

Self-organizing Spatial Regions for Sensor Network Infrastructures

Nicola Bicocchi, Marco Mamei, Franco Zambonelli

DISMI – Università di Modena e Reggio Emilia – Via Amendola 2 – Reggio Emilia – ITALY
{nicola.bicocchi, marco.mamei, franco.zambonelli}@unimore.it

Abstract
This paper focuses on sensor networks as shared
environmental infrastructures, and presents an
approach to enable a sensor network to analyze, in a
distributed way and with predefined energy costs, the
patterns of sensed information so as to self-partition
itself into spatial regions of nodes characterized by
similar patterns. Such regions can then be used to
aggregate data on a per-region basis and to enable
multiple and mobile users to extract meaningful
information at very limited and pre-defined costs.

1. Introduction

Sensor network technologies are gaining increasing
interest and increasing diffusion [Est02, ChoK03]. In
this area, most of current researches as well as most of
systems deployed so far consider that sensor networks
are to be designed and deployed with the only goal of
monitoring some specific physical phenomena and of
reporting data back to some fixed base station acting as a
sink [Pol04, BouG03], possibly after some limited in-
network processing of such data [MadH02, GehM04].

However, the trend toward ubiquitous mass
deployment of sensor networks will make them become
more and more as a general shared infrastructure for the
use of multiple [MulA06, Cur05] and possibly mobile
users [Cur05, Lu05]. The idea is that users in an
environment can access the sensors in their
neighborhood to gather information about the
surrounding physical world and/or to support the
activities of context-aware services. In such a scenario,
approaches based on optimization of routing paths
towards a fixed sink do now work properly, implying
notable energy costs and slow response times.

For sensor networks to become effectively usable as
a shared infrastructure for interacting with the physical
world, it is necessary to conceive novel approaches to
gather information from them in an effective way,
ensuring reasonable bounds both on the amount of

energy consumed to satisfy the need of several possibly
mobile users and on the response time and accuracy of
data provided to them.

The idea underlying our approach is that of having the
network continuously run, at specific frequency rates
and thus with predefined energy costs, a distributed
algorithm to identify regions of the network
characterized by similar patterns for sensed data. To this
end, each node periodically compares with its neighbors
the sensed data patterns. A logical link between nodes is
re-enforced in the case of relevant similar ity and
weakened in the case of relevant dissimilarity.
Eventually, the execution of the algorithm results in a
self-organized overlay of logical links partitioning the
network in regions.

Upon formation of such regions, aggregation of data
can act on a per-region basis, by exploiting a gossip-
based algorithm that, by relying on piggybacking,
requires no additional communication costs. Due to this
in-netwo rk process of per-region aggregation, which
also avoids the accuracy losses of global aggregation
algorithms, multiple and mobile users in need to access
information can be provided, with very limited costs,
prompt access to aggregate values on the local region,
and can also acquire a compact perception of the overall
status of the network.

2. Region Aggregation Noise

The “Region Aggregation Noise” (RAN) approach
considers the following: (i) a distributed algorithm is
running in the network as a sort of “background noise”
with a predictable energy cost to partition the sensor
network into regions characterized by similar patterns
for sensed data; (ii) The formation of such regions is
used to compute, at no additional costs and on a per-
region basis, aggregation of sensed data, so that users
accessing the network for gathering information can be
provided with such pre-computed aggregated data at
limited costs.

2.1. Region Formation

Let us assume to sense, over a certain area covered by a
sensor network, a particular property (see e.g. Figure 1-a
and 1-b), and that each sensor is capable of measuring
the local value v of such property. For instance, v could
be a temperature, or a light level, or whatever property a
sensor is capable to infer about its sensed portion of the
environment.

