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Abstract—The current virtualization solution in the Cloud
widely relies on hypervisor-based technologies. Along with
the recent popularity of Docker, the container-based virtu-
alization starts receiving more attention for being a promis-
ing alternative. Since both of the virtualization solutions are
not resource-free, their performance overheads would lead
to negative impacts on the quality of Cloud services. To
help fundamentally understand the performance difference
between these two types of virtualization solutions, we use a
physical machine with “just-enough” resource as a baseline to
investigate the performance overhead of a standalone Docker
container against a standalone virtual machine (VM). With
findings contrary to the related work, our evaluation results
show that the virtualization’s performance overhead could vary
not only on a feature-by-feature basis but also on a job-to-job
basis. Although the container-based solution is undoubtedly
lightweight, the hypervisor-based technology does not come
with higher performance overhead in every case. For example,
Docker containers particularly exhibit lower QoS in terms of
storage transaction speed.

Index Terms—Cloud Service; Container; Hypervisor; Perfor-
mance Overhead; Virtualization Technology

1. Introduction

As a key element of Cloud computing, virtualization
plays various vital roles in supporting Cloud services, rang-
ing from resource isolation to resource provisioning. The
existing virtualization technologies can roughly be distin-
guished between the hypervisor-based and the container-
based solutions. Considering their own resource consump-
tion, both virtualization solutions inevitably introduce per-
formance overheads when offering Cloud services, and the
performance overheads could then lead to negative impacts
to the corresponding quality of service (QoS). Therefore,
it would be crucial for both Cloud providers (e.g., for
improving infrastructural efficiency) and consumers (e.g.,
for selecting services wisely) to understand to what extend
a candidate virtualization solution incurs influence on the
Cloud’s QoS.

Given the characteristics of these two virtualization so-
lutions (cf. the background in Section 2), an intuitive hy-

pothesis could be: a container-based service exhibits better
performance than its corresponding hypervisor-based VM
service. Nevertheless, there is little quantitative evidence
to help test this hypothesis in an “apple-to-apple” manner,
except for those qualitative discussions. Therefore, we de-
cided to use a physical machine with “just-enough” resource
as a baseline to quantitatively investigate and compare the
performance overheads between the container-based and
hypervisor-based virtualizations. In particular, since Docker
is currently the most popular container solution [1] and
VMWare is one of the leaders in the hypervisor market
[2], we chose Docker and VMWare Workstation 12 Pro to
represent the two virtualization solutions respectively.

According to the clarifications in [3], our qualitative
investigations can be regulated by the discipline of ex-
perimental computer science (ECS). By employing ECS’s
recently available Domain Knowledge-driven Methodology
(DoKnowMe) [4], we experimentally explored the perfor-
mance overheads of different virtualization solutions on a
feature-by-feature basis.

The experimental results and analyses show that the
aforementioned hypothesis is not true in all the cases. For
example, we do not observe computation performance dif-
ference between those service types with respect to solving
a combinatorially hard chess problem; and the container
even leads to higher storage performance overhead than the
VM when reading/writing data byte by byte. Moreover, we
find that the remarkable performance loss incurred by both
virtualization solutions usually appears in the performance
variability. Overall, the contributions of this work are three-
fold:

• Our experimental results and analyses can help both
researchers and practitioners to better understand the
fundamental performance of the container-based and
hypervisor-based virtualization technologies. It is no-
table that the performance engineering in ECS can
roughly be distinguished between two stages: the first
stage is to reveal the primary performance of specific
(system) features, while the second stage is generally
based on the first-stage evaluation to investigate real-
world application cases. Thus, this work can be viewed
as a foundation for more sophisticated evaluation stud-
ies in the future.
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• Our method of calculating performance overhead can
easily be applied or adapted to different evaluation
scenarios by others. The literature shows that the “per-
formance overhead” has normally been used in the
context of qualitative discussions. By quantifying such
an indicator, our study essentially provides a concrete
lens into the case of performance comparisons.

