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Abstract—Generalized Fourier series with orthogonal ~ The notion of sparsity has been increasingly em-
polynomial bases have useful applications in several fields phasized in recent literature. As the amount of useful
including differential equations, pattern recognition, and  data collected continues to increase, the extraction of
image and signal processing. However, computing the peaningful data is often hindered by the so-called ‘curse
generalized Fourier series can be a challenging problem, o+ 4 angjonality’. Too alleviate its effects, methods

even for relatively well behaved functions. In this paper, a loiti tural hi hical struct
method for approximating a sparse collection of Fourier- exploiting any natural sparse or hierarchical Structures

like coefficients is presented that uses a collocation tech-iN data have been developed. Research in sparse grids,
nique combined with an optimization problem inspired by ~Particularly when coupled with a hierarchical scheme us-
recent results in compressed sensing research. The dising Smolyak’s algorithm, laid the foundation for accurate
cussion includes approximation error rates and numerical computation of high dimensional problems while sig-
examples to illustrate the effectiveness of the method. Onenificanﬂy reducing the computational complexity from
example displays the accuracy of the generalized Fourier o(vd) to O(N1log? ! N), whered is the underlying
series approximation for several test functions, while the gimensionality of the problem and¥ is the number of
other is an application of the generalized Fourier series oy 1 ints in each coordinate directicl [3]. [19].
apprOX|mat|0n to rotation-invariant pattern recognltlon n i K K
images. For linear regression problems, the importance of
sparsity has emerged in recent advances in compressed
I. INTRODUCTION sensing. Given a sensing mattik € R™*P with m < p
. . o and a collection of under sampled linear measurements
This paper discusses an efficient method to approx-

, . ) ) .y = Xe¢, using compressed sensing techniques one ma
imate the sparse generalized Fourier series of a gl\;én g P g : y

function in terms of orthogonal polynomials in severaﬁffgloexrlnmate the sparse vectorvia the optimization
dimensions. That is, given a functiofi : R¢ — R P
satisfying certain properties, we seek to compute the

DS . ¢ = argmin ||c||; satisfyingXc = y.
Fourier-like coefficient§é, : n € W} such that gunin[lef fying Y

fa Z o 1 Under cert.ain sparsity and coherence conditions, the
’ recovery will be exact [2],.14],.[5],17].

On the other hand, sparse generalized Fourier series
where {7y} is a collection of orthogonal polynomialsapproximations with orthogonal polynomial bases typi-
andW is is a sparse collection of multi-indices. cally use spectral or pseudospectral approximations on

To compute the sparse collection of Fourier-like casparse grids[]6],[]9],[[11],[115], T16]. These methods
efficients, we propose using a collocation method ifetermine the sparse collection of multi-indices a priori,
an optimization scheme motivated by recent results {fhich may lead to unintentional deletion of significant
the field of compressed sensing. This method seeksefins in the approximation. To compute the coeffi-
sparse collection of coefficients such that the finite sugfents in the aforementioned works, detailed hierarchical
appearing in[{ll) nearly interpolatgsat carefully chosen quadrature methods have been developed to perform
nodes. the numerical integration required for the desired accu-
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In comparison, the method proposed in this paper hAs Full and sparse grid orthogonal polynomial repre-
a straightforward implementation. In addition, a majasentations

strength of the proposed method is that the sparse indeXet () c R?. Letw : 2 — R be a continuous weight

set does not need to be selected in advance. Instead.f{ition. That is, suppose > 0 on Q andw satisfies
optimization scheme will select the best sparse selection N

of multi-indices to approximate the function. / dw = 1.

