
Abstract
In this paper, we aim to determine the significance of

different stages of an attack, namely the preamble and the
exploit, on an achieved anomaly rate. To this end, we
analyze four UNIX applications that have been used by the
previous researchers against Stide anomaly detector. Our
results show that the effect of the preamble on the anomaly
rate is much greater when the size of the preamble
component of an attack is greater than the size of the
exploit component. Furthermore, we investigate the
impact of training set selection and the length of sliding
window on detector performance.

Keywords
Information hiding, anomaly detection, benchmarking

1 Introduction
Over the past years, systematic methods have been

proposed to analyze host based anomaly detection systems
against blind spots and evasion attacks. Previous research
established that it is possible to evade anomaly detectors,
namely Stide, by altering an attack to make it look like
normal behavior. The common assumptions in these works
[1, 2, 3] are:
• Detectors are built for critical system applications

that have limited behavior;
• While establishing a baseline for the detector, normal

behavior can be easily approximated;
• Attackers do not have to obtain all possible cases of

normal behavior.
Consequently, these methods mainly focus on

crafting new exploits that can completely bypass a given
anomaly detector. The common shortcoming of the
previous research is that they focused on optimizing a
particular component (namely exploit component) of an
attack without analyzing the attack as a whole.

In this work, we analyze four UNIX applications that
have been used by the previous researchers [1, 2, 3] to
determine the significance of different stages of an attack
as well as selecting appropriate training data configuration
parameters. Therefore, the significance of our work is
threefold: First, we analyze the importance of training set
selection to detector performance. Normal behavior can
vary substantially between various normal use scenarios. It
is crucial to employ a training set that will minimize false
alarms whilst maximizing the detection rate. Second, we
analyze the use of different detector window sizes. The

window size parameter determines the length of the
sequence stored in normal databases. Therefore, we
analyze the impacts of employing longer window sizes as
opposed to shorter ones. Third, we identify two
components, which exists in all buffer overflow attacks,
namely to break in (gaining control of the vulnerable
application) and the exploit. Previous [1, 2, 3] work
concentrated only on the exploit component. However we
believe that anomaly rates for these two stages should be
analyzed collectively, since it is impossible to deploy an
exploit without first breaking in. Thereafter, in this work,
attacks will be considered as comprising from two stages;
the break in part of an attack is referred to as the preamble
and the second stage as the exploit.

Furthermore, in this paper, we demonstrate that it
may not be possible in all cases for an attacker to
eliminate all anomalies from the attack. Although critical
system services have limited behavioral properties,
building normal behavior models based on this assumption
causes extensive false alarms due to slight changes in
normal behavior or legitimate faults/errors, i.e. making a
typo in the command. In practice, anomaly detectors are
deployed with an anomaly rate threshold to minimize false
alarms. Therefore it is important, from the perspectives of
both the attacker and the security professional, to
determine a suitable anomaly threshold.

Our objective is to provide a complete analysis of an
attack against an anomaly detector. Specific shortcomings
in the current blind spot and mimicry attack research for
anomaly based security tools and techniques are identified.
We believe that before an anomaly detector is
developed/built for an application, a similar analysis
should be performed to determine the importance of
training data scenarios and significance of legitimate
errors to detection. Furthermore, in the case of blind spot
analysis (vulnerability testing), we believe that researchers
should analyze the original vulnerability to determine the
contribution from preamble and exploit components.

The remainder of the paper is organized as follows.
Section 2 discusses the earlier research on blind spot and
mimicry attack analysis. Anomaly detector that we
employed in this work is presented in Section 3, whereas
the four vulnerable applications employed are detailed in
Section 4. Experimental results are reported in Section 5
and conclusions are drawn in Section 6.

On the Contribution of Preamble to Information Hiding in Mimicry Attacks

H. Güneş Kayacık, A. Nur Zincir-Heywood
Dalhousie University, Faculty of Computer Science,

6050 University Avenue, Halifax, Nova Scotia. B3H 1W5
{kayacik, zincir}@cs.dal.ca

2 Related Work
Related detector blind spot testing [1, 2, 3] is mainly

focused on the Stide detector [4] (or variants thereof) and
employed critical UNIX system applications. Undetectable
exploits are developed by locating appropriate sequences
of system calls that match the contents of Stide’s normal
behavior database whilst successfully reaching the
behavioral objectives of the original exploit. Typically, a
minimalist configuration of the anomaly detector is
utilized, under the general observation that it is easier to
make a strong detector if the alphabet of permitted
instructions is small.

