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Abstract—The formalism of anomalous change detection,
which was developed for finding unusual changes in pairs of
images, is extended to sequences of more than two images. Ex-
tended algorithms based on RX, Chronochrome, and Hyper are
presented for identifying the most anomalously changing pixels
in a sequence of co-registered images. Experimental comparisons
are performed both on real data with real anomalies and on real
data with simulated anomalies.

I. INTRODUCTION

While the identification of “interesting” features in a single
image is an almost hopelessly open-ended task, the detection
of interesting changes in a pair of co-registered images is
a more feasible undertaking. The change detection problem
is nonetheless confounded by pervasive differences (in il-
lumination, calibration, registration, etc.) that are inevitable
between images, but the anomalous change detection (ACD)
paradigm [1]–[6] treats these differences as something that can
be learned from the images themselves, and those changes that
do not fit the pervasive pattern are identified as anomalous. It
is these anomalous changes that are candidates for interesting
features; ultimately, a human analyst decides what is truly
interesting, but the algorithm’s job is to identify a short list of
candidates for the analyst to investigate.

A recently developed machine learning framework [7] ex-
tended this change detection methodology to arbitrary data
distributions, and even for Gaussian distributions was shown to
exhibit improved performance [8]. But the ACD algorithms in
Refs. [1]–[8], considered only the problem of finding pairwise
changes; when more than two images are available, there is
both a greater challenge (the change has more places to hide)
and a greater opportunity (multiple correlations among all the
images) for producing an effective change detector. In this
situation, an interesting change might occur in just one of
the images, and then disappear. Or it might linger. Or it might
come and go. As the number of images increases, so too do the
combinatorial possibilities. An “ephemeral” change detection
algorithm should be sensitive to all of these possibilities,

An RX-based anomaly detector for multiple images has
previously been proposed [9]. In this paper, we extend the
machine learning approach [7], [8] to multiple images, en-
abling detection of an ephemeral change in one or a few of
the images by exploiting the information in all of the images.

II. PAIRWISE ANOMALOUS CHANGE DETECTION

Let x1 ∈ <d1 and x2 ∈ <d2 be corresponding pixels in
image 1 and 2, and define the stacked vector

z =
[

x1

x2

]
. (1)

We remark that if d1 = d2 = 1, then the images are single-
band images (i.e., “black and white”) but that the formalism
holds as well for pairs of images that are multispectral (d > 1)
or hyperspectral (d � 1, typically d > 100). Furthermore,
there is no requirement that d1 = d2 or even d1 ≈ d2.

An anomalous change detector is a scalar function A(z)
which specifies the “anomalousness” of the change that is
exhibited by the pixel going from x1 to x2.

For an important class of ACD algorithms, this anoma-
lousness is quadratic in z, and can be expressed in terms of
covariances and cross-covariances of the various images [8].
The first step for these algorithms is to subtract from each pixel
the mean value over all the pixels in the image; for these mean-
subtracted pixels, we have 〈x 〉 = 0 (and therefore 〈 z 〉 = 0),
and the expression for anomalousness is given by

A(z) = zT Qz, (2)

where quadratic coefficients in the matrix Q are functions of

Cij =
〈
xixT

j

〉
, (3)

the cross-covariance matrix between the ith and jth images.

A. RX

Write P (x1,x2) as the joint probability distribution asso-
ciated with the pixels in the first and second images. The
“rare” pixel pairs are the values of x1,x2 where P (x1,x2)
is small. For a Gaussian distribution, low probability density
is associated with large Mahalanobis distance to the centroid,
which leads to the RX detector [10]. Here, we consider the
covariance of the stacked vector z, which is given by

〈
zzT

〉
=
[

C11 C12

C21 C22

]
, (4)



and then the anomalousness measure is given by A(z) =
zT QRXz, where

QRX =
[

C11 C12

C21 C22

]−1

. (5)