• The whole evaluation logic and details reported in
this paper can be viewed as a reusable and traceable
template for evaluating Docker containers. Since the
Docker project is still quickly growing [5], the evalua-
tion results could gradually be out of date. Benefiting
from this template, future evaluations can conveniently
be repeated or replicated by different evaluators at
different times and locations.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the background knowledge of container-
based and the hypervisor-based virtualizations and high-
lights the existing work related to their performance com-
parisons. Section 3 introduces the performance evaluation
implementation including the methodology employed in our
study. The detailed performance overhead investigation is
divided into two reporting parts, namely pre-experimental
activities and experimental results & analyses, and they are
correspondingly described into Section 3.2 and 3.3 respec-
tively. Conclusions and some future work are discussed in
Section 4.

2. Background and Related Work

When it comes to the Cloud virtualization, the de facto
solution is to employ the hypervisor-based technologies,
and the most representative Cloud service type is offering
virtual machines (VMs) [6]. In this virtualization solution,
the hypervisor manages physical computing resources and
makes isolated slices of hardware available for creating
VMs [5]. We can further distinguish between two types of
hypervisors, namely the bare-metal hypervisor that is in-
stalled directly onto the computing hardware, and the hosted
hypervisor that requires a host operating system (OS). To
make a better contrast between the hypervisor-related and
container-related concepts, we particularly emphasize the
second hypervisor type, as shown in Figure 1a. Since the
hypervisor-based virtualization provides access to physical
hardware only, each VM needs a complete implementation
of a guest OS including the binaries and libraries necessary
for applications [7]. As a result, the guest OS will inevitably
incur resource competition against the applications running
on the VM service, and essentially downgrade the QoS from
the application’s perspective.

To relieve the performance overhead of hypervisor-based
virtualization, researchers and practitioners recently started
promoting an alternative and lightweight solution, namely
container-based virtualization. In fact, the foundation of
the container technology can be traced back to the Unix
chroot command in 1979 [7], while this technology
is eventually evolved into virtualization mechanisms like
Linux VServer, OpenVZ and Linux Containers (LXC) along
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(a) Hypervisor-based virtual ser-
vice.
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(b) Container-based virtual service.

Figure 1. Different architectures of hypervisor-based and container-based
virtual services.

with the booming of Linux [8]. Unlike the hardware-level
solution of hypervisors, containers realize virtualization at
the OS level and utilize isolated slices of the host OS
to shield their contained applications [7]. In essence, a
container is composed of one or more lightweight images,
and each image is a prebaked and replaceable file system
that includes necessary binaries, libraries or middlewares for
running the application. In the case of multiple images, the
read-only supporting file systems are stacked on top of each
other to cater for the writable top-layer file system [1]. With
this mechanism, as shown in Figure 1b, containers enable
applications to share the same OS and even binaries/libraries
when appropriate. As such, compared to VMs, containers
would be more resource efficient by excluding the execution
of hypervisor and guest OS, and more time efficient by
avoiding booting (and shutting down) a whole OS [5], [9].
Nevertheless, it has been identified that the cascading layers
of container images come with inherent complexity and
performance penalty [10]. In other words, the container-
based virtualization technology could also negatively impact
the corresponding QoS due to its performance overhead.

Although the performance advantage of containers were
investigated in several pioneer studies [2], [8], [11], the
container-based virtualization solution did not gain signif-
icant popularity until the recent underlying improvements
in the Linux kernel, and especially until the emergence of
Docker [12]. Starting from an open-source project in early
2013 [5], Docker quickly becomes the most popular con-
tainer solution [1] by significantly facilitating the manage-
ment of containers. Technically, through offering the unified
tool set and API, Docker relieves the complexity of utilizing
the relevant kernel-level techniques including the LXC, the
cgroup and a copy-on-write filesystem. To examine the
performance of Docker containers, a molecular modeling
simulation software [13] and a postgreSQL database-based
Joomla application [14] have been used to benchmark the
Docker environment against the VM environment.

