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Abstract—Key results are presented of an extensive project 
studying the use of synthetic aperture radar (SAR) as an aid to 
the levee screening process. SAR sensors used are: (1) The NASA 
UAVSAR (Uninhabited Aerial Vehicle SAR), a fully polarimetric 
L-band SAR capable of sub-meter ground sample distance; and 
(2) The German TerraSAR-X radar satellite, also multi-polarized 
and featuring 1-meter GSD, but using an X-band carrier. The 
study area is a stretch of 230 km of levees along the lower 
Mississippi River. The L-band measurements can penetrate 
vegetation and soil somewhat, thus carrying some information on 
soil texture and moisture which are relevant features to 
identifying levee vulnerability to slump slides. While X-band does 
not penetrate as much, its ready availability via satellite makes 
multitemporal algorithms practical. Various feature types and 
classification algorithms were applied to the polarimetry data in 
the project; this paper reports the results of using the Support 
Vector Machine (SVM) and back-propagation Artificial Neural 
Network (ANN) classifiers with a combination of the polarimetric 
backscatter magnitudes and texture features based on the 
wavelet transform. Ground reference data used to assess 
classifier performance is based on soil moisture measurements, 
soil sample tests, and on site visual inspections. 

Keywords-synthetic aperture radar, levee screening, earthen 
levees, UAVSAR, TerraSAR-X 

I.  INTRODUCTION 
In the United States alone, more than 150,000 kilometers of 

earthen levee structures of varying designs and conditions 
protect large areas of populated areas from flooding. The 
potential for loss of life and property associated with 
catastrophic failure of such levees can be quite large. 

Currently, limited resources for inspections of this 
infrastructure prevent adequate monitoring to achieve desirable 
risk management levels. There is a need to prioritize the 
allocation of these resources in a cost-efficient manner. Levee 
managers and federal agencies will benefit from any tools 
allowing them to assess levee health rapidly with robust 
techniques that identify, classify and prioritize levee 
vulnerabilities with lower costs than traditional programs not 
based on the use of remote sensing. This paper presents results 
from an extensive project studying the use of synthetic aperture 
radar (SAR) as an aid to the levee screening process. The 
remote sensing data included two SAR sources: 

(1) The NASA UAVSAR (Uninhabited Aerial Vehicle 
SAR), a fully polarimetric L-band SAR which is 
also designed to acquire airborne repeat track SAR 
data for differential interferometric measurements. 
This instrument is capable of sub-meter ground 
sample distance. 

(2) The German TerraSAR-X satellite with its X-band 
multi-polarimetric SAR and high spatial resolution 

The longer-wavelength L-band SAR measurements can 
penetrate vegetation and even the top layer of soil, depending 
on moisture content. On that basis this wavelength was selected 
for our study under the assumption that the backscatter will 
carry information from the top layer of the soil that will be 
valuable in detecting changes in levees that will be key inputs 
to a levee vulnerability classification system. 

The TerraSAR-X satellite provides advantages of better 
temporal resolution and lower cost of data acquisitions than an 
airborne platform in general, and also high spatial resolution. 
The shorter wavelength however results in less penetration 
depth, especially in the presence of vegetation such as trees, 
shrubs and grass, thus reducing the amount of information 
about the soil present in the backscatter. However, some 
variations in the vegetation itself may be related to levee 
vulnerabilities, mitigating this disadvantage of the shorter 
wavelength option. Furthermore, changes in surface roughness 
are easier to detect with shorter wavelengths, and this 
characteristic is relevant to our targets of interest. 

Our test study area is a stretch of 230 km of levees along 
the lower Mississippi River, along the western boundary of the 
state of Mississippi. One type of problem that occurs frequently 
along these levees, which can be a precursor to levee failure 
during a high water event, is the slump slide.  

Slump (or slough) slides along a levee are slope failures, 
which leave areas of the levee vulnerable to seepage and failure 
during high water events [1]. A photograph of a typical slump 
slide, in this case one which appeared during the recent spring 
2011 flooding of the Mississippi River, is shown in Fig. 1. The 
roughness and related textural characteristics of the soil in a 
slide affect the amount and pattern of radar backscatter. The 
type of vegetation that grows in a slide area often differs from 
the surrounding levee vegetation, which can also be utilized in 
detecting slides [2]. 
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Fig. 1. Typical levee slough (or slump) slide. This one appeared during 
the major flood event in the Spring of 2011 

 
Fig. 2. Study area with radar color composite image overlaid on base 
map. Radar swath is 20 km wide and total length is 230 km of the lower 
Mississippi River valley bordering Arkansas, Mississippi, and 
Lousisiana. 