B. Hyper

While RX seeks anomalous values of the stacked vector
z, the machine learning framework [7] moderates that by
the individual anomalousness of x1 and x2. The idea is
to emphasize not unusual values of x1 or x2, but unusual
relationships between x1 and x2. This is achieved by com-
paring the joint distribution P (x1,x2) to the product of the
marginal distributions: P (x1)P (x2). The ratio of these two
distributions, in the Gaussian case, leads to an expression for
anomalousness that produces hyperbolic boundaries; specifi-
cally A(z) = zT QHyperz, where

QHyper =
[

C11 C12

C21 C22

]−1

−
[

C−1
11 0
0 C−1

22

]
. (6)

C. Chronochrome

In the chronochrome detector [1], [4], a least-squares linear
fit is made of image 2 based on image 1. A linear operator (a
matrix) L estimates

x2 ≈ x̂2 = Lx1 (7)

and L is chosen so that the residual

e = x2 − x̂2 = x2 − Lx1 (8)

has minimum variance. This variance is given by the trace of
the dispersion matrix E =

〈
eeT

〉
, and one can show that

this is minimized when L = C21C
−1
11 . The anomalousness

measure is given by Mahalanobis distance from the centroid
of the distribution of residuals; specifically,

A(x1,x2) = eT E−1e

= (x2 − C21C
−1
11 x1)T

×
[
C22 − C21C

−1
11 C12

]−1

×(x2 − C21C
−1
11 x1). (9)

A more compact representation is given by A(z) = zT QCCz,
where [8]

QCC =
[

C11 C12

C21 C22

]−1

−
[

C−1
11 0
0 0

]
. (10)

We remark that there is an asymmetry in the definition of
the chronochrome; in this derivation, we fit x2 as a function
of x1. Had we chosen to fit x1 ≈ L′x2, a different, and not
equivalent, chronochrome detector would be obtained.

A symmetrized chronochrome can be obtained by averaging
the two chronochromes; that is:

QCCsym =
[

C11 C12

C21 C22

]−1

− 1
2

[
C−1

11 0
0 C−1

22

]
. (11)

We remark that these are just a few examples (out of a larger
set that was surveyed in Ref. [8]) of quadratic covariance-
based ACD algorithms. The other algorithms have a similar

flavor, but use different expressions for Q. We also remark
that the three detectors defined in Eqs. (5,6,11) are related by
a simple expression:

QCCsym =
1
2
(QRX + QHyper). (12)

III. EXTENSION TO MULTIPLE IMAGES

Following the notation in the previous section, we will write
xn for a pixel in the nth image, and consider the stacked vector

z =


x1

x2

...
xn

 . (13)

With this notation, we can extend the quadratic detectors
described in the previous section so that they can be applied
to more than two images at a time.

A. Extended RX

The extension of RX to the multiple-image change detection
problem was described in Ref. [9] and was called “temporal
whitening.” As with RX for two images, the anomalousness
measure is given by A(z) = zT QRXz, where now

QRX =
〈
zzT

〉−1
=


C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn


−1

, (14)

and Cij is defined in Eq. (3) as the cross-covariance between
the ith and jth images. In the more general, i.e., non-Gaussian,
case, the anomalies are identified as those pixels that occur at
low values of the joint distribution P (x1,x2, . . . ,xn).

B. Extended Hyper

The extension of the machine learning framework to more
than two images leads to a detector of small values of the ratio
of the joint distribution to the product of marginals; that is:

P (x1,x2, . . . ,xn)
P (x1)P (x2) · · ·P (xn)

. (15)

For Gaussian distributions, this leads to A(z) = zT QHyperz,
where QHyper can be expressed as

QHyper = QRX −Q∆ (16)

and

Q∆ =


C−1

11 0 · · · 0
0 C−1

22 · · · 0
...

...
. . .