The closest work to ours is the CPU-oriented study
[15] and the IBM research report [16] on the performance



comparison of VM and Linux containers. However, both
studies are incomplete (e.g., the former was not concerned
with the non-CPU features, and the latter did not finish
the container’s network evaluation). More importantly, our
work denies the IBM report’s finding that “containers and
VMs impose almost no overhead on CPU and memory
usage” and also doubts about “Docker equals or exceeds
KVM performance in every case”. Furthermore, in addi-
tion to the average performance overhead of virtualization
technologies, we are more concerned with their overhead in
performance variability.

Note that, although there are also performance studies
on deploying containers inside VMs (e.g., [17], [18]), such
a redundant structure might not be suitable for an “apple-
to-apple” comparison between Docker containers and VMs,
and thus we do not include this virtualization scenario in
this study.

3. Performance Evaluation Implementation

3.1. Performance Evaluation Methodology

Since the comparison between the container’s and the
VM’s performance overheads is essentially based on their
performance evaluation, we define our work as a perfor-
mance evaluation study that belongs to the field of ECS
[3]. Considering that “evaluation methodology underpins
all innovation in experimental computer science” [19], we
employ the methodology DoKnowMe [4] to guide eval-
uation implementations in this study. DoKnowMe is an
abstract evaluation methodology on the analogy of “class”
in object-oriented programming. By integrating domain-
specific knowledge artefacts, DoKnowMe can be customized
into specific methodologies (by analogy of “object”) to
facilitate evaluating different concrete computing systems.
To better structure our report, we divide our DoKnowMe-
driven evaluation implementation into pre-experimental ac-
tivities (cf. Section 3.2) and experimental results & analyses
(cf. Section 3.3).

3.2. Pre-Experimental Activities

3.2.1. Requirement Recognition. Following DoKnowMe,
the whole evaluation implementation is essentially driven
by the recognized requirements. In general, the requirement
recognition is to define a set of specific requirement ques-
tions both to facilitate understanding the real-world problem
and to help achieve clear statements of the corresponding
evaluation purpose. In this case, the basic requirement is
to give a fundamental quantitative comparison between the
hypervisor-based and the container-based virtualization so-
lutions. Since we concretize these two virtualization solu-
tions into VMWare Workstation VMs and Docker containers
respectively, such a requirement can further be specified into
two questions:

RQ1: How much performance overhead does a stan-
dalone Docker container introduce over its base
physical machine?

TABLE 1. METRICS AND BENCHMARKS FOR THIS EVALUATION STUDY

Physical Property Capacity Metric Benchmark Version
Communication Data Throughput Iperf 2.0.5
Computation (Latency) Score HardInfo 0.5.1
Memory Data Throughput STREAM 5.10
Storage Transaction Speed Bonnie++ 1.97.1
Storage Data Throughput Bonnie++ 1.97.1

RQ2: How much performance overhead does a stan-
dalone VM introduce over its base physical ma-
chine?

Considering that virtualization technologies could result
in service performance variation [20], we are also concerned
with the container’s and VM’s potential variability overhead
besides their average performance overhead:

RQ3: How much performance variability overhead does
a standalone Docker container introduce over its
base physical machine during a particular period
of time?

RQ4: How much performance variability overhead does
a standalone VM introduce over its base physical
machine during a particular period of time?

3.2.2. Service Feature Identification. Recall that we treat
Docker containers as an alternative type of Cloud service
to VMs. By using the taxonomy of Cloud services evalu-
ation [21], we examine the communication-, computation-
, memory- and storage-related QoS aspects; and then we
focus on the service features including communication data
throughput, computation latency, memory data throughput,
and storage transaction speed and data throughput.

3.2.3. Metrics/Benchmarks Listing and Selection. The
selection of evaluation metrics usually depends on the avail-
ability of benchmarks. According to our previous expe-
rience of Cloud services evaluation, we choose relatively
lightweight and popular benchmarks to try to minimize
the potential benchmarking bias, as listed in Table 1. For
example, Iperf has been identified to be able to deliver more
precise results by consuming less system resources. In fact,
except for STREAM that is the de facto memory evalua-
tion benchmark included in the HPC Challenge Benchmark
(HPCC) suite, the other benchmarks are all Ubuntu’s built-in
utilities.