The goal of the region formation algorithms is to
have sensors self-organize into disjoint set of regions
each characterized by “similar” measures of the property
(e.g.. see Figure 1-c and 1-d). Organization is regions
occur via a process of building an overlay of virtual
weighted links between neighbor nodes, such that nodes
belonging to the same region have strong links, while
neighbor nodes belonging to different regions have weak
(or null) links. As examples: measuring the light level
could be used for a sensor network in a building to self-
partition on a “per room” basis (different rooms being
characterized by different light level, while the light
level inside a room is always quite homogeneous);
measuring the vibration level on a mountain slope could
lead to self-organizing a sensor network into regions
associated to surfaces with different geological
properties.

a) b)

c) d)
Figure 1. Region self-partitioning. a) a scalar field
with 4 regions with different values of a property v;
b) a sensor network immersed in the above field,
with links representing the physical layer; c)
overlay region organization with p=0,4 defining 2
regions (we show only the logical links); d) overlay
region organization with p=0,05 defining 4 regions,

The problem of clustering the network into regions

with similar properties is very well studied and several
centralized algorithms have been proposed to this
purpose nowadays (assuming the availability of sensor
values), but it is more challenging to perform in a
strictly local and distributed fashion.

Basically, our algorithm work as follows. Let si and
sj be two sensors. They can be considered neighbors if
they are within the wireless radio range r. Define the
values sensed by si and sj as v(si) and v(sj), and let us
assume that a generic distance function D can be define
for couples of v values (thus defining v as a metric
space), i.e., D(v(s i), v(sj)). Region formation is then
based on interatively computing the value of the logical
link l(si,sj) for each and every node of the system, as in
the following “Update_link” procedure:

Update_link:

if D(v(si), v(sj)) < T {
 l(si,sj) = min(l(si,sj) + delta, 1)
} else {
 l(si,sj) = max(l(si,sj) - delta, 0)
}

Where: T is a threshold that determines whether the
measured values are close enough for l(si,sj) to be re-
enforced or, otherwise, weakened, and delta is a value
affecting the reactiveness of the algorithm in updating
link. Details on these parameters follow. What is already
clear, though, is that after some iterations, if the D(v(si),
v(sj)) is lower than threshold T, l(si,sj) will converge to 1
otherwise to 0. In the simplest case, one could consider
two nodes si and sj to be in the same region when l(si,sj)
is over a threshold Th, However, to improve stability, we
introduced a hysteretic cycle with two threshold Tl and
Th. Transitively, two nodes sh and sk are defined in the
same region if and only if exists a chain of nodes such
that each pair of neighbors in the chain are in the same
region. For the actual execution of the algorithm, each
node stores a vector describing, for each of the
neighbors, the current value of the link towards it and a
flag (also necessary for hysteresis) signaling the status
of the link (connected or not).

The distributed execution of the algorithm is based
on a sort of gossip scheme [JelMB05]: each node
periodically wakes up, randomly selects a specific
number (or a specific percentage) of its neighbors,
exchange with them the needed data (i.e., the v values,
plus other data that will be detailed in the following), and
then execute the “Update_link” procedure for each of

the selected neighbors:

Do_forerever:
 Wait(t);
 neigh[] = Select_neighbor(num_neigh);
 Foreach(neigh[])
 Data = Exchange_data();
 Update_link(data);
Done

At this point, it is rather clear that our algorithm tends to
impose a pre-defined, parameterizable, and uniform
load, on the system. Each node in the system execute the
same amount of operations, the interval t determining
the frequency of such operations and the number of
neighbor num_neigh selected at each round determining
the communication costs of these operations. Shorter t
or higher num_neigh tend to speed up the convergence
of the algorithm, but increase the energy consumed by
sensor per time unit. What matters, is that one can select
the proper trade -off between convergence times and
accuracy and energy cost, an issue that will also be
analyzed in the performance evaluation section. In other
word, one can select the “degree of noise” of our
algorithm and, so, the energy consumed over time.

Let us now go into more details about the other
parameters of our algorithm.

Concerning the parameter delta, it determines how
fast the link weight l changes its value. The choice of
this parameter is not crucial, provided that it is chosen
small enough to require several cycles of the
“Update_link” procedure to actually modify the status
of link (in other words, it should be notably smaller than
the Tl-Th hysteretic interval). This avoids that random or
temporary fluctuations of the measured value at a node
continuously causes changes in the established regions.