Wagner et al. [1] introduced the “mimicry attack”
concept, where all attacks were modified to evade
detection. They proposed three methods to avoid
detection: (i) modifying system call parameters; (ii)
inserting system calls that are irrelevant to the attack being
deployed while minimizing the anomaly rate; and finally
(iii) generating equivalent attacks by replacing the system
calls that can easily be identified by the detector. An
example for the last method is substituting an attack that
spawns a UNIX shell with an attack that creates a super-
user account. Both of these give the attacker super-user
privileges. Mimicry attacks were generated for wuftpd
service by manually modifying the detectable system call
sequences. Normal behavior was generated by “running
wuftpd on hundreds of large file downloads over a period
of two days”[1].

Tan et al. [2] employed four methods to manually
change the behavior of the attack: (i) hiding an attack in
the blind spot of the detector; (ii) modifying an attack so
that it looks like a normal behavior; (iii) hiding an attack
so it looks like a less dangerous attack; and (iv) modifying
an attack so that it looks like a different attack. In their
experiments, restore, tmpwatch and kernel/traceroute
attacks were employed. Normal behavior for Restore is
obtained by “monitoring a regular user executing the
restore system program to retrieve backup data from a
remote backup server” [2]. Normal behavior for tmpwatch
is generated by populating a short directory tree with files
under /tmp and executing tmpwatch program to clean files
that are more than 5 days old. Normal behavior for kernel
attack was not obtained since the vulnerability in the
kernel was used to exploit another vulnerability in
traceroute.

Stide detects foreign sequences that are not in the
normal database. Thus, Tan et al. [3] investigated hiding in
the detector’s blind spots in more detail by developing
variants of a core exploit with the objective of increasing
the minimal foreign sequence length. They reported that if
the foreign sequence length is greater than the sliding
window size of Stide, an attack could evade detection. In
their experiments they employed Stide on traceroute and
passwd applications. For traceroute, normal behavior is
obtained by “executing traceroute to acquire diagnostic

information regarding the network connectivity between
the localhost and nis.nsf.net”[3]. For the passwd
application, normal data was obtained by executing the
passwd without any arguments, which expires the old
password and installs the new one provided by the user.

3 Stide Anomaly Detector
Anomaly detection systems attempt to build

behavioral models of normal use and employ this as the
basis for detecting suspicious activities. This way, known
and unknown/unseen attacks can be detected as long as the
attack behavior deviates sufficiently from the normal
behavior. Needless to say, if the attack is sufficiently
similar to the normal behavior, it may not be detected.
However, user behavior itself is not constant, thus even
the normal activities of a user may start raising alarms. In
this work, Stide [4] was used as the target anomaly
detector, since it has been employed in many of the earlier
works [1, 2, 3, 5] and also to the best of our knowledge, it
is the only anomaly detector that is available as open
source.

Input to the Stide detector takes the form of system
call traces of an application for which the detector is
trained. Specifically, Stide builds a “normal database” by
segmenting the training data (of system call traces) into
fixed length sequences [5]. To do so, a sliding window of
N is employed over the training dataset and the resulting
system call patterns are stored in the “normal database”.
During testing, the same sliding window size is employed
on the data. Resulting patterns are compared against the
“normal database” and if there is no match, a mismatch is
recorded. Given a window size of N and system call trace
length M, anomaly rate for the trace is calculated by
dividing the number of mismatches by the number of
sliding window patterns (i.e. M – N + 1).

4 Vulnerable Applications
Based on previous research discussed in Section 2, in

our analysis we employed four applications from Redhat
Linux 6.2, which have known and documented
vulnerabilities. Traceroute, Restore, Tmpwatch
vulnerabilities can be exploited locally whereas FtpD
vulnerability can also be exploited remotely. For each
application, we developed normal use cases, which
represent the scenarios of legitimate use.

4.1 Traceroute
Traceroute is a network diagnosis tool, which is used

to determine the routing path between a source and a
destination by sending a set of control packets to the
destination with increasing time-to-live values. A typical
use of traceroute involves providing the destination IP,
whereas the application returns information on the route
taken between source and destination.