...
0 0 · · · C−1

nn

 . (17)



C. Extended Chronochrome

The description of the pairwise chronochrome in Sec-
tion II-C noted the ambiguity of the change x1 → x2 versus
x2 → x1. For more than two images, this ambiguity becomes
combinatorial. Let I and J denote nonempty disjoint subsets
of {1, . . . , n}. Write xI as the stacked vector composed of
the pixel elements xi with i ∈ I (and similarly for J). Then
we can approximate xJ using a linear transform of xI ; in
particular, we can find a matrix LJI so that the residual

e = xJ − x̂J = xJ − LJIxI (18)

has minimum variance. We can write this matrix as LJI =
CJIC

−1
II , where CJI is composed of blocks given by Cji

where j ∈ J and i ∈ I , and CII is composed of blocks
given by Cii′ for i ∈ I and i′ ∈ I . As with the pairwise
chronochrome, the anomalousness of the pixel is given by
eT
〈
eeT

〉−1
e.

Since the anomalousness depends only on the images that
are in the union I ∪ J , it is convenient to write it in terms of
the modified stacked vector

ẑ =
[

xI

xJ

]
, (19)

in which case the anomalousness is given by

A(ẑ) = ẑT

([
CII CIJ

CJI CJJ

]−1

−
[

C−1
II 0
0 0

])
ẑ. (20)

If we write PIJ as the permutation/projection operator that
achieves ẑ = PIJz, then we can write the quadratic coefficient
matrix for the extended chronochrome

QIJ = PT
IJ

([
CII CIJ

CJI CJJ

]−1

−
[

C−1
II 0
0 0

])
PIJ .

(21)
Two problems with this detector are that it is asymmetrical,
and that there are exponentially many (roughly 3n) ways
to choose I and J . Both of these can be addressed by
symmetrizing the detector. There are many ways this might
be done, but we will describe two natural approaches.

1) Symmetric Extended Chronochrome: CC-I: Perhaps the
easiest way to symmetrize the extended chronochrome is to
follow the expression in Eq. (11), and write

QCC-I = QRX −
1
n

Q∆ (22)

= (1− 1
n

) QRX +
1
n

QHyper. (23)

This is a simple and easy-to-compute expression that is
based on averaging n extended chronochromes. The ith
chronochrome in this scheme is given by I = {i}, and
J = {1, . . . , i − 1, i + 1, . . . , n}, and corresponds to fitting
all but the ith image as a linear function of the ith image.

(a)

(b)

Fig. 1. (a) First frame of a short video clip that exhibits both pervasive
differences (misregistration caused by moving the camera) and actual change
(a blinking light). (b) Broadband image from a sequence of five hyperspectral
data cubes, all of the same scene, and one of which includes as actual changes
two tarps that have been placed on the grass (not seen in this image).

2) Symmetric Extended Chronochrome: CC-II: A some-
what more complicated but intuitively more appealing scheme
reverses the role of I and J in CC-I. To be more specific,
write

Ii = {1, . . . , i− 1, i + 1, . . . , n}, and (24)
Ji = {i}. (25)

The ith chronochrome is a fit of the ith image as a linear
function of the other images; the quadratic coefficient matrix
for that is given by Qi = QIiJi where QIJ is given in Eq. (21).
The symmetrized detector is then taken as the average over
these chronochrome detectors; i.e.,

QCC-II =
1
n

n∑
i=1

Qi (26)

= QRX −
1
n

n∑
i=1

PT
IiJi

[
C−1

IiIi
0

0 0

]
PIiJi . (27)



(a)

(b)

(c)

Fig. 2. ROC curves compare the extended anomalous change detectors
provided by RX, Hyper, CC-I, and CC-II, described in Sections III-A,
III-B,III-C1,and III-C2, respectively, applied to the dataset shown in Fig. 1(a).
(a) Applied directly to the dataset, using the known anomalous change
(the blinking light), the performance of the first three of these algorithms
is nearly identical, while CC-II appears to perform better. (b) Artificial
anomalous changes are injected into the 16th image in the frame. (c) Again,
the anomalous changes are simulated, but in this case, the blinking light is
numerically suppressed. In both of the simulated cases, RX is slightly better
than Hyper in the high false alarm rate regime, but when the false alarm
rate is low, the two methods are nearly identical. We see that CC-I performs
almost identically to RX, and that CC-II provides the best performance.

