
©2007 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish
this material for advertising or promotional purposes
or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works
must be obtained from the IEEE

An Analysis of Web Services Mediation Architecture and Pattern in Synapse

Chen Wu and Elizabeth Chang
Digital Ecosystems and Business Intelligence Institute

Curtin University of Technology, Perth, Australia
E-mail:{chen.wu, elizabeth.chang}@cbs.curtin.edu.au

Abstract

Web services mediation – the process of bridging
disparate service requesters and providers – is of
paramount importance. However, few existing open
projects are directly working on service mediation.
Although mediation has become an essential part of
commercial Enterprise Service Bus (ESB) products,
they use proprietary solution, which cannot lead to a
high level understanding of the mediation architecture.
And the open source ESBs do not really focus on
modeling the mediation[1]. After exploring the nature
of service mediation problem, this paper presents a
systematic evaluation of the support for mediation
architecture and patterns in Synapse, a leading Apache
open source project that provides a mediation
framework for Web services. Based on this evaluation
analysis, the paper identifies several interesting
mediation research directions and, more importantly,
reveals the linkage between Synapse and our ongoing
work in providing a distributed web services mediation
network.

1. Introduction

The key premises of Web services are
standardization and interoperability, which pave the
underpinning for Internet-scale integration. However,
Web services R&D is still in its emerging phase. As
such, the technologies and specifications that various
organizations have adopted and implemented can be
very different. Such difference might be caused by,
among other factors, a) the ambiguous understanding
of these complicated WS-* standards, b) insufficient
comprehension of the interactions between service
providers (SP) and service requesters (SR). Moreover,
from the business perspective, web services are
typically provided by different organizations and hence
are designed not to be dependent of any collective
computing entity but to reflect a certain degree of
autonomy. This local autonomy brings about service
mismatch in terms of, for example, the formats of data
and the semantics of interfaces.

To remedy the heterogeneity issue without

degrading the degree of loose-coupling, the notion of
service mediation is first proposed in the Enterprise
Service Bus (ESB) industry community [1-3]. In
general, service mediation enables a Service Requester
to connect to a relevant Service Provider regardless of
heterogeneity. Being a central part of ESB, service
mediation sits between the service requester and
provider and works in a transparent way – neither of
them needs to be aware of its existence. In addition to
facilitating interaction, service mediation can also be
used for service management by monitoring messages
between requester and provider.

In this paper, we approach web services mediation
from the architectural perspective since “mediation is
primarily an architectural concept” [4]. Commercial
ESB products use proprietary solution, which cannot
lead to a high level understanding of the mediation
architecture due to its unclear internal component
design, implementation, and prohibitive purchase cost.
Some open source ESBs do not really focus on
modeling the mediation[1]. This paper presents a
systematic evaluation of the mediation architecture and
patterns in Synapse[5], a leading Apache open source
project. We start by formally defining service
mediation in terms of data, message, and process. This
clarification identifies the source/target of the
mediation problem/solution in web services contexts.
We then link the abstract mediation patterns with
concrete Synapse mediator solutions. This provides an
effective evaluation metrics for the development of
Synapse. In addition, we provide a detailed analysis of
Synapse architecture and the mediator extension
framework, which, together with the pattern evaluation
result, lead to several future research issues and
directions in the area of service mediation.

2. Preliminary Concepts

The early research of mediation [4, 6] is driven by
two central data issues – data abstraction and data
mismatch. Going beyond the data, mediation, in a
broader sense, comprises a cognitive process of
reconciling two mutually interdependent sides. In

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

SOA, we define the service mediation as an intelligent
process reconciling differences in data, message, and
process between service requester and service
provider. This definition of mediation is depicted in
Figure 1, where three levels of mediation can be
observed – data, message, and process.

Figure 1. Three levels of Service Mediation

Data mediation has received substantial research
since web services are typically provided by different
organizations with different policies. This brings about
enormous dissimilarities regarding the data type, data
format, and data semantics. Data mediation thus
includes tasks such as data transformation –
translation, reconciliation, and creation – and data
synthesis such as data integration from multiple data
sources.