Redhat 6.2 is shipped with Traceroute version 1.4a5,
where this is susceptible to a local buffer overflow exploit
that provides a local user with super-user access [6]. The
attack takes advantage of vulnerability in malloc chunk,
and then uses a debugger to determine the correct return
address to take control of the program. In order to analyze
the traceroute behavior under normal conditions, we
developed five use cases, Table 1; whereas in the previous
research [3] only one use case was used for training,
namely use case 1.

Table 1. Traceroute normal use cases
Use Case System Calls

1. Target a remote server 736
2. Target a local server 260
3. Target a non existent host 153
4. Target localhost 142
5. Help screen 24

4.2 Restore
Restore is a component of UNIX backup

functionality, which restores the file system image taken
by the dump command. Files or directories can be restored
from full or incremental backups.

Restore version 0.4b15 is vulnerable to an
environment variable attack where the attacker modifies
the path of an executable and runs restore. This results in
executing an arbitrary command with super-user
privileges, which leads to a root compromise. In the
published attack [7], attacker spawns a root shell. Table 2
summarizes five normal use cases that we developed for
Restore. As in the previous work [2], we have monitored a
regular user executing the restore system program to
retrieve backup data from a remote backup server.
However, we have also repeated the case for different
sizes of files and back-up types.

Table 2. Restore normal use cases

Use Case System Calls
1. Restore a small file system dump
from a full backup.

2256

2. Restore a small file system dump
from an incremental backup.

1027

3. Restore a large file system dump
from a full backup.

167207

4. Restore a large file system dump
from an incremental backup.

68185

5. Help screen 53

4.3 Tmpwatch
Tmpwatch removes files and directories that have not

been accessed by a user for a given time from temporary
directories. Tmpwatch version 2.2 is susceptible to an
input validation error, where the optional Tmpwatch

component – fuser – improperly handles system () library
calls. An attacker can generate a file with a maliciously
crafted name containing special characters, which causes
Tmpwatch to execute arbitrary system commands. In the
published attack [8], the attacker creates an account with
super-user privileges. Table 3 summarizes three normal
use cases that we developed for Tmpwatch. Again, we
followed a similar path as done in the previous work [2],
but also generated additional data by using different sizes
of directory trees.

 Table 3. Tmpwatch normal use cases
Use Case System Calls

1. Tmpwatch cleans a small
temporary directory.

6383

2. Tmpwatch cleans a large
temporary directory

28809

3. Help screen 42

4.4 FtpD
Redhat 6.2 is shipped with Washington University

Ftp Server version 2.6.0(1), which provides FTP access to
remote users. WuFtpd 2.6.0(1) is susceptible to an input
validation attack where the attacker can corrupt the
process memory by sending malformed commands and
overwrite the return address to execute his/her shellcode.
Although the attack [9] is an input validation attack, the
deployment is similar to a buffer overflow attack. Table 4
summarizes the ten normal use cases that we developed
for FtpD. Use cases 7 through 10 represents the legitimate
errors that a user can make during a normal FTP session.
On the other hand, in the previous research [1] wuftpd was
run on only large file downloads over a period of two
days.

Table 4. FtpD normal use cases
Use Case System Calls

1. Upload 10K data 2249
2. Upload 60M data 32912
3. Upload 650M data 334252
4. Download 10K data 2252
5. Download 60M data 32908
6. Download 650M data 334244
7. Three failed login attempts 2236
8. Help screen 2017
9. Attempt to access non-existent files
and directories

2213

10. Type non-existent commands. 2017

5 Analysis
When anomaly detectors such as Stide [4] are

employed in real-world conditions, an acceptable anomaly
rate threshold should be established to minimize the false
positive rate. Although such a threshold varies between

applications, it is reasonable to assume that it is non-zero.
Characteristics of a training set, configuration parameters
of a detector and different stages of an attack are some of
the factors that may affect the setting of such a threshold.
Thus, in Section 5.1, we analyze the significance of
different training sets.

Different configurations of Stide (in particular
sliding window sizes) creates different normal behavior
models, therefore it is crucial to determine the optimal
window size for the application. In Section 5.2, we
analyze the significance of different sliding window sizes
from 1 to 15 [2, 3, 5].