Early detection of the occurrence of such slides could help 
levee mangers prioritize their inspection and repair efforts. A 
remote sensing based solution for their rapid detection would 
be more efficient and cost effective than frequent on-site visits. 
Furthermore, it may be possible to detect less obvious 
precursors to slides and boils by sensing characteristics of the 
surface soils and vegetation. A working hypothesis of this 
study was that such characteristics will be manifested in the 
backscatter of polarimetric radar due to its response to spatially 
variant soil moisture. For example, L band radar is known to 
penetrate soil to various depths depending on its moisture 
content, and has been used to map surface soil moisture [3].  

II. DATA 

A. UAVSAR Data 
This study used data from the NASA Jet Propulsion 

Laboratory’s UAVSAR (Uninhabited Aerial Vehicle Synthetic 
Aperture Radar) instrument, a polarimetric L-band synthetic 
aperture radar flown on a Gulfstream-3 research aircraft. The 
salient characteristics of this instrument are shown in Table I. 

The UAVSAR is normally flown at an altitude of 12.5 km 
and takes an image swath 20 km wide. Our study area was 
designed to be imaged in two straight-line flight segments 
structured to capture most of the river levees on both sides of 
the river. The study area is shown in Fig. 2, with a color 
composite representation of the radar data overlaid on a base 
map of the vicinity. A total of five UAVSAR data collections 
have been made: (1) June 16, 2009; (2) January 25, 2010; (3) 
April 28 2010; (4) June 7, 2011; and (5) June 22, 2011. The 
higher frequency of flights during the spring of 2011 was 
driven by the 100-year level flood event occurring at that time, 
which created a valuable opportunity for collecting data at very 
high-water levels. The flights were flown in a “racetrack” 
pattern looking toward the river from opposite directions, in 
order to achieve a range of local incidence angles along the 
levees. 

Although the raw ground sample distance is 1.6 by 0.6 
meters, most of our efforts use the multi-look 5 by 7 meter data 
to minimize speckle effects. 

 

TABLE I.  UAVSAR SPECIFICATIONS [4] 

Parameter Value 
Frequency L-band 
Bandwidth 80 MHz 

Range Resolution 1.8 m  
Polarization Full quad polarization 

Quantization 12 bits 
Antenna size 0.5 m range/1.5 azimuth 

Power > 2.0 kW 
 

 



 
Fig. 4. Example of in-situ soil properties data: soil moisture along levees 

B. Satellite Data 
In addition to UAVSAR, data from the German TerraSAR-

X satellite was acquired over portions of the same study area. 
Characteristics of this sensor are shown in Table II. Due to the 
relatively low cost (for TerraSAR-X Science Team members), 
we acquired a large number of such scenes over a great variety 
of seasons and time periods. By the end of the project a total of 
56 TerraSAR scenes had been acquired. The locations and 
scene sizes relative to the UAVSAR image swath are shown in 
Fig. 3. 

TABLE II.  TERRASAR-X SPECIFICATIONS [5] 

Parameter Value 
Radar Carrier Frequency 9.65 GHz (X-band) 

Bandwidth 150 MHz 
Pulse Repetition 

Frequency 2 – 6.5 KHz 

Incidence Angle Range 20° - 45°   
Polarization HH, HV, VH, VV 

Nominal altitude 514 km 
Revisit time 11 days 

Power > 2.0 kW 
 

 
C. Ancillary and Reference Data 

Ancillary data can be used to assist the levee classification 
process in addition to the remote sensing data. This includes 
knowledge of the soil characteristics in the vicinity of the 
levees, the underlying geology of the area, and history of past 
problems and inspections of the levees. 

Reference (or “ground truth”) data is obtained for the 
purpose of training the supervised classification algorithms and 
testing and validation of results. Such data fall into two major 
categories: (1) known levee vulnerability points such as slump 
slides, seepage points, or sand boils; and (2) measured soil 
properties such as moisture content, sand/clay ratios, etc. The 
former category is collected with the assistance of the US 
Army Corps of Engineers (USACE), which maintains a history 
of past problems and has identified particularly problematic 

sections of levees in the study area. A challenge in using this 
data is that once USACE identifies problems it soon repairs 
them, depending on their severity. This leaves the targets of 
interest in their natural (un-repaired) state for a limited period 
of time, making the number of such targets available during a 
given remote sensing data acquisitions relatively small. On the 
assumption that the soil properties in the vicinity of such 
problems may have similar characteristics which may be 
detectable in the radar signatures, we use some of these 
repaired locations in our training data, and plot their locations 
along with the unrepaired targets when analyzing results. 