IV. NUMERICAL EXPERIMENTS

We will apply and compare these algorithms on a va-
riety of datasets, using both real and simulated anomalies.
In particular, we have low-resolution single-band video [9],
higher-resolution RGB video, and a short sequence of ten-band
imagery that is obtained as the first ten principal components
of what was initially 124-band hyperspectral imagery [5], [6].

A. Single-band video

In Ref. [9], a thirty-frame video clip (240×320 pixels) was
taken of an office scene [Fig. 1(a)]. There is considerable
frame-to-frame jitter (pervasive differences) in the images, and
the actual temporal change is a slowly blinking light (about
six blink cycles in the thirty frames). A “target” area of size
3×3 describes the actual blinking light, and an 11×11 buffer
around this area separates it from the rest of the image which
is considered off-target.

Based on this markup, ROC curves are computed for
different ephemeral change detectors. Although Hyper often
outperforms RX in detecting change between two images [8],
we see in Fig. 2(a) for the dataset in Fig. 1(a) that the
extended Hyper and RX algorithms produce almost identical
performance. Similar performance is also observed for CC-I,
the simple symmetrized chronochrome, but somewhat better
performance is observed for CC-II.

B. RGB video

The single-band imagery described above was initially
acquired as higher resolution (480×640 pixels) color video,
and in this study we used that original data as well. Fig. 3(a)
compares Hyper, RX, CC-I and CC-II, and as with the
single band imagery, finds that Hyper, RX, and CC-I perform
similarly, while CC-II is somewhat better.

C. Multispectral image sequence

A remarkably extensive change detection data set was
acquired by Eismann et al. [5], [6], using a 124-channel
hyperspectral imager viewing the same scene over the course
of many months [Fig. 1(b)]. In a few images, anomalous
changes are created by placing objects (small tarps) in the
scene. The data sequence used here runs from August to
November, and the third of five images includes the known
change. We used the first ten principal components of the
August image to define the projection of the 124 images
to a ten channel multispectral dataset. It is on this dataset
that the algorithms are compared in Fig. 4(a). In this case,
the Hyper algorithm significantly outperformed the RX and
chronochrome algorithms.

D. Simulation framework

Although the ultimate test of an algorithm’s utility is its
ability to detect real anomalies in real images, this test is
difficult to employ in practice. A detector that is better at
finding one anomaly might be worse at finding another, so
any statistically reliable comparison of detectors will require
a lot of anomalies. But our algorithms are built around the



premise that real anomalies are rare. So although we will also
compare algorithms by looking at real anomalies, an important
part of our testing uses simulated anomalies.

Since we are seeking anomalous changes, as opposed to
anomalies in general, our simulation framework uses a scheme
that employs normal pixels. For two images, it has been
proposed that this can be achieved by scrambling the pixels
in one of the images [8]. That is: the normal changes are
given by the data in its original form. The anomalous changes
are given by all of the pixels in an image pair that is the
same data as the original data, but with the pixels in one of
the images scrambled. Here, we extend this to sequences of
multiple images by choosing one of the images and scrambling
the pixels in that dataset. Initially, we made n sets of these
simulated anomaly image sequences, and the performance was
given by the average over all of these. We found, however, for
the examples we considered in this study, that by scrambling
only the middle image (e.g., 16th frame in a 30 frame
sequence), we obtained similar results.

In Fig. 2(b,c), Fig. 3(b), and Fig. 4, ROC curves are
computed for simulated anomalies. By and large, the results
obtained for the real anomalies are echoed in these more
extensive (but arguably less realistic) tests.

