
Abstract 
In this paper, we aim to determine the significance of 

different stages of an attack, namely the preamble and the 
exploit, on an achieved anomaly rate. To this end, we 
analyze four UNIX applications that have been used by the 
previous researchers against Stide anomaly detector. Our 
results show that the effect of the preamble on the anomaly 
rate is much greater when the size of the preamble 
component of an attack is greater than the size of the 
exploit component. Furthermore, we investigate the 
impact of training set selection and the length of sliding 
window on detector performance. 

Keywords 
Information hiding, anomaly detection, benchmarking 

1 Introduction 
Over the past years, systematic methods have been 

proposed to analyze host based anomaly detection systems 
against blind spots and evasion attacks. Previous research 
established that it is possible to evade anomaly detectors, 
namely Stide, by altering an attack to make it look like 
normal behavior. The common assumptions in these works 
[1, 2, 3] are:  
• Detectors are built for critical system applications 

that have limited behavior; 
• While establishing a baseline for the detector, normal 

behavior can be easily approximated; 
• Attackers do not have to obtain all possible cases of 

normal behavior. 
Consequently, these methods mainly focus on 

crafting new exploits that can completely bypass a given 
anomaly detector. The common shortcoming of the 
previous research is that they focused on optimizing a 
particular component (namely exploit component) of an 
attack without analyzing the attack as a whole. 

In this work, we analyze four UNIX applications that 
have been used by the previous researchers [1, 2, 3] to 
determine the significance of different stages of an attack 
as well as selecting appropriate training data configuration 
parameters. Therefore, the significance of our work is 
threefold: First, we analyze the importance of training set 
selection to detector performance. Normal behavior can 
vary substantially between various normal use scenarios. It 
is crucial to employ a training set that will minimize false 
alarms whilst maximizing the detection rate. Second, we 
analyze the use of different detector window sizes. The 

window size parameter determines the length of the 
sequence stored in normal databases. Therefore, we 
analyze the impacts of employing longer window sizes as 
opposed to shorter ones. Third, we identify two 
components, which exists in all buffer overflow attacks, 
namely to break in (gaining control of the vulnerable 
application) and the exploit. Previous [1, 2, 3] work 
concentrated only on the exploit component. However we 
believe that anomaly rates for these two stages should be 
analyzed collectively, since it is impossible to deploy an 
exploit without first breaking in. Thereafter, in this work, 
attacks will be considered as comprising from two stages; 
the break in part of an attack is referred to as the preamble 
and the second stage as the exploit.  

Furthermore, in this paper, we demonstrate that it 
may not be possible in all cases for an attacker to 
eliminate all anomalies from the attack. Although critical 
system services have limited behavioral properties, 
building normal behavior models based on this assumption 
causes extensive false alarms due to slight changes in 
normal behavior or legitimate faults/errors, i.e. making a 
typo in the command. In practice, anomaly detectors are 
deployed with an anomaly rate threshold to minimize false 
alarms. Therefore it is important, from the perspectives of 
both the attacker and the security professional, to 
determine a suitable anomaly threshold. 

Our objective is to provide a complete analysis of an 
attack against an anomaly detector. Specific shortcomings 
in the current blind spot and mimicry attack research for 
anomaly based security tools and techniques are identified. 
We believe that before an anomaly detector is 
developed/built for an application, a similar analysis 
should be performed to determine the importance of 
training data scenarios and significance of legitimate 
errors to detection. Furthermore, in the case of blind spot 
analysis (vulnerability testing), we believe that researchers 
should analyze the original vulnerability to determine the 
contribution from preamble and exploit components. 

The remainder of the paper is organized as follows. 
Section 2 discusses the earlier research on blind spot and 
mimicry attack analysis. Anomaly detector that we 
employed in this work is presented in Section 3, whereas 
the four vulnerable applications employed are detailed in 
Section 4. Experimental results are reported in Section 5 
and conclusions are drawn in Section 6. 
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2   Related Work 
Related detector blind spot testing [1, 2, 3] is mainly 

focused on the Stide detector [4] (or variants thereof) and 
employed critical UNIX system applications. Undetectable 
exploits are developed by locating appropriate sequences 
of system calls that match the contents of Stide’s normal 
behavior database whilst successfully reaching the 
behavioral objectives of the original exploit. Typically, a 
minimalist configuration of the anomaly detector is 
utilized, under the general observation that it is easier to 
make a strong detector if the alphabet of permitted 
instructions is small. 