The second category of reference data-- measured soil 
properties-- was collected in a number of ways. We made 
direct measurements of soil moisture (volumetric water content 
(%VWC) using handheld probes during each radar flight or 
satellite overpass. We focused these collections on specific 
areas of interest (AOIs) within the large study are, which 
included slide and non-slide (“healthy”) regions. In addition we 
contracted with a company (Soil and Topography Information, 
LLC) that performs intelligent sampling collection of soil 
property measurements using vehicle-based probes that allow a 
large collection area to be sampled efficiently. We measured in 
this manner soil properties over a 3-mile long section of the 
study area levees, divided into 3 one-mile long AOI’s. Two of 
these were in regions of frequent slump slide activity and the 
third was a “healthy” levee section having no history of slides. 
An example of this data is shown in Fig. 4, which plots the 
spatial distribution of one variable: sub-surface soil moisture. 
The mean values of this and other of the measured soil 
properties, including surface moisture, clay fraction, and sand 
fraction, were computed for each of the 3 AOIs, and are shown 
in Fig. 5. Notably, the healthy AOI showed significantly lower 
moisture levels and higher sand fraction than either of the other 
two AOIs. These differences could potentially influence the 
relative magnitudes and spatial distribution of the polarimetric 
SAR backscatter channels, thus supporting the ability to use 
features based on them in a levee classification application. 

III. METHODS 
Features believed to provide good potential for 

discrimination of the targets of interest were designed, 
 

Fig. 3. Location of TerraSAR-X satellite SAR scenes in relation to the 
larger UAVSAR image swath. 



 
Fig. 5. Mean values of soil moisture and clay/sand percentages measured 
in situ for 3 different areas of inerest along the levee. AOI 2 (green) is the 
“healthy” segment. 

computed, and tested. Both per-pixel and window-based 
(textural) features were examined. The candidate features were 
tested with our training data to determine separability between 
classes of interest. Over 144 features in total were investigated, 
including radiometric and textural features. Classification 
algorithms tested and reported here include a back-propagation 
Artificial Neural Network (ANN) and the Support Vector 
Machine (SVM) method.  

Stepwise Linear Discriminant Analysis (S-LDA) [6] was 
employed for feature reduction and optimization. In this 
approach, various features derived from the SAR backscatter 
imagery are concatenated into a vector, and a forward-
selection, backward rejection technique is employed to prune 
away features that are “less” relevant to the classification 
problem at hand. S-LDA reduces the feature set by selecting a 
subset of all available features based on a metric that quantifies 
the class separation provided by each feature. In this study 
Bhattacharyya Distance (BD) was used as the metric for 
calculating the class separation. An LDA based feature 
“optimization” is then employed on this reduced dimensional 
subset of features identified by the forward selection, backward 
rejection search. S-LDA is hence extremely valuable in 
ensuring that the “most” relevant features are provided to the 
classifier while ensuring that the classifier is not over-burdened 
by an excessively high dimensional feature space. The 
“classifier” employed in this work to model class-specific 
information and label test data (pixels) appropriately was the 
popular maximum-likelihood classifier. This classifier assumes 
Gaussian probability distribution functions for each class, and 
uses training data to learn the mean vector and covariance 
matrix per class. This information is then employed to find the 
distance of test vectors from each class model, and a class label 
is assigned to the sample that maximizes the likelihood value of 
the test sample being in that class. We used SLDA in this way 
to narrow the size of the feature set within a class of features 
(such as radiometric, GLCM, or Wavelet), but then 
experimented with various combinations of each reduced-size 
feature set in different classifiers. 

Features included in this study are described in detail 
below. These include per-pixel intensity related features, as 
well as features extracted within a window around each pixel – 
known as textural features.   

A. Per-pixel Features 
The polarimetric radar data contain three independent 

channels of backscatter coefficients, those for like-polarized 
(HH, VV) and cross-polarized (HV) combinations of 
transmitted and received polarizations. For each, we get 
complex values giving both magnitude and phase information. 
The magnitudes of these channels can be used as basic per-
pixel features with any classifier. For the airborne UAVSAR 
radar data we have two different views of the same levees from 
opposite directions and have used the 3 channels from each 
direction for each pixel in case there is additional information 
due to the great difference in local incidence angles. 