Concerning T, a challenging issue in our approach is
consists is tackling the difference between the strictly
local nature of “Update_link” interactions and the
inherently global meaning of the threshold T. How can
two nodes evaluate which is the right threshold to
establish if they are similar enough to be in same region
or not if they don't know anything about the rest of the
network ? For instance, a difference of 10°C in a wood
can be considered relevant during normal days but
irrelevant for the sake of fire detection. To deal with this
problem avoiding the need for a priori information, we
opted to define T by exploiting dynamically collected
global values of the property v. In particular we define T
as a portion of the whole range of values seen over the
network. Using scalar values, we defined T as:

T = (globalMax – globalMin) * p

where p is a real number between 0 an 1. In this way, one
can parameterize the sensibility of the algorithm by
using a relative value p rather than some absolute value
requiring a priori knowledge on the range of v values. If
one wants to obtain very large regions to organize the
network based on macroscopic difference one can
select p close to 1 (as in Figure 1-c). If one is interested
in more fine-grained region organizations one can select
p close to 0 (as in Figure 1-d).

It is worth emphasizing that for each node to locally
acquire the globalMax and globalMin value, one can
execute a global aggregation algorithm over the whole
network. Simply, as described in [JelMB05], each node,
when exchanging data with one of its neighbors, can
exchange with it the information about the maximum and
minimum he know so far, possibly update its local
knowledge, and eventually have the knowledge about the
actual globalMin and globalMax reach each node of the
network. Specifically, each node si, after having
exchanged data with node sj, executes the following
“Global_aggregation” procedure:

Global_aggregation:
 if(globalMini>globalMinj) globalMini=globalMin j
 if(globalMaxi<globalMaxj)
globalMaxi=globalMaxj

with globalMini and globalMaxi both initialized at vi.

We emphasize this requires very minimal additional
effort by nodes. In fact, one can exploit the existing
region aggregation noise and its “Exchange_data”
messages to exchange the GlobalMin and GlobalMax
values, by piggybacking with such messages the
additional data needed, and then computing the
“Global_aggregate” function after the “Update_link”
procedure inside the main algorithm body. Moreover,
one can also decide to exploit the same schema to
compute any additional distributed aggregation
algorithms (e.g. computing the average), and possibly
even to compute aggregations over properties different
from v.

2.2. Gossip-based Per-Region Aggregation

Clearly, the local availability of aggregated information
over a sensor network may be of some use
independently of regions. However, globally aggregated
values give very little details on the status of the

network, and are definitely of little use for users wishing
to acquire info about environmental properties around
him/her. For this reason, our approach also exploits per-
region aggregation algorithms.

By considering the situation in which regions are
already formed (the handling of transitory situations will
be discussed later on), computing aggregation function
in a region reduces to executing a gossip-based
aggregation algorithm only between those couples of
neighbor nodes that are in the same region (i.e., for
which the l is over the Th threshold). Again, computing
per-region aggregation function does not introduce
significant additional burden to the network. The
exchange of data between nodes can occur by
piggybacking over the existing messages, and the
computation of local aggregation algorithms reduces to
adding a simple “Local_aggregation” function in the
main body of our basic scheme, as follows:

Do_forerever:
 Wait(t);
 neigh[] = Select_neighbor(num_neigh);
 Foreach(neigh[])
 Data = Exchange_data();
 Update_link(data);
 Global_aggregation();
 If(connected) Local_aggregation();
Done

The “Local_aggregation” function can include the

identification of the local minimum and the local
maximum of some sensed value w within the region
(computed as in the global case), or the calculus of the
average Avg of some value w. In this case, the local
aggregation for a node si, after having exchanged data
with connected node sj, simply works as follows:

 Avgi(w) = (Agvi(w)+Avgj(w))/2

with Avgi(w) simply initialized at the local value wi.

Currently, in our scheme, we also decided to enforce
two peculiar aggregation functions that are of great use
for facilitating the gathering of information by users.

The first aggregation function considers that each
node at the frontiers of a region (i.e., each node which
has at least one virtual link l below the threshold)
propagates within the region an “hop counter” initialized
at 0. By having such counter by re-propagated by each
node on per-minimum basis, the results is that each
nodes in the region eventually becomes aware of its

distance form the closest border of the frontier. This is
use for enabling each node to locally estimate the
“radius” within which the aggregated data are definitely
meaningful, and to identify whether or not it can
properly answer to a query. We also plan to experience
more sophisticated aggregation function to enable nodes
to locally reach a higher understanding of the shape and
topology of the local region, possibly relying on
existing work of distributed topology recognition.