Wagner et al. [1] introduced the “mimicry attack” 
concept, where all attacks were modified to evade 
detection. They proposed three methods to avoid 
detection: (i) modifying system call parameters; (ii) 
inserting system calls that are irrelevant to the attack being 
deployed while minimizing the anomaly rate; and finally 
(iii) generating equivalent attacks by replacing the system 
calls that can easily be identified by the detector. An 
example for the last method is substituting an attack that 
spawns a UNIX shell with an attack that creates a super-
user account. Both of these give the attacker super-user 
privileges. Mimicry attacks were generated for wuftpd 
service by manually modifying the detectable system call 
sequences. Normal behavior was generated by “running 
wuftpd on hundreds of large file downloads over a period 
of two days”[1].   

Tan et al. [2] employed four methods to manually 
change the behavior of the attack: (i) hiding an attack in 
the blind spot of the detector; (ii) modifying an attack so 
that it looks like a normal behavior; (iii) hiding an attack 
so it looks like a less dangerous attack; and (iv) modifying 
an attack so that it looks like a different attack. In their 
experiments, restore, tmpwatch and kernel/traceroute 
attacks were employed. Normal behavior for Restore is 
obtained by “monitoring a regular user executing the 
restore system program to retrieve backup data from a 
remote backup server” [2]. Normal behavior for tmpwatch 
is generated by populating a short directory tree with files 
under /tmp and executing tmpwatch program to clean files 
that are more than 5 days old. Normal behavior for kernel 
attack was not obtained since the vulnerability in the 
kernel was used to exploit another vulnerability in 
traceroute. 

Stide detects foreign sequences that are not in the 
normal database. Thus, Tan et al. [3] investigated hiding in 
the detector’s blind spots in more detail by developing 
variants of a core exploit with the objective of increasing 
the minimal foreign sequence length. They reported that if 
the foreign sequence length is greater than the sliding 
window size of Stide, an attack could evade detection. In 
their experiments they employed Stide on traceroute and 
passwd applications.  For traceroute, normal behavior is 
obtained by “executing traceroute to acquire diagnostic 

information regarding the network connectivity between 
the localhost and nis.nsf.net”[3]. For the passwd 
application, normal data was obtained by executing the 
passwd without any arguments, which expires the old 
password and installs the new one provided by the user. 

3 Stide Anomaly Detector 
Anomaly detection systems attempt to build 

behavioral models of normal use and employ this as the 
basis for detecting suspicious activities. This way, known 
and unknown/unseen attacks can be detected as long as the 
attack behavior deviates sufficiently from the normal 
behavior. Needless to say, if the attack is sufficiently 
similar to the normal behavior, it may not be detected. 
However, user behavior itself is not constant, thus even 
the normal activities of a user may start raising alarms. In 
this work, Stide [4] was used as the target anomaly 
detector, since it has been employed in many of the earlier 
works [1, 2, 3, 5] and also to the best of our knowledge, it 
is the only anomaly detector that is available as open 
source. 

Input to the Stide detector takes the form of system 
call traces of an application for which the detector is 
trained. Specifically, Stide builds a “normal database” by 
segmenting the training data (of system call traces) into 
fixed length sequences [5]. To do so, a sliding window of 
N is employed over the training dataset and the resulting 
system call patterns are stored in the “normal database”. 
During testing, the same sliding window size is employed 
on the data. Resulting patterns are compared against the 
“normal database” and if there is no match, a mismatch is 
recorded. Given a window size of N and system call trace 
length M, anomaly rate for the trace is calculated by 
dividing the number of mismatches by the number of 
sliding window patterns (i.e. M – N  + 1). 

4 Vulnerable Applications 
Based on previous research discussed in Section 2, in 

our analysis we employed four applications from Redhat 
Linux 6.2, which have known and documented 
vulnerabilities. Traceroute, Restore, Tmpwatch 
vulnerabilities can be exploited locally whereas FtpD 
vulnerability can also be exploited remotely. For each 
application, we developed normal use cases, which 
represent the scenarios of legitimate use.  