Message mediation concerns the way of moving
data. Web services technology is built on top of the
messaging exchange mechanism. The need for
message mediation can be easily seen from the service
interface specification – WSDL2.0, where eight sets of
Message Exchange Patterns (MEP) are defined [7]. It
is not feasible for all SPs or SRs to implement all these
MEPs due to various reasons such as technical
complexity (e.g. the state maintenance induced by the
‘Asynchronous Out-In’), business policies and rules,
etc. Moreover, many WS applications only support
WSDL1.1, where only four patterns are used. Different
message patterns represent different means to interact
with. Without appropriate message mediation only a
small number of SPs and SRs can communicate.

Process mediation occurs when orchestrating sets of
messages into business scenario engaged by both SR
and SP. It involves determining “how two public
processes can be matched in order to provide certain
functionality” [8], such as online ticket booking from a
virtual SP. Process mediation is particularly important
in service transactions which require: a) mediation for
sets of shared message exchanges agreed upon by both
requester and provider, b) mediation for monitoring,
enforcing terms, and QoS guarantee[9]. The sets of

message exchange here may be composed of the
technical-level MEPs discussed in the message
mediation, but it reflects the semantic choreography
which stipulates the business-level interaction agreed
upon by both sides.

Service mediation is an essential part of Enterprise
Service Bus (ESB), an SOA enabling middleware
providing integration facilities built on top of web
services industrial standards [3]. ESB considers the
mediation as “manipulating messages in-flight on the
‘bus’” [2] in which messages initially sent by a service
requester are transformed into messages understood by
a incompatible service provider. It covers all three
levels of service mediation. Nevertheless, commercial
ESB products use proprietary solution, which cannot
help us to achieve a thorough comprehension of the
mediation architecture. While the open source ESBs
can be studied extensively, they do not really focus on
modeling the mediation as stated in [1]. In this paper,
we choose Apache Synapse [5] that is dedicated to the
role of mediation in SOA solutions. It allows messages
flowing through, into, or out of an organization to be
mediated by a set of mediators that can be easily re-
configured. The built-in mediators support features
such as: simple interception based on regular
expression and XPath rules, logging, routing, XSLT
transformation of payload, and stages in/out handling
of messages. Although this project is still in its infancy
(currently in the Apache incubation phase), its internal
architecture and mediator framework is coherent with
the concept of mediation and mediator that we have
presented above. For example, Synapse treats mediator
as a first-class ‘citizen’ in its architecture.

3. Mediation Patterns Evaluation

In this section we take a closer look at the
fundamental mediation patterns that can be constructed
with Synapse’s native support or workaround solution
depicted in the snippet. For each pattern, we provide a
figure to visualize the message flow where a Mediator
(M) is depicted as a circle; the Service Provider (SP) is
denoted as a pentagon. The rectangle indicates the
Service Requester (SR) that sends the request message
(the connecting arrows) to the Mediator. The snippet
explanation (if any) comes in the form of inline XML
comments. Due to the page limit, the customized java
mediators which contain business mediation logics are
not included here for further examination.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

3.1. Transform

Snippet 1
<synapse xmlns=
"http://ws.apache.org/ns/synapse">
 <xslt name="T-med"
xsl="/tranformation/warning.xsl" type="body"/>
</synapse>

In Transform pattern, the mediator translates the
message payload (content) from the requester’s schema
to the provider’s schema. This may include (de-
)enveloping, data formatting transformation, data type
conversion, data filtering, data re-presentation, or
encryption. Synapse implements this pattern by
introducing the XSLT mediator, an internal processor
that converts the message payload against the specified
XSLT document. In Snippet 1, the message is
examined by the XSLT mediator based on the rule that
expired transaction message content cannot be
captured by the service providers and hence are filtered
out and transformed into texts as if they are encrypted.

3.2. Protocol Switch

Protocol Switch pattern allows the broker to
transform requests into the targeted service provider’s
preferred protocols. For example, it enables a service
requester to dispatch its initial HTTP POST messages
to a provider that expects different communication
protocols, such as SOAP/HTTP, JMS, SMTP, or TCP
etc. Synapse does not support this pattern in its
mediation configuration language. But it implements
this pattern with the underlying service communication
platform – Axis. Snippet 2 is extracted from the Axis
configuration file which includes the transport
protocols supported by Axis1.1.