A second aggregation function exploits a sort of per-
region minimum identification towards the election of a
region leader. By having each sensors exchange its
unique ID with its neighbor, the minimum ID eventually
recognized by each node will define the leader (and the
leader itself will recognize itself as that). This can be
very useful for mobile users to identify that they are
changing regions, as well as to enable a quick and
compact identification of all the regions within an area.

Let us now analyze the dynamic behavior of the
system during region formation and region re-shaping
(changes in the values of the property v upon which
region formation relies can induce changes in the shape
and dimensions of regions).

In general, the initial values of the virtual links l
between nodes are irrelevant for region formation.
Therefore, let us assume an initial situation in which all
nodes are disconnected from each other (i.e., each node
is a region in itself). As the algorithm will start running,
nodes with similar values of v will start connecting with
each other, and sets of regions with growing dimensions
will start forming and possibly merge each other, until a
stable situation will be reached.

Concurrently with the above region formation
process, the local aggregation procedure start executing
as soon as two nodes gets virtually connected in the
same region, and the computing of aggregated data
gradually involves more and more regions, eventually
converging when a stable region situation is reached. It
can be shown (and it is quite intuitive indeed, due to the
cumulative nature of aggregation) that gossip-based
aggregation processed does not experience problems if
executed on a growing number of nodes, as in the region
formation transitory. This also apply for the
identification of the region leader (when two regions
merge, one of the two leaders will eventually recognize
it is no longer such).

Similar considerations apply to the case in which
new sensors are dynamically added in the system.

Let us now consider the case in which some existing
regions shrinks, either because a confining region has
expanded or because some sensor nodes have died. In

this case, two problems arise: (i) the values computed by
the local aggregation functions may no longer be valid
(e.g., the former maximum may have left the region) but
– due the cumulative nature of gossip-based aggregation
– will not be properly updated; (ii) the region leader may
have exited the region.

To overcome the former problem, we decided to
enforce a sort of “evaporation” of the values computed
by the local aggregation algorithms (except for the
leader election algorithm). In other words, the local
aggregated values at a node are slowly (compared to the
convergence time of the aggregation algorithms) moved
towards the initial values, e.g., the local values of the
node. In this way, the weight of those data cumulated by
the algorithm will gradually diminish, unless properly
re-enforced. As an example, consider the case of the
maximum of a region, and assume that each node in a
region has already locally available the value of such
maximum. Now, have each node slightly “evaporate”
such value by making it diminish approach the local
value. If the node holding such maximum is already in
the region, a node will be made aware of this soon (i.e.,
since evaporation is slow, before the node itself has
“evaporated” the value too much) and can undo the
evaporation effects. If the node holding the maximum,
instead, has exited the region, evaporation will enable to
stabilize the new maximum at each node, after proper
evaporation. Similar considerations apply, e.g., to the
calculus of the average.

The second problem is somewhat similar, but cannot
be tackled by evaporation (the leader ID is not a value
that can be tolerate approximation). Accordingly, the
solution is inspired by the same principle, but is
somewhat less elegant and fluid. Each node keeps track
of the “oldness” of the value of the leader ID
(accounting for the number of cycles of the algorithm
since the last time it received from some node such ID).
Whenever such oldness becomes excessive, the current
leader ID is considered obsolete and a new leader (i.e.,
the new node with the minimal ID) is identified and
elected.

Clearly, all the above solutions also help to deal with
sensor networks immersed in environment with
dynamically changing properties, and overall make the
RAN approach fully self-organizing and self-adaptable.

3. Evaluation

We have performed numerous experiments based on
simulations using the Repast framework [Repast06]. Our
goal was twofold. First, we wanted to evaluate the

effectiveness of the region detection algorithm. Second,
we wanted to evaluate the convergence and accuracy
level of the aggregation algorithms, and the trade-off
between accuracy and energy consumption.

