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Abstract 

Electro-optical imagery can have uniform 
characteristics that prevent it from being registered by 
conventional edge-based methods. Such uniform char- 
acteristics, if they have periodicity, can be exploited 
using multi-resolution texture extraction techniques. 
We will first use a multi-resolution Markov model to 
represent electro-optical textures and apply an auto- 
regressive statistical approach to find correspondence 
between two images. We will then demonstrate how 
this approach reduces the computational complexity of 
registering of two successive frames of video. 

1. Introduction 

These We will first describe the multiresolu- 
tion Markov data structure and how it describes texture 
of the imagery. We will then describe our texture 
matching procedure and how it is applied to successive 
frames of video imagery. Finally we will show an 
example of the registration process and describe how it 
reduces the computational complexity of video registra- 
tion over conventional techniques. 

Image I 

Figure 1 Wavelet Decomposition 

2. Wavelet Markov Data Structure 

First we shall focus on multiresolution wave- 
let filter bank transform structures. The Mallat filter 
bank structure [ 2 ]  shown in Figure 1 is the standard 
wavelet decomposition of most compression applica- 
tions. The G and H filters are the high and lowpass fil- 
ters respectively and each one is applied along the x and 
y axis alternately to extract the HH, HL, LH, and LL fie- 
quency band decompositions of the signal. 

Recently there have been many studies that 
have shown the optimally of the wavelet transform 
domain for representation of texture. Other wavelet reg- 
istration models have employed ad-hoc metrics for fea- 
ture registration [3] which do not accurately represent 
texture. In order to work in this domain we must first 
represent our signal and noise process with an appropri- 
ate data model. Such a model is known as the wavelet 
Markov random field model 

To represent this Markov random field [l] 
we define a given node in the quad tree structure as s, its 
children nodes as saNW,saNE,saSE,saSW and its parent 

node as sy where p shifts the wavelet coefficients 

from parent sy to child s as is shown in Figure 2 .  A Kth 
order model defined on the multiresolution structure is 
defined in either 1 or 2 dimensions with 
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Markov Tree Decomposition 

Figure 2 Markov Block Structure 

i E (1 ,  2, ..., K( T+ 1) ) .  

Now, defining a MRF on a 2 N ~  2N lattice, a 
state at the mth level represents the values of the MRF at 

16(2N-m - 1) points. This set of points is denoted as Ts 
and it is the union of 4 mutually exclusive subsets. In 
general we can divide rs into four set sets of 

- 1) points in a similar fashion, and we 4 ( 2 N -  4 s )  

denote these subsets as rs,i, i E {NW,NE,SE,SW} . 
Now if we have the random variable Z representing the 
current state of any rs at any stage of the tree then we 
insert our local scale iterative relationship, the basic 
probabilistic Markov relationship is defined as 

Once we have defined the Markov structure 
from the wavelet transform we next take the individual 
coefficient elements and represent them using an autore- 
gressive set of equations as is shown in equation 2 . Our 
desired texture is represented by the polynomial coeffi- 
cients [l] A(s) added to a Gaussian noise component 
w(s) represented by the B(s) coefficients. 

x(s) = A(s)x(sf) +B(s )w(s )  ( 2 )  

In the image context we can represent the 
elements of the image Markov structure in terms of the 
recursive scale structure shown in Figure 3 with where 
the superscripts R represent the scale and its associated 
coefficients. 

[(s) = al (s )r (sy)+ ... + a R ( s ) r ( s ~ R ) + W ( s ) , a i ( s )  E % (3) 
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Representing equation 2 in matrix form we have equa- 
tions 4 and 5. 

x(s) = [I(s) I ( s7)  ... I (qR- l ) f  (4) 

( 5 )  
We can characterize a given signal or texture 

in our image by solving for the autoregressive coeffi- 
cients a(s) equation 5 first for our representative tex- 
ture or object. Then using these coefficients we attempt 
to use them to predict the target signal in a given input 
signal x(s). The residual between the target signal and 
the input signal is then w(s). This model assumes that 
our target signal is uncorrelated with the input signal. 

3. Video Texture Registration Scheme 

In order to register two successive frames of 
video we now apply a test statistic based on the residual 
between predicted coefficient and any given image coef- 

ficient as w(sc). We denote p, as the average of the 

expected residual for the object model and pc is the 
standard deviation of those coefficients used to normal- 
ize the statistic s ( ~ ~ )  

w(sc)  - Pc 
s(sJ  = - (6) 

Equation 6 indicates where the best match in texture 
occurs such that the residual w(%) and thus the test sta- 
tistic is at a minimum. 
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Frame 1 Frame 2 Registered Frames 

Figure 3 Video Registration Output 

Our registration procedure begins by 
decomposing two successive frames of video images 
using our wavelet transform. This registration process 
consists of computing how closely our texture from 
frame 1 corresponds to the texture in frame 2 using our 
multiscale Markov texture matching process described 
in equation 6 .  The registration point for both images is 
then the point that corresponds to the best texture match. 

The algorithm is applied by subsampling 
the image to its lowest resolution scale, texture match- 
ing the imagery on the lowest two scales of resolution, 
then upsampling the imagery and matching on the next 
two successive scales. Since the registration is accurate 
to within 2x2 pixel regions after the first match is per- 
formed, the actual number of pixels which are necessary 
to search is dramatically reduced. The results are shown 
in Figure 3. 

Thus by registration in this multiresolution 
manner the grid over which the registration point search 
is conducted is limited thereby decreasing the computa- 
tional complexity of the search. The number of opera- 
tions in conventional methods frame to frame 
registration is typically N210gN where N is the number 
of pixels along a side in an NxN image. where our 
method because of its multiresolution technique is sim- 
ply NlogN operations. 

4. Conclusion 

We have demonstrated improved perfor- 
mance in video frame registration by casting the prob- 
lem in terms of a multiresolution texture matching 
approach. Because of the multiresolution structure, we 
are able to focus on texture features rather than edges 
which are not always available in imagery and signifi- 
cantly improve the speed of the registration process. 
This method is useful for a wide range of applications 
where fast accurate frame registration is essential. 
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