In particular, although Bonnie++ only measures the
amount of data processed per second, the disk I/O trans-
actions are on a byte-by-byte basis when accessing small
size of data. Therefore, we consider to measure storage
transaction speed when operating byte-size data and measure
storage data throughput when operating block-size data. As
for the property computation, considering the diversity in
CPU jobs (e.g., integer and floating-point calculations), we
employ HardInfo that includes six micro-benchmarks to
generate performance scores.



When it comes to the performance overhead, we use
the business domain’s Overhead Ratio1 as an analogy to
its measurement. In detail, we treat the performance loss
compared to a baseline as the expense, while imagining the
baseline performance to be the overall income, as defined
in Equation (1).

Op =
|Pm − Pb|

Pb
× 100% (1)

where Op refers to the performance overhead; Pm denotes
the benchmarking result as a measurement of a service
feature; Pb indicates the baseline performance of the service
feature; and then |Pm − Pb| represents the corresponding
performance loss. Note that the physical machine’s perfor-
mance is used as the baseline in our study. Moreover, con-
sidering possible observational errors, we allow a margin of
error for the confidence level as high as 99% with regarding
to the benchmarking results. In other words, we will ignore
the difference between the measured performance and its
baseline if the calculated performance overhead is less than
1% (i.e. if Op < 1%, then Pm = Pb).

3.2.4. Experimental Factor Listing and Selection. The
identification of experimental factors plays a prerequisite
role in the following experimental design. More impor-
tantly, specifying the relevant factors would be necessary
for improving the repeatability of experimental implemen-
tations. By referring to the experimental factor framework
of Cloud services evaluation [22], we choose the resource-
and workload-related factors as follows. In particular, con-
sidering the possible performance overhead compensation
from powerful computing resources, we try to stress the ex-
perimental condition by employing a “just-enough” testbed.

The resource-related factors:
• Resource Type: Given the evaluation requirement, we

have essentially considered three types of resources to
support the imaginary Cloud service, namely physical
machine, container and VM.

• Communication Scope: We test the communication be-
tween our local machine and an Amazon EC2 t2.micro
instance. The local machine is located in our broadband
lab at Lund University, and the EC2 instance is from
Amazon’s available zone ap-southeast-1a within the
region Asia Pacific (Singapore).

• Communication Ethernet Index: Our local side uses
a Gigabit connection to the Internet, while the EC2
instance at remote side has the “Low to Moderate”
networking performance defined by Amazon.

• CPU Index: Recall that we have employed “just-
enough” computing resource. The physical machine’s
CPU model is chosen to be Intel CoreTM2 Duo Pro-
cessor T7500. The processor has two cores with the
64-bit architecture, and its base frequency is 2.2 GHz.
We allocate both CPU cores to the standalone VM upon
the physical machine.

1http://www.investopedia.com/terms/o/overhead-ratio.asp

• Memory Size: The physical machine is equipped with
a 3GB DDR2 SDRAM. When running the VMWare
Workstation Pro without launching any VM, “watch
-n 5 free -m” shows a memory usage of 817MB
while leaving 2183MB free in the physical machine.
Therefore, we set the memory size to 2GB for the VM
to avoid (at least to minimize) the possible memory
swapping.

• Storage Size: There are 120GB of hard disk in the
physical machine. Considering the space usage by the
host operating system, we allocate 100GB to the VM.

• Operating System: Since Docker requires a 64-bit in-
stallation and Linux kernels older than 3.10 do not
support all the features for running Docker containers,
we choose the latest 64-bit Ubuntu 15.10 as the operat-
ing system for both the physical machine and the VM.
In addition, according to the discussions about base
images in the Docker community [23], [24], we inten-
tionally set an OS base image (by specifying FROM
ubuntu:15.10 in the Dockerfile) for all the Docker
containers in our experiments. Note that a container’s
OS base image is only a file system representation,
while not acting as a guest OS.

The workload-related factors:
• Duration: For each evaluation experiment, we decided

to take a whole-day observation plus one-hour warming
up (i.e. 25 hours).

