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Abstract 

Many applications for detection of objects 
such as video analysis require that candidate objects be 
observed over a range of perspectives in 3 dimensional 
space. As a result we must have a robust model and 
detection process for these objects in order to accurately 
detect them through a range of geometric transforma- 
tions. In order to keep our detection process computa- 
tionally efficient, we use a compact multiresolution 
model to represent the range of geometric transforma- 
tions possible in the object to be detected. Additionally, 
we form an integrated likelihood ratio detection statistic 
to optimize the detection performance over the entire 
space of targets being examined. To demonstrate the 
performance of this algorithm we apply our results to a 
compressed video sequence and show the improvement 
of our integrated three dimensional model as a function 
of model order. 

1. Wavelet Markov Data Model 

First we shall focus on wavelet filter bank 
transform structures. The Mallat filter bank structure 
[7] shown in Figure 1 is the standard wavelet decompo- 
sition of most compression applications. The G and H 
filters are the high and lowpass filters respectively and 
each one is applied along the x and y axis alternately to 

extract the HH, HL, LH, and LL frequency band decom- 
positions of the signal. 

Recently there have been many studies that 
have shown the optimally of the wavelet transform 
domain for detection 141. In order to work in this 
domain we must first represent our signal and noise pro- 
cess with an appropriate data model. Such a model is 
known as the wavelet Markov random field model 

To represent this Markov random field [7,5] 
we define a given node in the quad tree structure as s, its 
children nodes as s c ~ ~ ~ , s c ~ ~ ~ , s a ~ ~ , s c ~ ~  and its parent 

node as sy where 7 shifts the wavelet coefficients 

from parent sy to child s as is shown in Figure 3. A Kth 
order model defined on the multiresolution structure is 
defined in either 1 or 2 dimensions with 

We can define a similar Markov structure 
based on a DCT transform [9] as well. After labelling 
the 64 DCT coefficients as in Figure 2 we identify the 
parent children relationships between DCT coefficients 
as follows. The parent of coefficient i is [i/4] for 0 < i < 
64 while the set of four children associated with coeffi- 
cient j is {4j,4j+l, 4j+2, 4j+3 for 0 < j<  16. The DC 
coefficient 0 is the root of the DCT coefficient tree 
which has only three children: coefficients 1,  2, and 3. 

Now, defining a MRF on a 2 N ~  2N lattice, a 
state at the mth level represents the values of the MRF at 

t E { 1 ,  2, . . ., K( T+ 1 ) )  . 
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Figure 1 Wavelet Decomposition 
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16(2N-m - 1) points. This set of points is denoted as rs 
and it is the union of 4 mutually exclusive subsets. In 
general we can divide r, into four set sets of 

4(2N-m(~) - 1) points in a similar fashion, and we 
denote these subsets as rs,i, i E {NW,NE,SE,SW} . 
Now if we have the random variable Z representing the 
current state of any r, at any stage of the tree then we 

insert our local scale iterative relationship, the basic 
probabilistic Markov relationship is defined as 

3. Auto-regressive Structure 

Once we have defined the Markov structure 
from the wavelet or DCT transform we next take the 
individual coefficient elements and represent them 
using an autoregressive set of equations as is shown in 
equation 17. Our target represented by the polynomial 
coefficients [4] A(s) added to a Gaussian noise compo- 
nent w(s) represented by the B(s) coefficients. 

x ( s )  = A ( s ) x ( s j )  + B ( s ) w ( s )  (8) 

In the image context we can represent the 
elements of the image Markov structure in terms of the 
recursive scale structure shown in Figure 3 with where 
the superscripts R represent the scale and its associated 
coefficients. 

~ ( s )  = a l ( s ) I ( s p ) +  ... + a R ( s ) ~ ( s y R )  +w(s), ai(s) E 3 (9) 
Representing equation 18 in matrix form we have equa- 
tions 10 and 11. 

I 316 $18 19 2223 I "-g- . . - - - . . 
112 13 24 2528 29 

15 26 27 30 31 _ _ _ _ _ - _ _ _ _ _  
37 ; 4849 52 53 
39: 5051 5455 
45 56 5760 61 
47 58 59 62 6: 

1 0 ... 0 1 0 J 101 

(1 1) 
We can characterize a given signal or texture 

in our image by solving for the autoregressive coeffi- 
cients a(s) equation 20 first for our representative tex- 
ture or object. Then using these coefficients we attempt 
to use them to predict the target signal in a given input 
signal x(s). The residual between the target signal and 
the input signal is then w(s). This model assumes that 
our target signal is uncorrelated with the input signal. 