The following notation will be used throughout this Q
work. Vectors will be denoted by boldface letters. LeAssociated with each weight function is a collection of
R denote the real numberd] the natural numbers andorthogonal polynomials. A seftr, : n € N&} satisfying
Ny = NU{0}. LetR¢ denote the usuatdimensional Eu- both of the following conditions is the collection af
clidean space with obvious analogl}édsanng. Letn; orthogonal polynomials:
denote thej™ entry of the vecton. Let C(2) equal the 1) Eachr, is a multivariate polynomial.
space of all continuous real-valued functions defined ork)
a domainf). The space of.,-weighted square-Lebesgue
integrable functions oveR? is denoted by (R?) with Some common collections of univariate orthogonal poly-
the associated weighted inner produgt-),, defined nomials and their associated weight functions are given
by(f,9)w = [pu fg dw for all f,g € L2(R?). Thew- in Tablel] [1].
weighted inner product naturally induces the weighted

(T, Tm), = [ TnTmdw =0 if n # m.
Q

norm H . ”w Name . - w _ Q
The rest of this paper is organized as follows. InCePyshev (FirstKind) | 1/v1 — a2 | [-1,1]
. . . Chebyshev (Second Kind) +/1 — 22 [-1,1]
Section 2, the proposed method for approximating th%e endre . 1]
sparse generalized Fourier series of a function is prq_—aguerre - 0 (;O)
sented, along with an analysis of the approximatioq_| mite R ’R
error. The advantages of the proposed method are stateg

and compared to the difficulties exhibited by existingABLE I: Some common univariate orthogonal poly-
methods. Section 3 includes numerical experiments m@mials, their associated weight functions and their
which the proposed method is implemented. The firdpmains(2.

set of experiments approximates the sparse generalized

Fourier series of several bivariate test functions. The secLet {r, : n € NZ} be a collection of multivariate
ond set of experiments applies the sparse approximatethogonal polynomials relative to the weightSuppose
Fourier-like coefficients to compute the rotation-invatia the orthogonal polynomials have been normalized so that
Gaussian-Hermite moments, and uses these momeptg|| = 1 for eachn. Since the orthogonal polynomials
to perform classification of unknown rotated imageselative to the weight> form a complete orthogonal basis
The paper concludes with a summary and directions of L2 (R%), any functionf € L2(R%) can be expressed
possible future work. as

)

= CpTr
[l. SPARSEGENERALIZED FOURIER SERIES WITH ! Z nom

d

ORTHOGONAL POLYNOMIAL BASES o ners _
The oroposed method approximates a aiven f nct.(\gvhere the equality is understood to mean convergence in

prop . pproxi ) given TUNCUQl 1 and the Fourier-like coefficients are given exactly
by a sparse generalized Fourier series with an orthqg-
onal polynomial basis. After selecting a set of multi-
A . . Cn = <f> 7Tn>w' (3)
indices and evaluating the orthogonal polynomials at pre-
determined nodes, the sparse collection of coefficientsTise expression in Equatiof](2) is called the exact gen-
computed using a collocation method with a convex optralized Fourier series of.
mization problem. This section explores the multi-index The computation of Equatiofi](2) presents several dif-
and node selection, thoroughly explains the collocatidiculties. Not only does the full-grid generalized Fourier
model used to approximate the Fourier-like coefficientgries involve infinitely many terms, but the Fourier-
and discusses the approximation errors. We begin witke coefficients can be difficult or impossible to com-
preliminary facts about orthogonal polynomials and gepute exactly even for seemingly innocuous functions

eralized Fourier series. f. Moreover, it is challenging to implement numerical



integration techniques achieving the desired accuraBy Fourier-like coefficients

due to the highly oscillatory behavior of the integrands. To tackle the coefficient computation difficulty, an
Therefore methods to estimate the generalized Fourigftimization problem with a collocation method will
series [(R) must tackle both the series truncation apd employed. To this end, Lek ¢ R? be a finite
coefficient computation issues while ensuring that th@jlection of nodes with|A| = m, enumerated so
approximation error for one does not overwhelm th@at A = {x;,x,,...,x,}. ChooseN, let W &

other. {v¢, 1¢,54} and say|W| = p. EnumerateW so
To tackle the series truncation difficulty, we explorghat W = {n;,ny,...,n,}. Define thej"-row k-