4.1 Traceroute 
Traceroute is a network diagnosis tool, which is used 

to determine the routing path between a source and a 
destination by sending a set of control packets to the 
destination with increasing time-to-live values. A typical 
use of traceroute involves providing the destination IP, 
whereas the application returns information on the route 
taken between source and destination. 



Redhat 6.2 is shipped with Traceroute version 1.4a5, 
where this is susceptible to a local buffer overflow exploit 
that provides a local user with super-user access [6]. The 
attack takes advantage of vulnerability in malloc chunk, 
and then uses a debugger to determine the correct return 
address to take control of the program. In order to analyze 
the traceroute behavior under normal conditions, we 
developed five use cases, Table 1; whereas in the previous 
research [3] only one use case was used for training, 
namely use case 1.  

Table 1. Traceroute normal use cases 
Use Case System Calls 

1. Target a remote server 736 
2. Target a local server 260 
3. Target a non existent host 153 
4. Target localhost 142 
5. Help screen 24 

4.2 Restore 
Restore is a component of UNIX backup 

functionality, which restores the file system image taken 
by the dump command. Files or directories can be restored 
from full or incremental backups. 

Restore version 0.4b15 is vulnerable to an 
environment variable attack where the attacker modifies 
the path of an executable and runs restore. This results in 
executing an arbitrary command with super-user 
privileges, which leads to a root compromise. In the 
published attack [7], attacker spawns a root shell. Table 2 
summarizes five normal use cases that we developed for 
Restore. As in the previous work [2], we have monitored a 
regular user executing the restore system program to 
retrieve backup data from a remote backup server. 
However, we have also repeated the case for different 
sizes of files and back-up types. 
 
Table 2. Restore normal use cases  

Use Case System Calls 
1. Restore a small file system dump 
from a full backup. 

2256 

2. Restore a small file system dump 
from an incremental backup. 

1027 

3. Restore a large file system dump 
from a full backup. 

167207 

4. Restore a large file system dump 
from an incremental backup. 

68185 

5. Help screen 53 

4.3 Tmpwatch 
Tmpwatch removes files and directories that have not 

been accessed by a user for a given time from temporary 
directories. Tmpwatch version 2.2 is susceptible to an 
input validation error, where the optional Tmpwatch 

component – fuser – improperly handles system () library 
calls. An attacker can generate a file with a maliciously 
crafted name containing special characters, which causes 
Tmpwatch to execute arbitrary system commands. In the 
published attack [8], the attacker creates an account with 
super-user privileges. Table 3 summarizes three normal 
use cases that we developed for Tmpwatch. Again, we 
followed a similar path as done in the previous work [2], 
but also generated additional data by using different sizes 
of directory trees. 

 Table 3. Tmpwatch normal use cases  
Use Case System Calls 

1. Tmpwatch cleans a small 
temporary directory. 

6383 

2. Tmpwatch cleans a large 
temporary directory 

28809 

3. Help screen 42 

4.4 FtpD 
Redhat 6.2 is shipped with Washington University 

Ftp Server version 2.6.0(1), which provides FTP access to 
remote users. WuFtpd 2.6.0(1) is susceptible to an input 
validation attack where the attacker can corrupt the 
process memory by sending malformed commands and 
overwrite the return address to execute his/her shellcode. 
Although the attack [9] is an input validation attack, the 
deployment is similar to a buffer overflow attack. Table 4 
summarizes the ten normal use cases that we developed 
for FtpD. Use cases 7 through 10 represents the legitimate 
errors that a user can make during a normal FTP session. 
On the other hand, in the previous research [1] wuftpd was 
run on only large file downloads over a period of two 
days. 