The results of the simulations were obtained by
simulating scalar fields in which the sensor network is
immersed similar to that of Figure 1. Though we have
conducted several experiments on fields with different
shapes and values, we have always obtained comparable
results from both qualitative and quantitative viewpoint.
Therefore, we report here on an environment filled with
500 wireless sensors disposed over a random graph such
that the mean number of neighbors for each node is 15
(i.e., qualitatively assimilable to the sensor network of
Figure 1-b). The simulated scalar field exhibits values v
such that four different quadrants are recognizable (as in
Figure 1-a). Each quadrant has a fixed mean m and
variance s. Starting from the top left quadrant and
proceeding clockwise, they could be identified as q1, q2,
q3, q4. Mean values m1..m4 of f in q1..q4 are respectively
120, 80, 20, -20. Variances s1..s4 are arranged such that
in each quadrant are allowed values v in range [m – 2, m
+ 2].

Network behaviour can be described from both a
static and dynamic point of view. From the former we
can analyze, independently from the speed of
convergence, which are stable states reached by the
network and evaluate the effects of related parameter p.
From the latter we show the dynamic behavior of the
network, the speed of convergence and the accuracy
level depending on num_neigh and t.

3.1. Region Detection

From a static viewpoint, as described in Subsection 2.1
and as shown in Figure 1, variations on the parameter p
induce the network in self-partition into regions of
different sizes. The same behavior has been verified to
apply for networks immersed in fields with different
shapes and with different sizes.

Let us now switch to the dynamic viewpoint and
show how variations of the gossip percent num_neigh
and the sleep cycle t affect the speed of convergence
and the accuracy of the region detection algorithm. Let’s
consider a simulated a 500-nodes sensor network and a
scalar field similar to that of Figure 1. Initially all nodes
are not connected with any neighbor. We collect data
over the first 255 cycles. Within cycles from 0 to 128 p
is set to 0.4. During this interval the network converge
to a status similar to that of Figure 1-c, i.e., splitting the
network into regions. At cycle 129, we changed p from

0.4 to 1.0 , making the network re-compact into a single
region (as in Figure 1-b).

In Figure 2-a we show the evolution in the average
number of nodes per region as time passes, by varying
the gossip percentage. Figure 3-b shows the same kind
of evolution but by varying the sleep period t of sensor
nodes. Values are collected at the completion of each
simulation cycle. Both the graph show that the number
of nodes of the region start from 0, grow to 250 during
the first phase [0 – 128 cycles] and than reaches 500
during the second phase [129 – 255 cycles]. Clearly,
reducing the gossip percentage or increasing the sleep
period t make the network slower in the region detection
process.

From Figure 2, it also emerges that the speed of the
network is less influenced by variations of num_neigh
than by variations of t.

The strange “stairs-like” trend of data lines obtained
by setting t=4 and t=8 (Figure 2-b) clearly show the
non-linear nature of the algorithm. These are mostly due
to the fact that, when a region is forming, lots of sub
regions are growing within it connecting the most
similar neighbors. Only when the new actual minimum
ID of the new region reaches a node, such node
recognize it is becoming part of a new region.

a)

0

50

100

150

200

250

300

350

400

450

500

0 25 50 75 100 125 150 175 200 225 250

Cycle

N
um

be
r

of
 n

od
es

num_neigh 100%

num_neigh 50%

num_neigh 25%

b)

0

50

100

150

200

250

300

350

400

450

500

0 25 50 75 100 125 150 175 200 225 250

Cycle

N
um

be
r

of
 n

od
es

t = 1 t = 4

t = 8

Figure 2. Evolution of region detection. a) t = 1.

num_neigh = 1, num_neigh = 0.5, num_neigh = 0.25;
b) num_neigh = 1. t = 1, t = 4, t = 8.

3.2. Local Aggregation

Let us know focus on the behavior of the RAN approach
in evaluating aggregated values.

From the static viewpoint, all local aggregation
algorithms experiences corrently reach convergence
towards the corrent (real) value.