V. ANALYSIS

A. The case of highly correlated images

It is often the case in sequences of images, particularly of
high-cadence video sequences, that there is high correlation
between the images. In this high correlation limit, we find
that RX and Hyper produce virtually identical detectors. A
simple model shows why this is the behavior that would be
expected.

In comparing the relative values of anomalousness for
Hyper and RX, we consider the ratio

ARX(z)−AHyper(z)
ARX(z)

=
zT Q∆z
zT QRXz

. (28)

When the ratio is small, RX and Hyper are approximately
equal; this will happen when the eigenvalues of Q∆ are small
compared to the eigenvalues of QRX. Fig. 5 shows what those
eigenvalues are for two specific datasets.

To help make this comparison, first whiten the images. That
is, apply the linear transformation x̃i = C

−1/2
ii xi to the ith im-

age. These transformations will not affect the behavior or the
RX or Hyper detectors [8], and will produce new covariances
and cross-covariances C̃ij =

〈
xixT

j

〉
. In particular, we have

that the whitened covariances C̃ii = I are identity matrices,
and this leads to the result that the whitened difference matrix
is itself the identity:

Q̃∆ =


C̃−1

11 0 · · · 0
0 C̃−1

22 · · · 0
...

...
. . .

...
0 0 · · · C̃−1

nn

 = I. (29)

(a)

(b)

Fig. 3. ROC curves compare anomalous change detectors on a higher
resolution RGB video clip of the blinking light. Two cases are considered:
(a) the blinking light is the anomalous change; (b) anomalous changes are
simulated.

Thus the ratio in Eq. (28) can be written

zT Q∆z
zT QRXz

=
z̃T Q̃∆z̃
z̃T Q̃RXz̃

=
z̃T z̃

z̃T Q̃RXz̃
(30)

and this ratio depends only on the eigenvalues of Q̃RX.
In our simple model, we will presume that the images are

highly correlated with each other, and in particular, we will
write Cij = (1− ε)I for i 6= j, with 0 < ε � 1. This simple
model considers only the case where all of the images have
the same number of channels: d = d1 = d2 = · · · = dn. This
leads to an expression for Q̃RX given by

Q̃RX =


C̃11 C̃12 · · · C̃1n

C̃21 C̃22 · · · C̃2n

...
...

. . .
...

C̃n1 C̃n2 · · · C̃nn


−1



(a)

(b)

Fig. 4. ROC curves compare anomalous change detectors applied to a
sequence of five multispectral (ten channel) images. For this multispectral
imagery, the hyperbolic algorithm provides a decided performance advantage,
both for the case (a) where the actual anomalous change is used, and for
the case (b) with simulated anomalous changes. For these higher-dimensional
less highly correlated images, the Hyper detector is more effective at detecting
both the real and the simulated anomalous changes.

=


I11 (1− ε)I12 · · · (1− ε)I1n

(1− ε)I21 I22 · · · (1− ε)I2n

...
...

. . .
...

(1− ε)In1 (1− ε)In2 · · · Inn


−1

=

(1− ε)


I11 I12 · · · I1n

I21 I22 · · · I2n

...
...

. . .
...

In1 In2 · · · Inn

+ εI


−1

. (31)

Now, the matrix of all I’s has a total of nd eigenvalues, d of
which have value n, and (n− 1)d of which have value zero.
Thus, Q̃RX has d small eigenvalues 1/[(1−ε)n+ε] and (n−1)d
large eigenvalues 1/ε. Most of the eigenvalues are much larger
than one, so for directions z with significant components in
any of these (n − 1)d directions, the ratio in Eq. (30) (and
therefore in Eq. (28) as well) will be small, and the RX and

(a)

(b)

Fig. 5. Eigenvalues of the matrix QRX and the difference matrix Q∆ =
QRX − QHyper. When the eigenvalues of QRX are much larger than the
eigenvalues of the difference matrix, then RX and Hyper will provide nearly
identical performance. (a) In the blinking light data, there is high correlation
between the images, and the eigenvalues of the difference matrix are much
smaller than the eigenvalues of QRX. (b) In the Eismann-Meola data, the
eigenvalue difference is not as large, and Fig. 4 shows that RX and Hyper
give considerably different results for these data.