Table 4. FtpD normal use cases 
Use Case System Calls 

1. Upload 10K data 2249 
2. Upload 60M data 32912 
3. Upload 650M data 334252 
4. Download 10K data 2252 
5. Download 60M data 32908 
6. Download 650M data 334244 
7. Three failed login attempts 2236 
8. Help screen 2017 
9. Attempt to access non-existent files 
and directories 

2213 

10. Type non-existent commands. 2017 

5 Analysis 
When anomaly detectors such as Stide [4] are 

employed in real-world conditions, an acceptable anomaly 
rate threshold should be established to minimize the false 
positive rate. Although such a threshold varies between 



applications, it is reasonable to assume that it is non-zero. 
Characteristics of a training set, configuration parameters 
of a detector and different stages of an attack are some of 
the factors that may affect the setting of such a threshold. 
Thus, in Section 5.1, we analyze the significance of 
different training sets.  

Different configurations of Stide (in particular 
sliding window sizes) creates different normal behavior 
models, therefore it is crucial to determine the optimal 
window size for the application. In Section 5.2, we 
analyze the significance of different sliding window sizes 
from 1 to 15 [2, 3, 5].  

 Moreover anomalous sequences are not necessarily 
homogenous throughout the attack; hence certain 
components of the attacks may raise more alarms than the 
rest. In Section 5.3, we analyze the significance of 
anomaly rates of each component present in an attack. 

5.1 Significance of Training Sets 
The objective of training set analysis is to determine 

how the anomaly rate changes when Stide encounters 
different normal behavior scenarios and whether it is 
possible to determine a suitable anomaly rate threshold. In 
order to save space, results for Stide configured with 
window size 6 are presented in Tables 5 to 8 where tests 
with different window sizes produced comparable results. 

Tables 5 to 8 summarize the significance of training 
Stide on different use cases denoting normal behavior, 
with testing performed over the remaining use cases and 
the known vulnerability. The last row “all normal” 
represents the case in which Stide training is conducted 
over all cases associated with normal behavior. The last 
column “attack” represents the case in which original 
attack is tested on Stide trained with the data set(s) 
indicated in the corresponding rows. All of the test results 
are given in terms of percentages where 0% indicates 
normal and 100% indicates completely anomalous 
behavior. 

In Table 5, it is apparent that the anomaly rate is 
sensitive to a wide range of behavioral properties for 
Traceroute. For example, in the case of target host 
change, Stide produces a 56% anomaly rate when it is 
trained on the local server trace (case2) and tested on 
remote server trace (case1). On instances of Stide trained 
with a single trace file anomaly rates on normal use cases 
varies between 2.8% to 94.3%. Needless to say, training 
Stide over all the normal uses cases (normal behavior); 
resulted in a zero anomaly rate on normal use cases, see 
“all normal” columns in Tables 5 to 8. On the other hand, 
for Traceroute, the anomaly rate of the attack varies 
between 61.26% and 73.87%. 

In Table 6, anomaly rates for the common use cases 
of Restore, in other words typical full and incremental 
backup operations, are low. Therefore results indicate that 
use cases 1 to 4 (restoring from incremental and full 
backups) exhibit similar behavioral properties. On the 

other hand, when Stide is trained on case 5 (help screen), 
tests on cases 1 to 4 produce anomaly rates even higher 
than the attack.  

Similarly, cleaning temporary directories exhibit 
similar behavioral properties (cases 1 and 2); therefore as 
in the case of Restore, common use cases of Tmpwatch 
produce low anomaly rates, Table 7. However printing 
the help screen produces a 43% anomaly rate. It is 
apparent that case 3 is substantially different than the 
common use cases. This implies that anomaly rate 
threshold should be set high enough to accommodate 
these divergent normal uses, which in turn increases the 
false negative rate for the attack. 

 
Table 5. Anomaly rates (%) reported by Stide 
with different training combinations for 
Traceroute (window size = 6) 

Test Cases 
   case1 case2 case3 case4 case5 attack 

case1 0.00 2.75 7.43 15.79 9.49 61.26 
case2 56.09 0.00 7.43 15.79 7.30 61.26 
case3 78.11 40.39 0.00 15.79 48.91 63.06 
case4 94.25 83.53 71.62 0.00 84.67 73.87 
case5 73.87 31.37 35.14 15.79 0.00 64.26 