From the dynamic viewpoint, Figure 3 shows the
trend of several values aggregated on a per region basis.
Curves in each graph represent the minimum (worst
case) estimate of the region maximum, the maximum
(worst case) estimate of the region minimum, the
minimum and the maximum (the two worst cases)
estimates of the average, and the real actual value of the
average computed over all nodes within the growing
region. Figure 4-a show results obtained with
num_neigh=1.0 and t = 1. Figure 3-b and 3-c show
results obtained reducing num_neigh to 0.5 and
increasing t to 4, respectively, Clearly, reducing the
gossip percentage or increasing the sleep period t make
the network slower not only in region detection but also
in correctly evaluating locally aggregated values.

All the graphs in Figure 3 show the same trend.
During the first cycles while links are being reinforced,
all the aggregated values don’t change. At the beginning
(cycle 0) , when the region starts forming is clearly
visible a fast convergence of the local maximum and
minimum to their new values respectively of 120 and
80. Average related values have a relatively small
transitory and eventually reach the value of 100 as
expected. At cycle 128, p is changed to p = 1.0 and the
region starts growing another time. The local maximum
does not have to change its value. The local minimum
reaches quickly its new value (-20) in a few iterations.
Average values instead have a longer transitory but
eventually slowly converge to the expected value of 50.
Observing Figure 3 is clear that different aggregate
values behave differently varying num_neigh and t. In
particular accuracy of average related values are really
more sensible to variations of num_neigh and t than the
local minimum and maximum have.

To summarize this, there is a clear trade-off between
energy consumption and accuracy: higher num_neigh
and the lower t clearly provides for more accuracy over
time, but overall increase the energy consumed. Due to
the high convergence speed of Max e Min showed under
all conditions tested and to the fact that regions are
expected to have relatively limited size, scalability of

the RAN approach should not be a major issue. We
tested it with sensor networks up to 10000 nodes
obtaining similar results.

a)
-20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

V
al

u
e

Real Average

Max Average

Min Average

Max

Min

b)
-20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

V
al

u
e

Real Average

Max Average

Min Average

Max

Min

c)
-20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

V
al

u
e

Real Average

Max Average

Min Average

Max

Min

Figure 3. Per region aggregated values. Minimum
estimate of the maximum, maximum estimate of the
minimum, minimum and maximum estimates of the
average and real value of the average. a) num_neigh
= 1.0 , t = 1; b) num_neigh = 0.5, t = 1; c) num_neigh
= 1.0, t = 4.

4. Application Areas and Current
Limitations

4.1. Application Areas

The most direct and general-purpose way of exploiting
the RAN approach – and the one that indeed motivated
our work – is for supporting queries by multiple and
mobile users. A user in an environment that wants to
retrieve information about the surrounding will typically
access the nearest sensor and query it about some local
patterns of sensed data, e.g. “give me the average value
of the temperature in this room” or “give me the
maximum value of temperature within 500 meters”. At
this point, if the sensor network has already provided for
aggregating such data on a per region basis and the
queries relate to the local region (which the node itself
can recognize by estimating the distance of the closest
border via the local hop counter), the sensor can
immediately answer the query without further burdening
the sensor network with computation and
communications. The limitations in supporting more
general and more global queries are analyzed later on in
this section.

The possibility of identifying regions characterized
by specific patterns of sensed data, and the possibility of
computing aggregated data within the network can also
be effectively used to improve the capability of the
sensor network to recognize unusual patterns of sensing
and, in case, to automatically generate alarms. For
example, we are currently cooperating with the
geological department of the Modena Apennine to
exploit our approach for effective landslide detection.
Other examples in this direction include the possibility
of detecting anomalies in buildings, streets, or parks.

More in general, the expected dramatic increase in
the number and density of sensor networks deployed in
our world, will soon reach a point in which the overall
amount of data generated by such network will make it
impossible to transfer these data to some centralized
location in a raw way. In-network aggregation will
become the only solution to extract useful information
from them. Accordingly, approaches such as RAN,
which enables the sensor network to self-organize
regions of aggregation and to report at limited cost
concise information about such regions is likely to
become increasingly important.