3.3. Enrich

Snippet 3
<synapse
xmlns="http://ws.apache.org/ns/synapse">

<!-- request from the service requester -->
<in>
 <classmediator
<!— customized java mediator using mediator
extension framework -->
 class="com.acme.mediator.CheckCreditInfo">

<send/>
</in>
</synapse>

In Enrich pattern, the mediator expands the message
payload by attaching extra data, which comes from
external data sources such as: a) customization
parameters defined by the mediation; b) database
queries to enrich the meaning and hence to improve the
usefulness to the target SRs or SPs. Enrich pattern is
not directly supported by Synapse mediators. However,
Synapse provides the class mediator extension
mechanism as shown in Snippet 3, where the incoming
message is parsed to resolve the customer ID. The
CheckCreditInfo mediator then retrieves the credit
information, and appends the additional credit points to
the original message, which is then sent (<send/>) to
the service provider to process the loan application.

3.4. Route

In Route pattern, the mediator forwards the message
to an appropriate provider based on the requester’s
intent. Selection criteria include message content and
context, or the service provider’s capabilities. It is a
sort of ‘on the fly’ provider selection compared to the
static service selections. Such a dynamic characteristic
of Route pattern enables payload-level message routing
for each message. Hence, Route pattern supports more
flexible, loose-coupled, and fine-grained message
exchange between SRs and SPs. Synapse implements
Route pattern through two mediators: regex and xpath.
The regex checks the regular expression pattern against
the property or the header of the SynapseMessage (e.g.
“to” header type) – the intent of the message, and
passes on the message to its sub-mediators if the
pattern matching is evaluated as ‘true’. In this case the
first sub-mediator – header sets the new header value
(i.e. new stockquote service endpoint address) to the

Snippet 2
<transportReceiver name="http"
<!—switch to HTTP protocol -->
class="org.apache.axis2.transport.http.
SimpleHTTPServer">
 <parameter name="port"
locked="false">6060</parameter>
</transportReceiver>
<transportReceiver name="jms"
<!—switch to JMS protocol -->
class="org.apache.axis2.transport.jms.
SimpleJMSListener">
</transportReceiver>

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

headerType (e.g. ‘to’) of a SynapseMessage. In Snippet
4, this is specified in the header element attribute
“type” and “value”. The xpath mediator executes an
Xpath (i.e., the “expr” attribute) test against the
message envelope and then passes on the message to
its sub-mediators rules if the test result is true. In this
case, further routing is needed for a particular stock
price.

Snippet 4
<synapse
xmlns="http://ws.apache.org/ns/synapse">
<!-- Check if the URL matches the stockquote
pattern -->
<regex message-address="to"
pattern="/StockQuote.*">

<header type="to"
value="http://www.webservicex.net/stockquote.as
mx" />

<!-- check if the symbol is Acme -->
<xpath expr="//*[wsx:symbol='ACME']"

xmlns:wsx="http://www.webserviceX.NET/
">

<!—further routing for this particular
stock -->

<header type="to" value="http://www.au-
trader.net/stockquote.asmx" />

</xpath>
</regex>

</synapse>

3.5. Distribute (a.k.a. Clone)

In Distribute pattern, the mediator distributes the
message to a set of interested SPs based on their
capabilities. A major difference from Distribute is that
the message initiated by the SR is forwarded to, at
most, one of multiple targets – a SP or the next
mediator. Whereas the Distribute pattern supports a
one-to-many communication, which allows a single
message from the source service requester to be
distributed to multiple targets concurrently. Hence this
pattern is also known as Clone pattern, where the
mediator in effect needs to make a copy of a message
and modifies its route. The distribution rule can be set
against SP’s interests or advertisement provided to the
mediator. In current Synapse, the Distribute pattern is
not supported natively. Firstly, the concurrent message
distribution cannot be expressed. The repeated
configuration of send mediators will not help because
in current single message sequential setting, whenever
a <send> mediator is invoked the whole mediation
process ceases. Moreover, the message clone is not
supported by any existing mediators. However, we

create a workaround solution – the distribute mediator
– to implement this pattern as shown in Snippet 5.