three sets of multi-indices. Fix a positive integé€rand column entry of the collocation matrix € R™*? by
consider the sets of candidate full-grid multi-indices  x; , — 7, (x;), and let thej™ entry of the vectof € R™

d J be given byf; = f(x;).
Yy= {n €Ng:n=< N}7 The collocation method seeks a sparse collection of
coefficients{¢, : n € W} that satisfies
d _ d . _
75 = {n e Nj: ln = N}, Fx5) = 3 Gamn(x;) Vx; € A, 5)
and the sparse-grid hyperbolic cross-shaped multi- _ neWw
indices More succinctly, Equation[[5) can be expressed as
f = Xec.
4 4 d Although the Jacobi-like collocation matriXX is
Sy={neNg: H(”j +1)<N+1,. full rank, it is not necessarily square. Indeed, we are
J=1 interested in the casex < p. One could relax the

Clearly [Y] = O(N4) and |S%| = O(N log® V). It eﬂ‘.Ja."ty in K?) aI”d seek that minimizes|[f — )él‘:”? "
can be shown thas?. ¢ v [3]. These pre-determinedT is is exactly a least squares optimization problem wit
N - N = solutioné = XTf, whereXT is the pseudoinverse of.

multi-indices are commonly used in spectral and psel- .
y b P However, the least squares solution does not promote

dospectral method§1[9], [11], [15], [16]. . | K iori th
Define the full and sparse-grid truncated generalizS arsity. U_n eSS one Knew a priorl the exact sparse set
Fouri . to use, it is unlikely using least squares would result
ourier series as in a sparse representation 6f
fir = Z T 4 I_n_stead, we propose ap_proxmatlng thg cqllocatlon co-
efficients using the Dantzig selector, which is a solution

to the optimization problem
for W e {Yd,T%, 54} {

neW

The error rates for the truncated orthogonal polyno- mln_lmlze”cH1_1 -
mial representations of a functidd (4) depend on the order subject tq’D X (Xe— f)Hoo <9
of the approximating polynomials as well as the behaviarhere D is them x m diagonal matrix normalizing the

,  (6)

of the function itself. columns of X and the scala > 0 is small. Let¢ be a
Theorem 2.1: For anys > 0 and f € L2(R%), solution of the optimization problem](6). Then a sparse
generalized Fourier-series approximation to the function

If = fwl, < N°If

whereW € {Y& T%,5%} and | - | is the Korobov f=73_ tam (7)
norm of orders induced by the inner product

K f is given by

Several methods exist to quickly and accurately solve
d the optimization problem[{6), including an alternating
(F,9) e = D> (s ma)w{gs m)w [ (1 +ny)%. direction method[[10] and an iterative method based
neNg j=1 upon proximity operators [12].

The proof of Theoreri 211 regarding the accuracy of Before performing the error analysis of the approxi-

the full and sparse-grid truncated generalized Fourigation (7). some notation must first be presented. For a

i d
series appears inl[9], [11] for Hermite polynomial basegf)m""mQ C R, let C(Q2) denote the class of all real-

The proof can easily be generalized to bases of othvé’\Jued continuous functions dn, and let
orthogonal polynomial classes. C™Q) = {f: f@ e C, V|a| < m}.



For any positive integem, define a seminorm The Hermite polynomials are used as the orthogonal

| |x,.(2) ONC™(2) as basis in the sparse representations. Consider the collec-
tion of orthogonal univariate Hermite polynomials with
| flx,.(q) = max {|f(a) (x)| 1 x€Qfal < m} : associated weight functian(z, y) = e~ (#*+¥*), The first

few univariate Hermite polynomials prior to normaliza-

For any functionf : R — R, let the supnorm off tion aremo(z) = 1, mi(z) = 2z, m(x) = 422 — 2, and

restricted to Fhe domaif® be given by|| f||oc.0- _ satisfy the three term recurrence
The error in the sparse orthogonal polynomial inter-
polation of a functionf greatly depends on the highest Tnt1(2) = 227, (2) — 2nmH—1(7)

order of the polynomials used in the summation as WeFHr n e N. Sincew
as the smoothness and behaviourfaftself.