The relationship between the complex backscatter 
coefficients can reveal details on the nature of the scattering 
mechanism of the targets, such as relative amount of surface, 
double-bounce, or volume scattering. Decompositions of 
parameters derived from 2 or 3 of the polarimetric channels 
have also been used as classification features [10]. We 
previously investigated the use of such decompositions for the 
levee screening application [11]. 

B. Textural Features 
In addition to the per-pixel backscatter features, a number 

of texture features were explored which utilize the values from 
pixels in a neighborhood around each pixel being analyzed.  
Features based on the Gray Level Co-occurrence Matrix 
(GLCM) [7] and on the discrete wavelet transform (DWT) 
[10], showed promising results. We previously reported results 
of our work using the GLCM features [12]. 

The ability of wavelet analysis to decompose an image into 
different frequency sub-bands makes it suitable for image 
classification [9]. In some applications, the energy of each sub-
band is used as a texture feature. In others, a feature selection 
analysis chooses a subset of these which prove effective for a 
given texture-based classification. Other parameters to be 
determined include the choice of mother wavelet function, and 
the neighborhood window size. 

For our application, we used wavelet features with one 
decomposition level from each of the radar polarization 
channels. We tested these features using different sliding 
window sizes (5, 7, 8, and 9) and mother wavelets 
(Daubechies, Haar, Symlet, and Biorthogonal) and selected 
those that maximize the separation of the targets of interest 
from the background. The Daubechies mother wavelet was 
chosen, and a window size of 7. 

C. Classification Algorithms 
A back propagation neural network (BPNN) is a multilayer, 

feed-forward artificial neural network trained by the back 
propagation method.  It is defined by a network of input, 
output, and hidden layers as depicted in Fig. 6. The Xi are the 
values of the input features; Zi are the values at the (one or 
more) hidden layers; W is a vector of weights applied to the 
hidden layer(s); and V the vector of weights applied to the 



 
Fig. 6. Back propagation neural network with one hidden layer. 

output layer. The weights are set iteratively in training mode 
using the error back-propagation method after measuring errors 
resulting from presenting training data to the network. We used 
a network with two hidden layers, and the inputs were the 
polarimetric backscatter magnitudes and the selected wavelet 
features. 

We also tested the Support Vector Machine (SVM) method. 
SVM is a powerful supervised learning method for analyzing 
and recognizing patterns. It discriminates between two classes 
by fitting an optimal separating hyperplane to the training data 
within a multidimensional feature space. The advantage of 
SVM is that it works well with small training datasets, so is 
particularly appropriate for our levee slide application. In this 
method, the input data are first transformed into a feature space 
(possibly with a higher dimension than the original data), either 
linearly or non-linearly, based on a kernel function. Next, a 
hyperplane which separates the classes is computed by 
applying an optimization method. 

The SAR backscattering coefficients and wavelet features 
computed from them were used as features input to the 
classifier. A Gaussian radial basis kernel was used and the 
training process involved the estimation of the kernel parameter 
γ and the regularization parameter C. To simplify the parameter 
selection, the datasets were normalized before the classifier 
training and optimal parameters for γ and C were defined. The 
accuracy of the classification varies with the γ parameter and 
its selection is discussed along with the results below. 

IV. RESULTS 
Results of this study show great promise, with high 

accuracies for detection of active slump slides on earthen 
levees. However, the number of training sites was very limited 
and further experiments are needed to validate these results. All 
of the tests reported here used both the wavelet and backscatter 
features. We tested the UAVSAR data in both an ANN and an 
SVM classifier, and also tested SVM with the TerraSAR-X 
satellite data. Unfortunately the satellite and airborne radar 
acquisitions were not close enough in time that we were able to 
use the same training data for each. 

 Fig. 7 shows the results of using the back propagation 
ANN with UAVSAR data. The backscattering coefficients HH, 
HV and VV and wavelet features computed from them are used 
as features input to the classifier. The neural network designed 

has two hidden layers with three neurons in the first hidden 
layer, and eight in the second layer. The training data were fed 
into the input layer and propagated through the hidden layer to 
the output layer. The number of iterations was set to 500. The 
differences between the computed and desired outputs were 
computed and fed backwards to adjust the network. The 
algorithm adjusts the weights of each connection in order to 
reduce the value of the error function. The overall accuracy 
achieved with this classifier was 94%. Table III depicts the 
confusion matrix of the classification. 