Snippet 5
<synapse
xmlns="http://ws.apache.org/ns/synapse">
<!-- Check if the property matches the book
search pattern -->
<regex property="subject" pattern="search*">

<distribute>
<branch>
 <header type="to"

value="http://api.google.com/search/beta2"
/>

 <send>
</branch>
<branch>
 <header type="to" value="

http://soap.amazon.com/onca/soap?Service=AW
SECommerceService " />

 <send>
</branch>

</distribute>
</regex>
</synapse>

3.6. Monitor

 In Monitor pattern, the mediator logs the messages
as they pass through the mediation without making any
changes. This pattern can be used to check the quality
of service, determine the message problems, meter
usage for subsequent billing to users, or trace business-
level events, such as transaction over a certain amount
of money. It can also be used for data inspection, or for
service management. In Synapse, the log mediator
supports the Monitor pattern as shown in Snippet 6.

Snippet 6
<synapse
xmlns="http://ws.apache.org/ns/synapse">

<distribute>
<branch>

<send/>
<branch>
<branch>

<log/> <!-- log the message using
log4j at the same time -->

 <branch>
</distribute>

</synapse>

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

The log mediator in current Synapse simply records the
basic message address such as To, From, ReplyTo, and
implements the dummy serialization of the
SoapEnvelope using the Log4j1 – a popular java
logging library. However, advanced log functionality
can be easily added by enhancing this mediator. In this
example, the log mediator is also used jointly with the
distribute mediator so that the send mediator is
executed as normal. The log mediator uses the same
copy of the original message. This prevents the extra
data monitoring from becoming the bottleneck that
would affect the performance of the message flow.

3.7. Cache

 In Cache pattern, the mediator shortens the service
response time by caching service response messages.
When a duplicated request message reaches the
mediator, the mediator attempts to find from its local
cache the previous response message and returns it
directly to the SR without forwarding the request
message to the remote SP. This pattern improves the
performance by reducing the service response time. In
Snippet 7 we illustrate how Synapse can implement
this pattern using a customized external processor
dedicated to providing cache services. We use in
mediator to enclose sub-mediators that are only applied
to the message initiated from the SR. Likewise, out
mediators only deal with messages returned from the
SP. Synapse does not have built-in processors for the
Cache pattern. We use the Synapse mediator extension
framework to provide the cache mediator as an
external Processor with its associated
CacheConfigurator that loads and instantiates the
processor from the mediation configuration. The cache
algorithm is provided in CacheProcessor class.

Snippet 7
<synapse
xmlns="http://ws.apache.org/ns/synapse">

<!-- request from the service requester -->
<in>

<cache
cache_svr="au.edu.ceebi.cache.CacheServer

" />
 <!-- this could be sendOn or sendBack -->
<send/>

</in>
<!-- response from the service provider -->
<out>
 <cache
cache_server="au.edu.ceebi.cache.CacheServer
" />

1 http://logging.apache.org/log4j

<!-- sendBack -->
<send/>

</out>
</synapse>

4. Synapse Implementation

Synapse relies on fundamental service provided by
Axis2. It uses the lightweighted Axis2 object model for
message processing which is more extensible, faster
and developer-convenient. More importantly, it uses
Axis2 as an underlying transport for message
interactions which supports varieties of MEPs
including the Asynchronous Web Services. The
rationale here, as we see it, is to treat the mediator
itself as a common web service hosted in the Axis2
service container. In particular, mediations are carried
out in a pipe-uniform-filter style[10], where mediators
are independent on each other to incrementally mediate
the incoming and outgoing messages. Moreover, the
composite pattern is also used in the mediators design
so that certain relationships between mediators are
maintained without complicating the processing flow.

A crucial advantage of Synapse lies in its flexible
mediator extension framework depicted in Figure 2. It
enables mediation administrators to develop and
deploy mediators in a loosely-coupled way. Synapse
provides two fundamental extension instruments. First,
Synapse API defines a generic Mediator interface,
from which users can develop the mediation that fulfils
specific customer requirements. The user defined
mediator class is then. Alternatively, the mediator can
also be deployed as an Axis web service that is then
loaded into Synapse Environment. This extension
mechanism is easy to implement and deploy. However,
the Process Configurator cannot be customized. As a
result, parameterizing the mediators becomes very
difficult in this case and the mediator is thus unable to
conduct mediation according to its enclosing contexts
as well as to acquire constantly changing data from
outside the Synapse. To overcome this difficulty,

Figure 2. Synapse mediator extension framework

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Synapse provides external processor mechanism so
that application developers can directly create the
mediation processor with its associated configurator
based on the J2SE Service Provider Interface (SPI)
model[11].