• Workload Size: The experimental workloads are pre-
defined by the selected benchmarks. For example, the
micro-benchmark CPU Fibonacci generates workload
by calculating the 42nd Fibonacci number. In partic-
ular, the benchmark Bonnie++ distinguishes between
reading/writing byte-size and block-size data.

3.2.5. Experimental Design. It is clear that the identified
factors are all with single value except for the Resource
Type. Therefore, a straightforward design is to run the indi-
vidual benchmarks on each of the three types of resources
independently for a whole day plus one hour.

Furthermore, following the conceptual model of IaaS
performance evaluation [25], we record the experimental
design into a blueprint both to facilitate our experimental
implementations and to help other evaluators replicate/repeat
our study. Due to the space limit, we share the experimental
blueprint online as a supplementary document.2

3.3. Experimental Results and Analyses

3.3.1. Communication Evaluation Result and Analysis.
For the purpose of “apple-to-apple” comparison, we force
both the container and the VM to employ Network Address
Translation (NAT) to establish outgoing connections. Since
they require port binding/forwarding to accept incoming
connections, we only test the outgoing communication per-
formance to reduce the possibility of configurational noise,

2The experimental blueprint is shared online at https:
//drive.google.com/file/d/0B9KzcoAAmi43WTFuTXBsZ0NRd1U/

http://www.investopedia.com/terms/o/overhead-ratio.asp
https://drive.google.com/file/d/0B9KzcoAAmi43WTFuTXBsZ0NRd1U/
https://drive.google.com/file/d/0B9KzcoAAmi43WTFuTXBsZ0NRd1U/


TABLE 2. COMMUNICATION BENCHMARKING RESULTS USING IPERF

Resource Type Average Standard Deviation
Physical machine 29.066 Mbits/sec 1.282 Mbits/sec
Container 28.484 Mbits/sec 1.978 Mbits/sec
Virtual machine 12.843 Mbits/sec 2.979 Mbits/sec

Physical Machine Container Virtual Machine

average 29.06630058 28.48428928 12.84306931

stdev 1.282297571 1.978326959 2.978496178

Container Virtual Machine

Variability Overhead 54.27986481 132.27808

ppp 0 0

ttt 0 0

Data Throughput Overhead 2.002357673 55.81457202
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Figure 2. Communication data throughput and its variability overhead of a
standalone Docker container vs. VM (using the benchmark Iperf).

by setting the remote EC2 instance to Iperf server and using
the local machine, container and VM all as Iperf clients.

The benchmarking results of repeating iperf -c
XXX.XXX.XXX.XXX -t 15 (with a one-minute interval
between every two consecutive trials) are listed in Table 2.
The XXX.XXX.XXX.XXX denotes the external IP address
of the EC2 instance used in our experiments. Note that,
unlike the other performance features, the communication
data throughput delivers periodical and significant fluctua-
tions, which might be a result from the network resource
competition at both our local side and the EC2 side during
working hours. Therefore, we particularly focus on the
longest period of relatively stable data out of the whole-day
observation, and thus the results here are for rough reference
only.

Given the extra cost of using the NAT network to send
and receive packets, there would be unavoidable perfor-
mance penalties for both the container and the VM. Using
Equation (1), we calculate their communication performance
overheads, as illustrated in Figure 2.

A clear trend is that, compared to the VM, the container
loses less communication performance, with only 2% data
throughput overhead and around 54% variability overhead.
However, it is surprising to see a more than 55% data
throughput overhead for the VM. Although we have double
checked the relevant configuration parameters and redone
several rounds of experiments to confirm this phenomenon,
we still doubt about the hypervisor-related reason behind
such a big performance loss. We particularly highlight this
observation to inspire further investigations.

3.3.2. Computation Evaluation Result and Analysis.
Recall that HardInfo’s six micro benchmarks deliver both
“higher=better” and “lower=better” CPU scores. To facil-
itate experimental analysis, we use the two equations be-
low to standardize the “higher=better” and “lower=better”
benchmarking results respectively.
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Figure 3. Computation benchmarking results by using HardInfo.
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standalone Docker container vs. VM (using the tool kit HardInfo).