 Moreover anomalous sequences are not necessarily
homogenous throughout the attack; hence certain
components of the attacks may raise more alarms than the
rest. In Section 5.3, we analyze the significance of
anomaly rates of each component present in an attack.

5.1 Significance of Training Sets
The objective of training set analysis is to determine

how the anomaly rate changes when Stide encounters
different normal behavior scenarios and whether it is
possible to determine a suitable anomaly rate threshold. In
order to save space, results for Stide configured with
window size 6 are presented in Tables 5 to 8 where tests
with different window sizes produced comparable results.

Tables 5 to 8 summarize the significance of training
Stide on different use cases denoting normal behavior,
with testing performed over the remaining use cases and
the known vulnerability. The last row “all normal”
represents the case in which Stide training is conducted
over all cases associated with normal behavior. The last
column “attack” represents the case in which original
attack is tested on Stide trained with the data set(s)
indicated in the corresponding rows. All of the test results
are given in terms of percentages where 0% indicates
normal and 100% indicates completely anomalous
behavior.

In Table 5, it is apparent that the anomaly rate is
sensitive to a wide range of behavioral properties for
Traceroute. For example, in the case of target host
change, Stide produces a 56% anomaly rate when it is
trained on the local server trace (case2) and tested on
remote server trace (case1). On instances of Stide trained
with a single trace file anomaly rates on normal use cases
varies between 2.8% to 94.3%. Needless to say, training
Stide over all the normal uses cases (normal behavior);
resulted in a zero anomaly rate on normal use cases, see
“all normal” columns in Tables 5 to 8. On the other hand,
for Traceroute, the anomaly rate of the attack varies
between 61.26% and 73.87%.

In Table 6, anomaly rates for the common use cases
of Restore, in other words typical full and incremental
backup operations, are low. Therefore results indicate that
use cases 1 to 4 (restoring from incremental and full
backups) exhibit similar behavioral properties. On the

other hand, when Stide is trained on case 5 (help screen),
tests on cases 1 to 4 produce anomaly rates even higher
than the attack.

Similarly, cleaning temporary directories exhibit
similar behavioral properties (cases 1 and 2); therefore as
in the case of Restore, common use cases of Tmpwatch
produce low anomaly rates, Table 7. However printing
the help screen produces a 43% anomaly rate. It is
apparent that case 3 is substantially different than the
common use cases. This implies that anomaly rate
threshold should be set high enough to accommodate
these divergent normal uses, which in turn increases the
false negative rate for the attack.

Table 5. Anomaly rates (%) reported by Stide
with different training combinations for
Traceroute (window size = 6)

Test Cases
 case1 case2 case3 case4 case5 attack

case1 0.00 2.75 7.43 15.79 9.49 61.26
case2 56.09 0.00 7.43 15.79 7.30 61.26
case3 78.11 40.39 0.00 15.79 48.91 63.06
case4 94.25 83.53 71.62 0.00 84.67 73.87
case5 73.87 31.37 35.14 15.79 0.00 64.26

Tr
ai

ni
ng

 C
as

es

all normal 0.00 0.00 0.00 0.00 0.00 61.26

Table 6. Anomaly rates (%) reported by Stide
with different training combinations for Restore
(window size = 6)
 Test Cases
 case1 case2 case3 case4 case5 attack

case1 0.00 1.37 0.00 2.2x10-2 8.33 84.69
case2 1.78 0.00 8.4x10-3 5.9x10-2 8.33 84.69
case3 1.60 2.35 0.00 2.9x10-2 8.33 84.69
case4 1.87 0.29 9x10-3 0.00 8.33 84.69
case5 98.05 95.69 99.97 99.94 0.00 84.76

Tr
ai

ni
ng

 C
as

es

all
normal 0.00 0.00 0.00 0.00 0.00 84.69

Table 7. Anomaly rates (%) reported by Stide
with different training combinations for
Tmpwatch (window size = 6)
 Test Cases
 case1 case2 case3 attack

case1 0.00 0.06 43.24 56.89
case2 0.05 0.00 43.24 56.56
case3 98.53 99.06 0.00 85.25