Last but not least, the RAN approach can be seen as a
way to effectively extract high-level semantic
knowledge about the structure and characteristics of an

unknown environment, for use by context-aware and
location-based services [Bau06].

4.2. Limitations

A shortcoming of the RAN approach is in its limited
support for general queries. In fact, one has to a priori
identify what type of sensed data (e.g., the temperature)
or data function (e.g., some combination of temperature
and light) to exploit as the basis for identification of
regions and what data to exploit for the subsequent per
region aggregation. However, if sensor networks are to
become a shared infrastructure for the use by multiple
mobile users, it may be also expected that different
users will need to access different types information
among the several that a sensor network can provide.

To overcome this problem, it is possible to think at
exploiting our background algorithms for the concurrent
building of several virtual overlay region partitions, each
corresponding to different kinds of sensed data or data
functions. Moreover, one could think at the possibility
of dynamically “injecting” into a network the
specification of any particular data function and/or
aggregation function. This would enable to have the
network dynamically start building an additional overlay
region partitioning based on such data, or computing the
newly specified aggregation functions over the existing
region partitions, or both. This would open up the
possibility of supporting general region-based queries,
as e.g. proposed by Region Streams [NewW04] and
Logical Neighborhoods [MotP06]. Although enforcing
multiple partitions and multiple aggregation functions
would not require additional messages between sensor
nodes, but only the piggybacking of additional
information in existing messages, the costs of building
and maintaining multiple virtual overlays and several
aggregation functions have to be carefully evaluated.

Another, less critical, limitation of RAN is that it is
able to effectively answer queries within a region, but
fall short in providing users information about what it
happening outside the region. For instance, if a user asks
“the average temperature within 500 meter” and the
query is performed at a distance of 300 meters from the
closest confining regions, the sensor will not be able to
answer immediately. To overcome this problem, we are
planning to implement efficient and low-costs inter-
region aggregation algorithms based on gossiping.

Finally, the region partitioning algorithm we have
experience so far requires, at each node, the availability
of global data representing the maximum and the
minimum of the sensed data pattern to properly identify

regions. This represents indeed a limitation from a
scalability point of view. On this base, we are currently
experiencing with a modified algorithms capable of
identifying regions on the basis of local information
only.

5. Related Work

Most work on data gathering and aggregation in sensor
networks assumes the presence of fixed sinks (base
stations) to which sensed data flow. The basic approach
is that of having sensors build a tree rooted at the sink
and supporting the routing of sensed data towards it
[Pol04]. Some form of in-network data aggregation
(e.g., averaging) can be performed as data from sensors
climb the tree [MadH02, GehM04], and various
optimization can apply in tree formation [BouG03]. In
any case, thee approaches can hardly apply for shared
infrastructural sensor networks, because the costs of
building a tree on demand for many possible users at
different and varying locations would be unbearable,
both in terms of energy and response time.

Several research works in the area of sensor
networks start recognizing the need to promote direct
access to sensor data by multiple and mobile users
[NewW04, Cur05]. These works mostly focuses of
defining suitable general-purpose primitives and
language constructs to enable users to flexibly query the
network and obtain information about individual sensor
data and aggregated data related to specific regions.
However, apart from a few exceptions [MotP06], none
of these systems faces the problem of how to
implement the query functionalities, i.e., of what
specific data gathering and aggregation algorithms
should run in the sensor network.

To idea of exploiting aggregation algorithm
continuously running in the network so as to provide
locally to each node a more global picture of the of the
sensed environment has been originally proposed for
P2P networks [JelMB05] and, later, also for
[DimSW06]. However, for sensor networks, the general
approach of gossip algorithms executing over the whole
network is not satisfactory: users querying a network to
be interested in aggregated values related to a local
region (as in RAN) rather than in global values related to
the whole network.

Some in-network algorithms for self-organization of
region partitioning in sensor networks have been
proposed [CatWS02, PanS05], sharing some basic
principle with our RAN approach. The key differences

with RAN are that: (i) these algorithms require a priori
information about the typically patterns exhibited by the
environment, while RAN does not and it is fully self-
organizing; (ii) these algorithms are not conceived for
other goals than recognizing regions, while RAN goes
further, by exploiting region partitioning for computing
aggregation and for supporting efficient queries by
multiple and mobile users.