HBi =
Benchmarkingi

max(Benchmarking1,2,...,n)
(2)

LBi =

1

Benchmarkingi

max(
1

Benchmarking1,2,...,n
)

(3)

where HBi further scores the service resource type i
by standardizing the “higher=better” benchmarking result
Benchmarkingi; and similarly, LBi represents the stan-
dardized “lower=better” CPU score of the service re-
source type i. Note that Equation (3) essentially offers
the “lower=better” benchmarking results a “higher=better”
representation through reciprocal standardization.

Thus, we can use a radar plot to help intuitively contrast
the performance of the three resource types, as demonstrated
in Figure 3. For example, the different polygon sizes clearly
indicate that the container generally computes faster than the
VM, although the performance differences are on a case-by-
case basis with respect to different CPU job types.
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Nevertheless, our experimental results do not display any
general trend in variability of those resources’ computation
scores. As can be seen from the calculated performance
overheads (cf. Figure 4), the VM does not even show worse
variability than the physical machine when running CPU
CryptoHash, CPU N-Queens and FPU Raytracing. On the
contrary, there is an almost 2500% variability overhead for
the VM when calculating the 42nd Fibonacci number. In
particular, the virtualization technologies seem to be sensi-
tive to the Fourier transform jobs (the benchmark FPU FFT),
because the computation latency overhead and the variability
overhead are relatively high for both the container and the
VM.

3.3.3. Memory Evaluation Result and Analysis.
STREAM measures sustainable memory data throughput
by conducting four typical vector operations, namely Copy,
Scale, Add and Triad. We directly visualize the bench-
marking results into Figure 5 to facilitate our observation.
As the first impression, it seems that the VM has a bit
poorer memory data throughput, and there is little difference
between the physical machine and the Docker container in
the context of running STREAM.

By calculating the performance overhead in terms of
memory data throughput and its variability, we are able to
see the significant difference among these three types of
resources, as illustrated in Figure 6. Take the operation Triad
as an example, although the container performs as well as
the physical machine on average, the variability overhead
of the container is more than 500%; similarly, although the
VM’s Triad data throughput overhead is around 4% only, its
variability overhead is almost 1400%. In other words, the
memory performance loss incurred by both virtualization
techniques is mainly embodied with the increase in the
performance variability.

In addition, it is also worth notable that the con-
tainer’s average Copy data throughput is even slightly
higher than the physical machine (i.e. 2914.023MB/s
vs. 2902.685MB/s) in our experiments. Recall that we have
considered a 1% margin of error. Since those two values are
close to each other within this error margin, here we ignore
such an irregular phenomenon as an observational error.
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Figure 6. Memory data throughput and its variability overhead of a stan-
dalone Docker container vs. VM (using the benchmark STREAM).

3.3.4. Storage Evaluation Result and Analysis. For the
test of disk reading and writing, Bonnie++ creates a dataset
twice the size of the involved RAM memory. Since the VM
is allocated 2GB of RAM, we also restrict the memory usage
to 2GB for Bonnie++ on both the physical machine and
the container, by running “sudo bonnie++ -r 2048
-n 128 -d / -u root”. Correspondingly, the bench-
marking trials are conducted with 4GB of random data on
the disk. When Bonnie++ is running, it carries out various
storage operations ranging from data reading/writing to file
creating/deleting. Here we only focus on the performance
of reading/writing byte- and block-size data.

To help highlight several different observations, we plot
the trajectory of the experimental results along the trial
sequence during the whole day, as shown in Figure 7. The
first surprising observation is that, all the three resource
types have regular patterns of performance jitter in block
writing, rewriting and reading. Due to the space limit, we do
not report their block rewriting performance in this paper.
By exploring the hardware information, we identified the
hard disk drive (HDD) model to be ATA Hitachi HTS54161,
and its specification describes “It stores 512 bytes per sector
and uses four data heads to read the data from two platters,
rotating at 5,400 revolutions per minute”. As we know, the
hard disk surface is divided into a set of concentrically
circular tracks. Given the same rotational speed of an HDD,
the outer tracks would have higher data throughput than the
inner ones. As such, those regular patterns might indicate
that the HDD heads sequentially shuttle between outer and
inner tracks when consecutively writing/reading block data
during the experiments.