Tr
ai

ni
ng

C

as
es

all normal 0.00 0.00 0.00 55.08

Table 8. Anomaly rates (%) reported by Stide with different training combinations for FtpD (window size =
6)
 Test Cases
 case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack

case1 0.00 0.02 1.5x10-3 2.32 0.16 0.02 7.59 0.25 1.86 0.25 24.71
case2 0.27 0.00 0.00 2.10 0.14 0.01 7.37 0.00 1.63 0.00 24.54
case3 0.27 0.00 0.00 2.10 0.14 0.01 7.37 0.00 1.63 0.00 24.54
case4 1.70 0.10 0.01 0.00 0.00 0.00 7.23 0.00 1.45 0.00 23.54
case5 1.70 0.10 0.01 0.00 0.00 0.00 7.23 0.00 1.45 0.00 23.54
case6 1.70 0.10 0.01 0.00 0.00 0.00 7.23 0.00 1.45 0.00 23.54
case7 22.24 94.69 99.48 22.66 94.73 99.48 0.00 15.25 20.29 15.25 34.13
case8 6.74 93.64 99.37 7.40 93.69 99.38 7.46 0.00 5.40 0.00 24.61
case9 2.64 93.36 99.35 2.72 93.37 99.35 7.23 0.00 0.00 0.00 23.48
case10 6.74 93.64 99.37 7.40 93.69 99.38 7.46 0.00 5.40 0.00 24.61

Tr
ai

ni
ng

 C
as

es

all normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.78

Anomaly rates reported for FtpD in Table 8 shows
that uploading and downloading scenarios (cases 1 to 6)
are similar in behavior. However when legitimate errors
are introduced to the FTP sessions (cases 7 to 10),
anomaly rates vary between 2.64% and 99.48%. Given
that the attack produces around 23% anomaly rate, it is
difficult to determine an anomaly rate threshold that can
distinguish attack behavior from legitimate errors in the
case of FtpD.

5.2 Significance of Window Sizes
As discussed in Section 3, the window size

determines the length of the sequence stored in the
“normal database” of Stide. The objective of the window
size analysis is to determine the impact of employing
longer sliding window sizes as opposed to shorter ones.

In order to investigate the impact of the window size
selection for Stide, we trained Stide using different
window sizes between 1 and 15. Figure 1 shows the
anomaly rates (%) reported by Stide using different
window sizes for four applications. Anomaly rate for the
attack is obtained by running the attack through Stide.
Anomaly rate for normal behavior is calculated by taking
a median of anomaly rates obtained from different
combinations of training and test sets (as in Tables 5, 6, 7
and 8).

Figure 1 shows that longer sliding window lengths
increase the anomaly rate reported for the attacks in all
four applications. When a windows size of 1 is employed,
Stide can detect attacks only if they use a system call that
was not in the training data. Therefore anomaly rates for
attacks are around 0% to 20% for this window size
configuration. In all four applications attacks are reported
with close to 100% anomaly rates, i.e. attacks are more
detectable for larger window sizes. As window size
increases, median anomaly rates for normal behavior
remain low in the case of FtpD and Restore whereas for

Traceroute and Tmpwatch they also increase. Thus, it is
crucial to determine a window size that maximizes the
anomaly rate for attacks while minimizing the anomaly
rate for normal behavior. The runtime of Stide remains
stable over increasing window sizes; hence there is no
additional computational cost for using larger window
sizes up to 15.

Figure 1. Anomaly rates (%) of attacks and
median of normal use cases reported for
different window sizes (1 to 15)

Window size experiments indicate that Stide detects

attacks even with shorter window sizes. For example,
anomaly rate of Tmpwatch attack rises rapidly from ~10%
to ~70% when window size is increased from 1 to 3.
However, experiments also indicate that for Tmpwatch
and Traceroute applications, increasing the window size
results in models too specific to training data, hence
increasing the false alarm rates.

5.3 Significance of Attack Components
We make the observation that there are two parts to

attacks: the exploit itself, and the activities necessary to
gain control of the vulnerable application, which is the
preamble. An attack will not be successful unless both
activities are complete. The analysis results detailed in
Sections 5.1 and 5.2 are conducted relative to the attack on
the whole whereas the aforementioned works [1, 2, 3]
were conducted relative to the exploit alone.