Tr
ai

ni
ng

 C
as

es
 

all normal 0.00 0.00 0.00 0.00 0.00 61.26 
 

Table 6. Anomaly rates (%) reported by Stide 
with different training combinations for Restore 
(window size = 6) 
 Test Cases 
   case1 case2 case3 case4 case5 attack 

case1 0.00 1.37 0.00 2.2x10-2 8.33 84.69 
case2 1.78 0.00 8.4x10-3 5.9x10-2 8.33 84.69 
case3 1.60 2.35 0.00 2.9x10-2 8.33 84.69 
case4 1.87 0.29 9x10-3 0.00 8.33 84.69 
case5 98.05 95.69 99.97 99.94 0.00 84.76 

Tr
ai

ni
ng

 C
as

es
 

all 
normal 0.00 0.00 0.00 0.00 0.00 84.69 

 
Table 7. Anomaly rates (%) reported by Stide 
with different training combinations for 
Tmpwatch (window size = 6) 
  Test Cases 
   case1 case2 case3 attack 

case1 0.00 0.06 43.24 56.89 
case2 0.05 0.00 43.24 56.56 
case3 98.53 99.06 0.00 85.25 

Tr
ai

ni
ng

 
C

as
es

 

all normal 0.00 0.00 0.00 55.08 
 

 
 



Table 8. Anomaly rates (%) reported by Stide with different training combinations for FtpD (window size = 
6) 
  Test Cases 
   case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack 

case1 0.00 0.02 1.5x10-3 2.32 0.16 0.02 7.59 0.25 1.86 0.25 24.71 
case2 0.27 0.00 0.00 2.10 0.14 0.01 7.37 0.00 1.63 0.00 24.54 
case3 0.27 0.00 0.00 2.10 0.14 0.01 7.37 0.00 1.63 0.00 24.54 
case4 1.70 0.10 0.01 0.00 0.00 0.00 7.23 0.00 1.45 0.00 23.54 
case5 1.70 0.10 0.01 0.00 0.00 0.00 7.23 0.00 1.45 0.00 23.54 
case6 1.70 0.10 0.01 0.00 0.00 0.00 7.23 0.00 1.45 0.00 23.54 
case7 22.24 94.69 99.48 22.66 94.73 99.48 0.00 15.25 20.29 15.25 34.13 
case8 6.74 93.64 99.37 7.40 93.69 99.38 7.46 0.00 5.40 0.00 24.61 
case9 2.64 93.36 99.35 2.72 93.37 99.35 7.23 0.00 0.00 0.00 23.48 
case10 6.74 93.64 99.37 7.40 93.69 99.38 7.46 0.00 5.40 0.00 24.61 

Tr
ai

ni
ng

 C
as

es
 

all normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.78 
 

Anomaly rates reported for FtpD in Table 8 shows 
that uploading and downloading scenarios (cases 1 to 6) 
are similar in behavior. However when legitimate errors 
are introduced to the FTP sessions (cases 7 to 10), 
anomaly rates vary between 2.64% and 99.48%. Given 
that the attack produces around 23% anomaly rate, it is 
difficult to determine an anomaly rate threshold that can 
distinguish attack behavior from legitimate errors in the 
case of FtpD. 

5.2 Significance of Window Sizes 
As discussed in Section 3, the window size 

determines the length of the sequence stored in the 
“normal database” of Stide. The objective of the window 
size analysis is to determine the impact of employing 
longer sliding window sizes as opposed to shorter ones.  

In order to investigate the impact of the window size 
selection for Stide, we trained Stide using different 
window sizes between 1 and 15. Figure 1 shows the 
anomaly rates (%) reported by Stide using different 
window sizes for four applications. Anomaly rate for the 
attack is obtained by running the attack through Stide. 
Anomaly rate for normal behavior is calculated by taking 
a median of anomaly rates obtained from different 
combinations of training and test sets (as in Tables 5, 6, 7 
and 8). 

Figure 1 shows that longer sliding window lengths 
increase the anomaly rate reported for the attacks in all 
four applications. When a windows size of 1 is employed, 
Stide can detect attacks only if they use a system call that 
was not in the training data. Therefore anomaly rates for 
attacks are around 0% to 20% for this window size 
configuration. In all four applications attacks are reported 
with close to 100% anomaly rates, i.e. attacks are more 
detectable for larger window sizes.  As window size 
increases, median anomaly rates for normal behavior 
remain low in the case of FtpD and Restore whereas for 

Traceroute and Tmpwatch they also increase. Thus, it is 
crucial to determine a window size that maximizes the 
anomaly rate for attacks while minimizing the anomaly 
rate for normal behavior. The runtime of Stide remains 
stable over increasing window sizes; hence there is no 
additional computational cost for using larger window 
sizes up to 15. 

