Piet Van Mieghem.
Gossip-based counting in dynamic networks. In International Confer-
ence on Research in Networking. Springer, 2012.

[19] Fetahi Wuhib, Mads Dam, Rolf Stadler, and Alexander Clem. Robust
monitoring of network-wide aggregates through gossiping. IEEE Trans.
on Network and Service Management, 2009.

	I Introduction
	II Preliminaries
	II-A Types of Monitoring
	II-A1 Gossip-based approaches
	II-A2 Hierarchical-based approaches

	III Hybrid Monitoring Approach
	III-A Detailed Example
	III-B Hybrid Architecture
	III-B1 Virtual Hierarchical Topology
	III-B2 Query State
	III-B3 Aggregate State

	IV Experiments
	IV-A Protocol Definition
	IV-B Packet Definition
	IV-C Results
	IV-C1 Scenario 1
	IV-C2 Scenario 2
	IV-C3 Scenario 3
	IV-C4 Scenario 4

	V Related Works
	VI Future Work
	VII Conclusions
	References