6. Conclusions and Future Works
If sensor networks are going to become a pervasive
shared infrastructure, algorithms and tools will be
required to support querying by multiple and mobile
users other than by fixed sinks. The proposed approach
enables a sensor network to analyze the patterns of
sensed information so as to self-partition the network
into regions characterized by similar sensing patterns,
and then to aggregate data on a per-region basis. In this
way, multiple and mobile users can extract meaningful
information from the network at very limited costs and
with notable accuracy.

We are currently working to extend our approach to:
support multiple overlays and general-purpose queries;
support inter-region global queries; work even without
the availability of global aggregated information. Last
but not least, we are in the process of verifying the
effectiveness of the approach on a real sensor network
testbeds, other than in a simulated environment.

References

[BouG03] Athanassios Boulis, Saurabh Ganerival, and Mani B.
Srivastava, “Aggregation in sensor network: An Energy-
Accuracy Trade-off”, Proceedings of IEEE SANPA,
May 2003.

[CatWS02] E. Catterall, K. Van Laerhoven and M. Strohbach.
"Self-Organization in Ad-Hoc Sensor Networks: An
Empirical Study". The 8th International Conference on
the Simulation and Synthesis of Living Systems, Sydney,
(AU). MIT Press, pp. 260-264.

[ChoK03] C.-Y. Chong, S. P. Kumar, “Sensor networks:
Evolution, opportunities, and challenges”, Proceedings of
the IEEE, 91(8):1247-1256, Aug. 2003.

[Cur05] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy,
G. P. Picco, "Mobile Data Collection in Sensor Networks:
The TinyLime Middleware", Journal of Pervasive and
Mobile Computing, (4)1:446-469, Dec. 2005.

[DimSW06] A. G. Dimakis, A. D. Sarwate, M. J. Wainwright,
“Geographic Gossip: Efficient Aggregation for Sensor
Networks”, Proceedings of the International Conference

on Information Processing in Sensor Networks, Nashville
(TN), ACM Press, April 2006.

[GehM04] Johannes Gehrke, Samuel Madden, “Query
Processing In Sensor Networks”, IEEE Pervasive
Computer Journal, April 2004.

[JelMB05] M. Jelasity, A. Montresor, O. Babaoglu, “Gossip-
based Aggregation in Large Dynamic Networks”, ACM
Transactions on Computer Systems.

[Lu05] Chenyang Lu, Guoliang Xing, Octav Chipara, Chien-Liang
Fok, Sangeeta Bhattacharya: “A Spatiotemporal Query
Service for Mobile Users in Sensor Networks”, 25th
International Conference on Distributed Computing
Systems, June 2005, pp. 381-390.

[MadH02] Samuel Madden, Joseph M. Hellerstein, “Distributing
queries over low-power wireless sensor networks”,
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, June 2002.

[MotP06] G. Mottola, G. P. Picco, "Logical Neighborhoods: A
Programming Abstraction for Wireless Sensor
Networks", Proceedings of the 2nd International
Conference on Distributed Computing in Sensor Systems,
San Francisco (CA), June 2006.

[MulA06] R. Müller, G. Alonso, “Shared Queries in Sensor
Networks for Multi-User Support”, Technical Report
508, ETH Zürich, Institute of Pervasive Computing, Feb.
2006. 23(3):219-252, Aug. 2005.

[NewW04] R. Newton, M. Welsh, “Region Streams: Functional
Macroprogramming for Sensor Networks”, Proceedings
of the 1st International VLDB Workshop on Data
Management for Sensor Networks, Toronto (CA), pp. 78
– 87, 2004.

[PanS05] A. Panangadan. G. S. Sukhatme, “Data Segmentation
for Region Detection in a Sensor Network”, Center for
Robotics and Embedded Systems, University of Southern
California, Technical Report 05-005, 2005.

[Pol04] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler, J.
Anderson, "Analysis of Wireless Sensor Networks for
Habitat Monitoring", in Wireless Sensor Networks,
Kluwer Academic Publishers (NY), 2004, pp. 399-423.