 
 

 
Figure 1. Anomaly rates (%) of attacks and 
median of normal use cases reported for 
different window sizes (1 to 15) 

 
Window size experiments indicate that Stide detects 

attacks even with shorter window sizes. For example, 
anomaly rate of Tmpwatch attack rises rapidly from ~10% 
to ~70% when window size is increased from 1 to 3. 
However, experiments also indicate that for Tmpwatch 
and Traceroute applications, increasing the window size 
results in models too specific to training data, hence 
increasing the false alarm rates.     



5.3 Significance of Attack Components  
We make the observation that there are two parts to 

attacks: the exploit itself, and the activities necessary to 
gain control of the vulnerable application, which is the 
preamble. An attack will not be successful unless both 
activities are complete. The analysis results detailed in 
Sections 5.1 and 5.2 are conducted relative to the attack on 
the whole whereas the aforementioned works [1, 2, 3] 
were conducted relative to the exploit alone.  

In a buffer overflow exploit, the first step is to 
corrupt the data types and local variables, which gives the 
attacker the control of the application. The second step is 
to execute arbitrary code or command to carry out a 
malicious action such as spawning a root shell or creating 
a super-user account. The first step is called the preamble 
and the actions taken during the execution of the attackers 
code is called the exploit. Attackers can modify the exploit 
components fairly easily to evade detection. Modifying the 
preamble requires finding an alternative way to take 
advantage of the vulnerability or finding another 
vulnerability, therefore cannot easily be modified. 

As a result, the length of the preamble gains 
importance when determining the operational limits of 
Stide. Specifically, if the preamble is short and if the 
attacker manages to modify his exploit accordingly (e.g. 
instead of spawning a root shell, create a super-user 
account), the anomaly rate of the attack as a whole can be 
substantially reduced. However if the preamble is long, 
there will be a higher likelihood of raising alarms no 
matter what type of exploit is being used. 

The boundary between the preamble and the exploit 
is determined by locating the first action of the exploit. In 
case of Traceroute, Restore and FtpD an execve(‘/bin/sh’) 
system call is the starting point of the exploit whereas in 
case of Tmpwatch an execve(‘/bin/useradd’) is the starting 
point. Table 9 details the anomaly rates reported for 
preamble and exploit components separately for the four 
attacks.  

In total, Traceroute attack executed 344 system calls 
of which 24% belongs to the preamble component and 
76% to the exploit. The attack as a whole (i.e. preamble 
and exploit combined) produced 199 mismatches 91.96% 
of which was generated by the exploit. Therefore, in the 
case of the Traceroute attack, an attacker can alter his 
exploit and substantially reduce the anomaly rate. Similar 
observations can be made for Restore and Tmpwatch 
attacks. On the other hand, FtpD attack executed 3024 
system calls, of which 86% belongs to the preamble 
component and 14% to the exploit. The attack as a whole 
produced 679 mismatches, 73.20% of which was 
generated by the preamble. Consequently, modifying the 
exploit would have less impact on the anomaly rate for 
FtpD. Furthermore, since it is a remote attack, the attacker 
will have memory space constraints for the exploit.   

In previous work [1, 2 3], authors successfully 
developed ‘mimicry’ attacks against Stide with 0% 

anomaly rates. In Table 10 we present the actual anomaly 
rate that Stide would report if the original exploits were 
replaced by equivalent exploits of the same size that raised 
no alarms. It is evident that even the exploit raises no 
alarms, the preamble will still cause anomaly rates 
between ~2% and ~25%. Furthermore, in previous 
research; an attack was considered optimal, if the exploit 
never generated any mismatches against the Stide 
database. Stide counts mismatches between the candidate 
trace and sequences of normal behavior in the detector 
database. That is to say, a sliding window comparison is 
made between the database and the candidate trace, in case 
of an attack preamble plus exploit. Therefore, even though 
exploit raises no alarms, introducing the preamble will 
return mismatches (alarms) for both the preamble itself, 
and at the transition between the preamble and the exploit. 
Thus, for a predefined preamble, the best that a mimicry 
attack can do is to minimize the contribution from the 
exploit and the transition from the preamble to the exploit.       