5. Summary

To summarize, we provide a comparison in Table 1.

Due to its complexity and difficulty, process level

mediation is not tackled in current Synapse, which
aims to mediate message in the first place. Four out of
seven mediation patterns relate to message mediation,
and only one – Route – is directly supported by
Synapse. It is also worth noting that the inability to
‘support’ certain patterns (especially data mediation) in
Synapse can be improved by adding new capable
mediators, which are independent on the evolution of
Synapse itself. However, the message level mediation
needs more support from the way Synapse processes
messages. Moreover, the WSDL Message Exchange
Pattern mediation is not tacked by Synapse.

6. Conclusion

 Mediation is largely acknowledged as one of the
most important components for realizing the SOA and
Web services. However, fundamental characteristics of
mediation in Web services contexts are not formally
explored. Commercial ESB products using proprietary
mediation solutions cannot lead to comprehensive
knowledge of service mediation in a broader sense
such as mediation levels, requirements, and mediator
architecture. Following this observation, the analysis of
mediation patterns and corresponding Synapse
implementation in this paper intends to fill this gap.
We also examine the Synapse architecture, which
facilitates these mediation solutions.

For our future work, two requirements that are not
supported by Synapse are related to the distribution of
the mediator architecture. In current version of
Synapse [5], all the mediations are carried out on a

dedicated Synapse server. Intuitively, such a
centralized architecture has serious scalability
problems when the number of requesters and providers
increases across the Internet. Another reason driving
mediator distribution is the maintenance issues [6].
Each mediator represents special knowledge from a
specific domain. Mixing them together into a single
“Synapse.xml” apparently can cause the messy
situation when the mediation becomes very complex in
production environment. We believe that our
evaluation and analysis can be of valuable importance
to define new empirical solutions for service mediation
(e.g. the Synapse-based distributed mediation
networks) and their mapping to the mediation patterns
and architecture for our ongoing work on distributed
WS mediation architecture.

7. References

[1] C. Herault, G. Thomas, and P. Lalanda, "Mediation and
Enterprise Service Bus - A position paper," presented at First
International Workshop Mediation in Semantic Web
Services, 2005.
[2] B. Hutchison, M.-T. Schmidt, D. Wolfson, and M. L.
Stockton, "SOA programming model for implementing Web
services, Part 4: An introduction to the IBM Enterprise
Service Bus," in IBM Developerworks: IBM, 2005.
[3] M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, "The enterprise service bus: Making service-
oriented architecture real," IBM Systems Journal, vol. 44, pp.
781, 2005.
[4] G. Wiederhold and M. Genesereth, "The Conceptual
Basis for Mediation Services," IEEE Expert, vol. 12, pp. 38 -
47, 1997.
[5] Synapse, "http://incubator.apache.org/synapse/."
[6] G. Wiederhold, "Mediators in the Architecture of Future
Information Systems," Computer, vol. 25, pp. 38 - 49, 1992.
[7] M. Gudgin, A. Lewis, and J. Schlimmer, "Web Services
Description (WSDL) Version 2.0: Message Exchange
Patterns," World Wide Web Consortium, 2003.
[8] E. Cimpian and A. Mocan, "D13.7 v0.1 Process
Mediation in WSMX," in WSMX working draft, 2005.
[9] S. Shrivastava, "Contract-Mediated Interorganizational
Interactions," IEEE Distributed Systems Online, vol. 6, 2005.
[10] M. Shaw and D. Garlan, "Software Architecture:
Perspectives on an Emerging Discipline," Prentice-Hall,
ISBN 0-13-182957-2, 1996.
[11] SUN, "JAR File Specification -
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service
%20Provider," 1999.

Table 1. Summary in Synapse.
Pattern Level Direct

Support
Workaround

Transform Data √
Protocol
Switch

Message √

Enrich Data √
Route Message √
Distribute Message √
Monitor Data √
Cache Message √

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