Theorem 2.2: If the nodes A =
{x:my41(z;) =0} C R? are a rectangular grid Tn(X) = T, (1), (22) - - Tp, (24).
of the zeros of theM + 1" orthgonal univariate
polynomial and if f € L2(RY) n C™(RY), then for
any simply connected domaift C R¢ there exists a T 4= T/ NI2P\/T.
constantc > 0 such that

is separable, the multivariate Hermite
polynomials are products of the univariate ones:

The polynomials are then normalized as

To find the solution to the optimization problei (6),
- —mM we use the proximity operator based iterative method
f- Z Cnn < e2 |f|Xﬁ(Q) ‘ recently proposed in_[12]. The proximity operator based
nevy 00,2 method is straightforward and uses only two soft thresh-
The proof of Theorerfi 212 appears in[11] for multivariolding operations at each iteration, requiridd(4mp)
ate Hermite orthogonal polynomials. The generalizatidhultiplications in each iteration for & x p collocation
to other classes of orthogonal polynomials is straightfomatrix X.
ward. All experiments are performed in MATLAB 2014a on
Finally, since the polynomial§r,} are orthonormal @ PC with an Intel Core i7-3630QM 2.40 GHz processor
relative tow, the error in approximating’ by the in- and 16GB RAM running Windows 7 Enterprise with
terpolated polynomiaf = 3" ;- én7n is characterized machine precisior2.2204e — 16.

by the difference in their coefficients: Experiment 1.
9 In this experiment, the sparse generalized Fourier se-

) . N . .
| s s s 12 ries approximation several given functions are computed.
‘ ! f”“ - ;V(cn e)ul| = llén = nll, Supposel = 2 and consider the functions
n w
L . _ 2.2
which is guaranteed to be small providedas a small, filz,y) =27y
norm. Indeed, the constrant inl (6) forces the coefficient fo(z,y) = «*y?
error to be small between the recovered polynomial and Falz,y) = 2e¥/?.

the interpolated polynomial.
It is easy to check thaf; € L2(R?) for eachj.

. N UMERICAL EXAMPLES To create the collocation matri¥ for use in the

In the following experiments, the sparse generalizedhemel(6), we use the full-grid rectangular, triangular
Fourier series approximation is computed for various temtd a sparse-grid hyperbolic cross shaped set of can-
functions using the collocation approach presented didate multi-indicesY ¢, ¢ and 5%, along with nodes
Section 2. In Experiment 1, various node and multi-indéermed by a rectangular collection the zeros of Medle-
selection methods are used for several test functiogsee univariate Hermite polynomials. The parameXer
The accuracy of the approximation for each test functiatetermines the highest degree hermite polynomial used
is presented. To illustrate the utility of the proposemh the approximation, and the paramefdr determines
method, the collocation method presented above is ushd number of nodes used as collocation points.
to quickly generate the Gausian-Hermite moments of Figure[1 displays the sparse generalized Fourier Her-
several images in a training set in Experiment 2, whiahite approximations of the functiong,, f3 with the
are then used for classification of rotated images incaefficients computed as iri](6), and Talilé Il gives
testing set. the error in computing the coefficients as (6) of
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Fig. 1: The exact function (left), the approximated gerieeal Fourier series (center) and the pointwise approxi-
mation error (right) for the functiong, (top row) andfs; (bottom row) in Example 1. The approximations ffy
useY? as the collection of multi-indices antl = 5. The approximations fof; useYy and M = 10.