Results indicate that anomaly rate returned for the 
exploit alone does not represent the anomaly rate returned 
for the entire attack since the activities associated with 
gaining the control of the application (preamble) can raise 
alarms. Furthermore, the ratio of the preamble to the 
exploit and the anomaly rate contributed by the preamble 
plays an important role in the overall anomaly rate of an 
attack. It is evident that anomaly rate of an attack can be 
better reduced where the exploit is relatively longer than 
the preamble, even though the exploit itself raises some 
alarms, Tables 9 and 10. 

 
Table 9. Mismatch rates (%) for attacks reported 
by Stide for the preamble and exploit 
components separately  

Traceroute 
 Preamble Exploit Total 
System Calls 24% 76% 344 
Mismatches 8.04% 91.96% 199 

Restore 
System Calls 32% 68% 4454 
Mismatches 30.83% 69.17% 3613 

Tmpwatch 
System Calls 18% 82% 645 
Mismatches 4.53% 95.47% 331 

FtpD 
System Calls 86% 14% 3024 
Mismatches 73.20% 26.80% 679 
 
 
 
 
 



Table 10. If Exploit Anomaly rate = 0%, the 
anomaly rate associated with the Preamble 
component of attacks 
 Anomaly Rate (from preamble) 
Traceroute 4.72% 
Restore 25.04% 
Tmpwatch 2.34% 
Ftpd 16.46% 

6 Conclusion 
In this paper, we analyzed four UNIX applications 

that have been used by the previous researchers against 
Stide anomaly detector to determine the significance of 
different stages of an attack as well as selecting 
appropriate training data configuration parameters. 

Specifically, we discussed that there are two 
components to every attack, namely the preamble and the 
exploit. Anomaly rates for these two components should 
be analyzed together, since it is not possible to employ an 
exploit without a break in to the system.  

Attack component experiments show that it is almost 
impossible to evade an anomaly detector with 0% anomaly 
rate. In the past, where such results were achieved, the 
anomaly rate was only calculated by counting the 
mismatches over the length of the exploit part, ignoring 
the contribution from the preamble. However, in practice 
every attack has 2 stages, the break in, which we call as 
the preamble in this work, and the exploit itself. Even 
though it may be possible to achieve a 0% anomaly rate on 
an exploit alone, overall it will always still have non-zero 
anomaly rate associated with the preamble and the 
transition from the preamble to the exploit. The effect of 
the preamble and the transition from the preamble to the 
exploit is emphasized more when the size of the preamble 
part of an attack is greater than the size of the exploit part, 
as in the case of FtpD. Indeed, one can try to change this 
ratio by artificially increasing the length of the exploit but 
even then it is impossible to make it 0% due to the effect 
and limitations on the total attack length i.e. as in finite 
buffer sizes. Thus, for a predefined preamble, the best that 
a mimicry attack can do is to minimize the contribution 
from the exploit and the transition from the preamble to 
the exploit. 

Furthermore, training set experiments indicate that 
normal behavior can vary substantially between different 
normal use scenarios, particularly apparent for FtpD and 
Traceroute. Consequently anomaly rates for normal 
behavior also remain high, which in turn makes it difficult 
to identify attacks. For example, if anomaly rate for 
normal behavior is around 70%, it is difficult to detect an 
attack with 20% anomaly rate, as in the case of FtpD.  

Moreover, Stide window size experiments indicate 
that employing larger window sizes increases the anomaly 
rate of attacks hence making them more detectable. On the 
other hand, in the case of Traceroute and Tmpwatch, 

anomaly rate on normal behavior also increases with the 
increase in window sizes. This suggests that as the 
window size increases the normal database gets more 
specific to the training data.       

Future work will consider the analysis of different 
anomaly detectors to understand the effect of preamble in 
more detail. Moreover, a framework, which includes the 
effect of the preamble in the vulnerability/penetration 
testing, will be developed. 
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