Hyper detectors will be nearly identical. For those directions
where the ratio in Eq. (28) is not small, we will have that
z̃T Q̃RXz̃ will be small; that is to say the difference between
RX and Hyper is significant only when the anomalousness
itself is small. The more anomalous is the change given by
z, the more alike will be the anomalousness measures of RX
and Hyper.

For a sequence of highly correlated images, therefore, there
is little difference in which pixels RX will find anomalously
changed, versus which pixels Hyper will find anomalously
changed. We remark that this argument holds for the CC-I
detector as well, since it is a linear combination of RX and
Hyper, but not for the CC-II detector.

B. Dimension Reduction

For a sequence of multispectral images, it can be advan-
tageous, from both a statistical and a computational point
of view, to transform the data into a sequence of lower-
dimensional images.



(a)

(b)

Fig. 6. ROC curves comparing change detection performance as a function of
dimension reduction. There are five ten-channel “full images” in the dataset,
and dimension reduction is performed using (a) principal components analysis
(PCA), and (b) canonical components analysis (CCA). The utility of CCA
for dimension reduction is evident in these curves. The first CCA component
did not perform even as well as the first principal component, but for two
components, CCA was a substantial improvement. In both cases (CCA and
PCA), the d = 3 case performed about the same as with the full ten-
dimensional dataset.

The simplest way to do this is by applying principal compo-
nents analysis (PCA) to each of the images, and keeping only
the top few components. An attractive alternative, however,
for two or more images, is to employ canonical components
analysis (CCA) instead. Although CCA is traditionally defined
for two sets of variables (e.g., two images) [11], it is possible to
generalize it to multiple variables (e.g., multiple images) [12].
Where PCA optimizes the variance in the individual images,
CCA optimizes the correlation between the images. This can
be advantageous because the more correlated images in a
sequence are, the more that anomalous deviations from that
correlation will stand out.

For two images, x1 and x2, the first CCA component is
a pair of vectors a1 and a2 which maximize the correlation
between the scalar images aT

1 x1 and aT
2 x2. Specifically, the

aim is to maximize
〈
(aT

1 x1)(aT
2 x2)

〉
= aT

1

〈
x1xT

2

〉
a2 =

(a)

(b)

Fig. 7. Time sequences from the blinking light movie in Fig. 1(a). Panel
(a) shows the time history of fifty randomly chosen pixels in the image as
thin lines, and the history of the pixel corresponding to the blinking light as
the heavy line. Panel (b) shows what these time sequences look like after
pixel-wise subtraction.

aT
1 C12a2 subject to the constraints

〈
(aT

1 x1)2
〉

= aT
1 C11a1 =

1 and
〈
(aT

2 x2)2
〉

= aT
2 C22a2 = 1. An alternative formulation

of this optimization is in terms of the generalized eigenvector
problem:[

C11 C12

C21 C22

] [
a1

a2

]
= λ

[
C11 0
0 C22

] [
a1

a2

]
. (32)

This alternative formulation provides a natural generalization
to sequences of more than two images:

Q−1
RX


a1

a2

...
an

 = λ Q−1
∆


a1

a2

...
an

 . (33)

where QRX is defined in Eq. (14), and Q∆ is defined in
Eq. (17). The k generalized eigenvectors with the largest
eigenvalues provide a projection of the images to a sequence
of k-channel images. Fig. 6 compares the first three PCA and
first three CCA components to the full ten components in the
multispectral dataset shown in Fig. 1(b).



(a)

(b)

Fig. 8. Anomalousness image for the blinking light movie clip, based on
(a) image-wise mean subtraction, and (b) pixel-wise mean subtraction.

Fig. 9. ROC curves for the blinking light move clip, using both image-based,
and pixel-based mean subtraction.