In a buffer overflow exploit, the first step is to
corrupt the data types and local variables, which gives the
attacker the control of the application. The second step is
to execute arbitrary code or command to carry out a
malicious action such as spawning a root shell or creating
a super-user account. The first step is called the preamble
and the actions taken during the execution of the attackers
code is called the exploit. Attackers can modify the exploit
components fairly easily to evade detection. Modifying the
preamble requires finding an alternative way to take
advantage of the vulnerability or finding another
vulnerability, therefore cannot easily be modified.

As a result, the length of the preamble gains
importance when determining the operational limits of
Stide. Specifically, if the preamble is short and if the
attacker manages to modify his exploit accordingly (e.g.
instead of spawning a root shell, create a super-user
account), the anomaly rate of the attack as a whole can be
substantially reduced. However if the preamble is long,
there will be a higher likelihood of raising alarms no
matter what type of exploit is being used.

The boundary between the preamble and the exploit
is determined by locating the first action of the exploit. In
case of Traceroute, Restore and FtpD an execve(‘/bin/sh’)
system call is the starting point of the exploit whereas in
case of Tmpwatch an execve(‘/bin/useradd’) is the starting
point. Table 9 details the anomaly rates reported for
preamble and exploit components separately for the four
attacks.

In total, Traceroute attack executed 344 system calls
of which 24% belongs to the preamble component and
76% to the exploit. The attack as a whole (i.e. preamble
and exploit combined) produced 199 mismatches 91.96%
of which was generated by the exploit. Therefore, in the
case of the Traceroute attack, an attacker can alter his
exploit and substantially reduce the anomaly rate. Similar
observations can be made for Restore and Tmpwatch
attacks. On the other hand, FtpD attack executed 3024
system calls, of which 86% belongs to the preamble
component and 14% to the exploit. The attack as a whole
produced 679 mismatches, 73.20% of which was
generated by the preamble. Consequently, modifying the
exploit would have less impact on the anomaly rate for
FtpD. Furthermore, since it is a remote attack, the attacker
will have memory space constraints for the exploit.

In previous work [1, 2 3], authors successfully
developed ‘mimicry’ attacks against Stide with 0%

anomaly rates. In Table 10 we present the actual anomaly
rate that Stide would report if the original exploits were
replaced by equivalent exploits of the same size that raised
no alarms. It is evident that even the exploit raises no
alarms, the preamble will still cause anomaly rates
between ~2% and ~25%. Furthermore, in previous
research; an attack was considered optimal, if the exploit
never generated any mismatches against the Stide
database. Stide counts mismatches between the candidate
trace and sequences of normal behavior in the detector
database. That is to say, a sliding window comparison is
made between the database and the candidate trace, in case
of an attack preamble plus exploit. Therefore, even though
exploit raises no alarms, introducing the preamble will
return mismatches (alarms) for both the preamble itself,
and at the transition between the preamble and the exploit.
Thus, for a predefined preamble, the best that a mimicry
attack can do is to minimize the contribution from the
exploit and the transition from the preamble to the exploit.

Results indicate that anomaly rate returned for the
exploit alone does not represent the anomaly rate returned
for the entire attack since the activities associated with
gaining the control of the application (preamble) can raise
alarms. Furthermore, the ratio of the preamble to the
exploit and the anomaly rate contributed by the preamble
plays an important role in the overall anomaly rate of an
attack. It is evident that anomaly rate of an attack can be
better reduced where the exploit is relatively longer than
the preamble, even though the exploit itself raises some
alarms, Tables 9 and 10.

Table 9. Mismatch rates (%) for attacks reported
by Stide for the preamble and exploit
components separately

Traceroute
 Preamble Exploit Total
System Calls 24% 76% 344
Mismatches 8.04% 91.96% 199

Restore
System Calls 32% 68% 4454
Mismatches 30.83% 69.17% 3613

Tmpwatch
System Calls 18% 82% 645
Mismatches 4.53% 95.47% 331

FtpD
System Calls 86% 14% 3024
Mismatches 73.20% 26.80% 679

Table 10. If Exploit Anomaly rate = 0%, the
anomaly rate associated with the Preamble
component of attacks
 Anomaly Rate (from preamble)
Traceroute 4.72%
Restore 25.04%
Tmpwatch 2.34%
Ftpd 16.46%

6 Conclusion
In this paper, we analyzed four UNIX applications

that have been used by the previous researchers against
Stide anomaly detector to determine the significance of
different stages of an attack as well as selecting
appropriate training data configuration parameters.