 

TABLE III.   CONFUSION MATRIX FOR BPNN CLASSIFIER. 

 Slide Healthy Accuracy 
Slide 38 3 0.93 

Healthy 3 65 0.96 
Accuracy 0.93 0.96 0.94 

 

The SVM classifier was also used with UAVSAR 
backscattering coefficients HH, HV and VV and wavelet 
features computed from them. It was tested with the same 
training data and study area. A Gaussian radial basis kernel was 
used and the training process involved the estimation of the 
kernel parameter γ and the regularization parameter C. To 
simplify the parameter selection, the datasets were normalized 
before the classifier training and optimal parameters for γ and 
C were defined. Since the accuracy of the classification varies 
with the γ parameter, the relationship between accuracy and γ 
sampled over the range 0.03 – 0.1 was defined for the analysis 
and plotted in Fig. 8 along with the classification map. The 
results show that SVM performed very well with a highest 
accuracy of 100% for the slide detection and 93% for the 
healthy levee mapping. 

With such high performance on the UAVSAR data, we 
tested the SVM algorithm with similar features computed from 
the TerraSAR-X data. That data was only available with two 
polarization channels, HH and VV. These backscattering 
coefficients and the wavelet features derived from them were 
used as inputs to the classifier. It was tested in a nearby portion 
of the levee area used to test the UAVSAR data; however only 
one active slide was available. The masks used for training are 
shown in Fig. 9.  

Fig. 10 shows the results of running this classification 
method over the area of study. Pixels classified as healthy 
(non-slide) are in green, and those classified as slide pixels are 
in blue. It can be seen that the actual slide area was well-
detected, but there are a number of false positives detected as 
slides among the actual healthy areas. The density of these can 
be seen to be much lower than the true positives, thus. 

Fig. 11 shows how the accuracy of this SVM classifier is 
affected by the quantity of training samples used. This type of 
sensitivity analysis is useful in determining the minimum 
number of training samples needed to achieve a reasonable 
accuracy. In this case, it can be seen that accuracy levels off at 
a quite high level of 90% with around 50 training samples.As 
has been stated, these results are still preliminary and cannot 



yet be rigorously assessed or validated until more samples are 
tested. 

 

V. CONCLUSIONS AND FUTURE WORK 
The results show that high accuracies for detection of slump 

slides on levees can be achieved with multi- polarization SAR 
data, both 3-channel L-band SAR as well as from 2-channel X-
band SAR. However, due to the limited availability of active 
slides during the test period, these conclusions need more 
rigorous testing with a greater variety of samples and locations. 
Furthermore, the locations and distribution of pixels identified 
as false positives present the intriguing possibility that there 
may be useful information about soil properties that could lead 
to potential future slide activity. 

It is recommended that anomalies detected by classifiers be 
thoroughly investigated by experts using such methods as soil 
bore samples to determine if they are really false positives or 
not—such sites might have soil properties that could lead to 
instability and thus future slide and seepage activity, and the 
ability to detect them remotely prior to the actual slide would 
be quite valuable. 

Both the airborne and satellite based instruments used in 
this study can also be used with interferometric SAR methods 
to derive surface deformation maps, which can be valuable 
inputs to a levee screening process. We examined some 
interferograms from our data, but they suffered from high 
levels of decorrelation and lack of sufficient persistent 
scatterers to be useful. Such limitations can be overcome to 
some extent by averaging over many more time samples, and 
we plan to do this in the future. 
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Fig. 10. SVM classification map using TerraSAR-X data. 

Fig. 9. TerraSAR-X data overlaid with masks of slide (blue) and no-slide 
(green) areas. 

Fig. 8. SVM classification results with UAVSAR data. (a) The 
relationship between classification accuracy and γ with a constant 
regularization parameter log C = 4 for slide (red line) and healthy classes. 
(b) Training Mask for slide and healthy pixels. (c) SVM classification 
map. 

Fig. 7. Back propagation neural network result. (a) Optical image of the 
subset with training masks for slide and healthy pixels.  (b) Back 
Propagation Neural Network classification result (blue = background, 
green = slide, red = healthy levee). 

  
 

Fig. 11. SVM classification accuracy using TerraSAR-X data, versus 
number of training samples. 