The second surprising observation is that, unlike most
cases in which the VM has the worst performance, the
container seems significantly poor at accessing the byte
size of data, although its performance variability is clearly
the smallest. We further calculate the storage performance
overhead to deliver more specific comparison between the
container and the VM, and draw the results into Figure 8.
Note that, in the case when the container’s/VM’s variability
is smaller than the physical machine’s, we directly set
the corresponding variability overhead to zero rather than
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Figure 7. Storage benchmarking results by using Bonnie++ during 24 hours. The maximum x-axis scale indicates the iteration number of the Bonnie++
test (i.e. the physical machine, the container and the VM run 150, 147 and 101 tests respectively).
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Figure 8. Storage data throughput and its variability overhead of a stan-
dalone Docker container vs. VM (using the benchmark Bonnie++).

allowing any performance overhead to be negative. Then,
the bars in the chart indicate that the storage variability
overheads of both virtualization technologies are nearly
negligible except for reading byte-size data on the VM (up
to nearly 200%). Although the storage driver is a known
bottleneck for a container’s internal disk I/O, it is still
surprising that the container brings around 40% to 50% data
throughput overhead when performing disk operations on a
byte-by-byte basis. In other words, the container solution
might not be suitable for the Cloud applications that have
frequent and unpredictable intermediate data generation and
consumption. On the contrary, there is relatively trivial
performance loss in VM’s byte data writing. However, the

VM has roughly 30% data throughput overhead in other disk
I/O scenarios, whereas the container barely incurs overhead
when reading/writing large size of data.

Our third observation is that, the storage performance
overhead of different virtualization technologies can also be
reflected through the total number of the iterative Bonnie++
trials. As pointed by the maximum x-axis scale in Figure
7, the physical machine, the container and the VM can
respectively finish 150, 147 and 101 rounds of disk tests
during 24 hours. Given this information, we estimate the
container’s and the VM’s storage performance overhead to
be 2% (= |147−150|/150) and 32.67% (= |101−150|/150)
respectively.

4. Conclusion

Following the performance evaluation methodology Do-
KnowMe, we draw conclusions mainly by answering the
predefined requirement questions. Driven by RQ1 and RQ2,
our evaluation result largely confirms the aforementioned
qualitative discussions: The container’s average performance
is generally better than the VM’s and is even comparable
to that of the physical machine with regarding to many
features. Specifically, the container has less than 4% perfor-
mance overhead in terms of communication data throughput,
computation latency, memory data throughput and storage
data throughput. Nevertheless, the container-based virtual-
ization could hit a bottleneck of storage transaction speed,
with the overhead up to 50%. Note that, as mentioned
previously, we interpret the byte-size data throughput into



storage transaction speed, because each byte essentially calls
a disk transaction here. In contrast, although the VM delivers
the worst performance in most cases, it could perform as
well as the physical machine when solving the N-Queens
problem or writing small-size data to the disk.

Driven by RQ3 and RQ4, we find that the performance
loss resulting from virtualizations is more visible in the
performance variability. For example, the container’s vari-
ability overhead could reach as high as over 500% with
respect to the Fibonacci calculation and the memory Triad
operation. Similarly, although the container generally shows
less performance variability than the VM, there are still
exceptional cases: The container has the largest performance
variation in the job of computing Fourier transform, whereas
even the VM’s performance variability is not worse than the
physical machine’s when running CryptoHash, N-Queens,
and Raytracing jobs.

Overall, our work reveals that the performance over-
heads of these two virtualization technologies could vary not
only on a feature-by-feature basis but also on a job-to-job
basis. Although the container-based solution is undoubtedly
lightweight, the hypervisor-based technology does not come
with higher performance overhead in every case. Based
on such a fundamental evaluation study, we will gradually
apply Docker containers to different real-world applications
in the coming future. The application-oriented practices will
also be replicated in the hypervisor-based virtual environ-
ment for further comparison case studies.
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