4. 3-Dimensional Model 

We now extend the traditional 2-dimensional 
spatial Wavelet Markov Model to a 3 dimensional per- 
spective model. To do this we form individual models 
for each potential perspective that a user would have for 
a given object. The model from each perspective k is 
then denoted 

I s - R - l  ' 
= tIk(S) I,(sT) ... k( Y ) I '  (10) 

This process is shown in Figure 3. The entire model for 
the collection of all perspectives is then denoted 

x = [ x l ,  x * ,  ..., X k  ,... , X"] (1 1) 

Authors [6,8] have denoted such a collection 
of perspectives as in terms of manifolds. However, such 
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manifold representations generally deal with rigid bod- 
ies observed over all 3-d geometric transformations. 
Our model is not this rigid but can deal with varying 
model orders according to the adaptive criteria of the 
detection process. Additionally, we can handle objects 
which deform such as humans moving through perspec- 
tive changes. Because we are using a multiresolution 
structure for the elements of our model we are able to 
have compact representations of many perspectives 
without and excessive amount of computation as in the 
eigenvalue case. 

This model may be utilized in several ways. 
For instance we may have multiple cameras looking at 
the same object simultaneously and trying to use their 
combined information to detect and register the object. 
Thus each perspective is then defined as an element of 

the vector 2 . Another example is in the case of one 

camera observing the object move past it through multi- 
ple geometric configurations. Even though the objects 
shape changes in two dimensions it may still be effec- 
tively detected and identified using the three dimen- 
sional vector of position information. 

m \  
m: 

Model 
x = [ x 1 , x 2 ,  ...) X k ,  ..., X n ]  

Figure 3 Multiple Perspective 3 Dimensional Markov 
Structures 

5. Transform Domain Detection Statistic 

If we assume that our conditional probability 
density of transition between two successive scales has 
a white noise signal vector Wk(s) as is described below 

we can then express the likelihood function that an 
image object is Hfvs.  H, as is shown in equation 
13. 

(13) 
This residual vector W(s) can then be expressed as in 
equation 14 as 

Wk(s )  = zk(s) - [(al,rn(s)(S)zk(s~)+ ". f a R ,  r n ( ~ ) ( s ) z k ( s ~ R ) ) l  

(14) 
In our search algorithm, a given texture or object in an 
image is described [5] by attempting to predict one or 
more coefficients in an object with the representative 
coefficients a(s). The coefficients that minimize this dif- 
ference are described by 15a as 

a, = 

(1 5 4  
If we use this minimum distance between multiple 
scales we have equation 15b as a vector of a coefficients 

We now compute a test statistic based on the residual 
between predicted coefficient and any given image coef- 
ficient as is shown in equation 16 as w(sc). pk is the 

average of the expected residual for the object model 
and p, Is the standard deviation of those coefficients 
used to normalize the statistic ~(s,) 

This normalization process makes the decision thresh- 
old Tto  decide between a Hfvs. H, a uniform quantity 
independent of image noise properties. Our minimum 
value over the sequence of detection results for our 
model represents the best result over the entire 
sequence. We can assess the detection performance of 
this metric by computing probability of detection 
and probability of false alarm PFA using know targets 
with equations 18 and 19 

(1 8) 
- #ofdetectedpixels 1 target = st 

# of target pixels Ntgt 
D -  
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Model Order 

Figure 4 Bee Image Sequence With Prob of Detection and Probability of False Alarm With Increasing Model Order 

References 

(19) 
* # of detected pixels I clutter - % 

‘FA = # of target pixels N,g t  

6 .  Results 

Our first application of our multiple perspec- 
tive model is to show the improved detection perfor- 
mance of a 3 dimensional object from one video sensor 
moving through a sequence of poses. We build our 
multi-perspective model against the bee image sequence 
found in Figure 4 with the objective of detecting the bee 
throughout the entire video of approximately 100 
frames using the Daubchies 8 basis set. Note that model 
order one corresponds to conventional detection meth- 
ods. Our preliminary results in Figure 4. show that our 
detection performance improves while our probability 
of false alarm dramatically drops as our model order 
increases. 

7. Conclusion 

Our multiple perspective approach for object 
detection allows us to reduce the complexities of 3 
dimensional objects in 2 dimensional scenes for 
improved detection performance. The multi-resolution 
Markov model and associated test statistic allow us 
much more flexibility with IOW overhead for many 
applications. Video registration for stereo matching, 3- 
d object recognition, and compressed domain video 
analysis are among the many uses of this approach. 
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