C. Pixel-wise mean subtraction

In the approaches described so far, the first step is an image-
wise mean subtraction. The mean value 〈x〉 is computed over
all the pixels in the image and this mean value is subtracted
from each of the pixels in the image.

Fig. 7 illustrates a more aggressive mean subtraction. Here,
the mean value for each pixel is computed from the corre-

sponding pixel in each of the images. This pixel-wise mean
subtraction is performed in addition to the image-wise mean
subtraction, and it only makes sense if each image in the
sequence has the same number of channels. With only a few
images, pixel-wise mean subtraction would likely throw away
valuable information, but for a larger number, it may lead to
better performance. Note that the pixel-wise mean-subtracted
covariance matrix is singular, so a pseudo-inverse is needed
for Q−1

RX . Fig. 8 shows that the anomalousness image looks
qualitatively different under the two schemes. Fig. 9 shows
that the difference is not just cosmetic; the ROC curves differ
as well.

VI. CONCLUSION

Multi-image extensions to the RX, Chronochrome, and
Hyper algorithms are introduced and compared. All of these
algorithms can be expressed as quadratic functions of a
“stacked” pixel z, defined in Eq. (13). Although Hyper is
seen to perform better on a few frames of multispectral
imagery, its performance on sequences of low-dimensional
highly correlated images (as from a video sequence) is nearly
identical to that of the simpler RX algorithm. A symmetrized
variant of the extended chronochrome is found to outperform
RX and Hyper in this video regime.

ACKNOWLEDGMENTS

We are grateful to Joseph Meola and Michael Eismann for
generously providing their hyperspectral change data.

Work at Los Alamos was funded by the Laboratory Directed
Research and Development (LDRD) program.

REFERENCES

[1] A. Schaum and A. Stocker, “Long-interval chronochrome target de-
tection,” Proc. 1997 International Symposium on Spectral Sensing
Research, 1998.

[2] C. Clifton, “Change detection in overhead imagery using neural net-
works,” Applied Intelligence, vol. 18, pp. 215–234, 2003.

[3] A. Schaum and A. Stocker, “Joint subspace detection in hyperspectral
sensing,” Proc. MSS (Military Sensing Symposium) on Camouflage,
Concealment, and Deception, 2003.

[4] A. Schaum and E. Allman, “Advanced algorithms for autonomous hyper-
spectral change detection,” in 33rd Applied Imagery Pattern Recognition
(AIPR) Workshop: Emerging technologies and applications for imagery
pattern recognition. IEEE Computer Society Press, 2005, pp. 33–38.

[5] M. T. Eismann, J. Meola, and R. Hardie, “Hyperspectral change detec-
tion in the presence of diurnal and seasonal variations,” IEEE Trans.
Geoscience and Remote Sensing, vol. 46, pp. 237–249, 2008.

[6] J. Meola and M. T. Eismann, “Image misregistration effects on hyper-
spectral change detection,” Proc. SPIE, vol. 6966, p. 69660Y, 2008.

[7] J. Theiler and S. Perkins, “Proposed framework for anomalous change
detection,” ICML Workshop on Machine Learning Algorithms for
Surveillance and Event Detection, pp. 7–14, 2006.

[8] J. Theiler, “Quantitative comparison of quadratic covariance-based
anomalous change detectors,” Applied Optics, vol. 47, pp. F12–F26,
2008.

[9] S. M. Adler-Golden, S. C. Richtsmeier, and R. Shroll, “Suppression
of subpixel sensor jitter fluctuations using temporal whitening,” Proc.
SPIE, vol. 6969, p. 69691D, 2008.

[10] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of
an optical pattern with unknown spectral distribution,” IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 38, pp. 1760–1770, 1990.

[11] H. Hotelling, “Relations between two sets of variables,” Biometrika,
vol. 28, pp. 321–327, 1936.

[12] J. R. Kettenring, “Canonical analysis of several sets of variables,”
Biometrika, vol. 58, pp. 433–451, 1971.