Specifically, we discussed that there are two
components to every attack, namely the preamble and the
exploit. Anomaly rates for these two components should
be analyzed together, since it is not possible to employ an
exploit without a break in to the system.

Attack component experiments show that it is almost
impossible to evade an anomaly detector with 0% anomaly
rate. In the past, where such results were achieved, the
anomaly rate was only calculated by counting the
mismatches over the length of the exploit part, ignoring
the contribution from the preamble. However, in practice
every attack has 2 stages, the break in, which we call as
the preamble in this work, and the exploit itself. Even
though it may be possible to achieve a 0% anomaly rate on
an exploit alone, overall it will always still have non-zero
anomaly rate associated with the preamble and the
transition from the preamble to the exploit. The effect of
the preamble and the transition from the preamble to the
exploit is emphasized more when the size of the preamble
part of an attack is greater than the size of the exploit part,
as in the case of FtpD. Indeed, one can try to change this
ratio by artificially increasing the length of the exploit but
even then it is impossible to make it 0% due to the effect
and limitations on the total attack length i.e. as in finite
buffer sizes. Thus, for a predefined preamble, the best that
a mimicry attack can do is to minimize the contribution
from the exploit and the transition from the preamble to
the exploit.

Furthermore, training set experiments indicate that
normal behavior can vary substantially between different
normal use scenarios, particularly apparent for FtpD and
Traceroute. Consequently anomaly rates for normal
behavior also remain high, which in turn makes it difficult
to identify attacks. For example, if anomaly rate for
normal behavior is around 70%, it is difficult to detect an
attack with 20% anomaly rate, as in the case of FtpD.

Moreover, Stide window size experiments indicate
that employing larger window sizes increases the anomaly
rate of attacks hence making them more detectable. On the
other hand, in the case of Traceroute and Tmpwatch,

anomaly rate on normal behavior also increases with the
increase in window sizes. This suggests that as the
window size increases the normal database gets more
specific to the training data.

Future work will consider the analysis of different
anomaly detectors to understand the effect of preamble in
more detail. Moreover, a framework, which includes the
effect of the preamble in the vulnerability/penetration
testing, will be developed.

Acknowledgments
The authors gratefully acknowledge the support of CFI
New Opportunities, NSERC Discovery, MITACS and
SwissCom Innovations Inc. The first author is a recipient
of a Killam pre-doctoral scholarship. All research was
conducted at Dalhousie NIMS Laboratory,
http://www.cs.dal.ca/projectx/.

References
[1] D. Wagner, P. Soto: Mimicry attacks on host based intrusion

detection systems, ACM Conference on Computer and
Communications Security, pp. 255-264, 2002.

[2] Kymie M. C. Tan, John McHugh, Kevin S. Killourhy: Hiding
Intrusions: From the Abnormal to the Normal and Beyond,
Information Hiding, pp. 1-17, 2002.

[3] Kymie M. C. Tan, Kevin S. Killourhy, Roy A. Maxion:
Undermining an Anomaly-Based Intrusion Detection System Using
Common Exploits, RAID, pp. 54-73, 2002.

[4] Forrest S., Hofmeyr S. A., Somayaji A., Longstaff T. A.: A
sense of self for Unix processes, IEEE Symposium on Security and
Privacy, pp. 120--128, 1996.

[5] Kymie M.C. Tan, Roy A. Maxion: “Why 6?" Defining the
Operational Limits of stide, an Anomaly-Based Intrusion Detector,
IEEE Security and Privacy, pp. 188-201, 2002.

[6] SecurityFocus Vulnerability archives, “LBNL Traceroute Heap
Corruption Vulnerability”, http://www.securityfocus.com/bid/1739

[7] SecurityFocus Vulnerability archives, “RedHat Linux restore
Insecure Environment Variables Vulnerability”,
http://www.securityfocus.com/bid/1914/

[8] SecurityFocus Vulnerability archives, “Tmpwatch Arbitrary
Command Execution Vulnerability”,
http://www.securityfocus.com/bid/1785/

[9] SecurityFocus Vulnerability archives, “Wu-Ftpd Remote Format
String Stack Overwrite Vulnerability”,
http://www.securityfocus.com/bid/1387/