N

w M 2 3 4 5 6 7 8 9

N-1 | 3.1250e-01 1.8750e-01 1.5830e+00 6.9389e-17 1.3597e-169672-16 8.7694e-16 2.0015e-16
C;Vf N 1.8750e-01 2.3097e-16  6.9389e-17 1.6303e-16 2.3967e-12178e-16 2.0015e-16 1.2478e-15
N+1 | 2.3097e-16 6.9389e-17 1.6303e-16 2.3967e-16  1.2178e-1H015e-16 1.2478e-15 5.4918e-16
N-1 | 3.0619e-01 1.7678e-01 1.7922e-01  6.9389e-17 7.9722e-1245@-17 3.0938e-16 6.7987e-17
= Nﬁ N 1.7678e-01  3.0619e-01 6.9389e-17 1.2432e-16  6.2450e-1B09%kL-17 6.7987e-17 7.8505e-17
N-1 | 3.0619e-01 1.0607e+00 1.2432e-16 1.6997e-16  9.3095e-156548e-16 7.8505e-17 5.1962e-15
N-1 | 3.0619e-01 1.7678e-01 3.0619e-01 1.0607e+00 2.3117e+0062Qe+00 1.1938e-16 1.6464e-15
%’;Z N 1.7678e-01  3.0619e-01 1.0607e+00 2.3117e+00 4.0620e+0812Z+00 1.6464e-15 2.5542e-15
N+1 | 3.0619e-01 1.0607e+00 2.3117e+00 4.0620e+00 6.3122e+006238+00 2.5542e-15 6.4896e-15

N-1 | 7.2220e-01 7.3931e-01  8.2504e-02  1.3435e-02  1.6915e-0H417&-04 2.0687e-04 2.0651e-04
&2 N 9.5017e-02 1.6675e-02  2.1038e-03  2.5979e-04  2.0466e-0D64Z-04 2.0650e-04 2.0651e-04
N+1 | 1.0174e-02 1.2818e-03 1.9914e-04 2.0421e-04 2.0642e-00D65(=-04 2.0651e-04 2.0627e-04
N-1 | 7.1773e-01 6.6775e-01  1.6675e-02  2.1038e-03  2.5979e-040466GL-04 2.0642e-04 2.0650e-04
«2 Nf N 5.0888e-02 1.0174e-02 1.2818e-03  1.9914e-04 2.0421e-00D64Z-04 2.0650e-04 2.0651e-04
N+1 | 1.4089e-01 4.8298e-02 1.5351e-02 3.8721e-03 9.1676e-04.805%-04 2.1067e-04 2.0025e-04
N-1 | 6.4201e-01 6.6292e-01  1.4089e-01  4.8298e-02 1.0762e-0483%-02 9.2400e-02 2.5983e-02
°€,§ N 1.1713e-02  1.4089e-01  3.2214e-01 1.0762e-01  1.7750e-0R240@e-02 1.6179e-01 4.6104e-02
N+1 | 1.4085e-01 3.2214e-01 5.3508e-01 1.7750e-01 2.6136e-06179e-01 2.5687e-01 6.7726e-02

TABLE II: The ¢, vector norm errof|c — ¢||2 for the generalized sparse Fourier series expansiprsd f5 from
Experiment 1 for various combinations &f and M.



the test functionf; for each multi-index scheme with Gaussian-Hermite moments defined by

M € {N—-1,N,N +1} for N = 2,3,...,9. In

particular, the exact Fourier Hermite series expansion my ::/ f(@,y)m (2, y)e” @ T¥)/2 dady.

of f1 has exactly 4 nonzero coefficients located at the L

multi-indicesI; = {(0,0), (0,2),(2,0),(2,2)}. As seen Proof: Using an orthonormal hermite function basis
in Table[l, the locations and values of the nonzero (6) yields the approximation

coefficients were approximated well providéd c W, . 2, o

and not well Whenhpr; W. Similarly, trF])e exact Fourier fla,y) = Z enma(x,y)e T2

Hermite series expansion gf has exactly 9 nonzero el

coefficients located ak, = {(n1,n2) : n; = 0,2,4}. On similar to (7). Substituting the above result into the
the other hand, the exact Fourier Hermite series expdormula for the geometric Gaussian-Hermite moments
sion of f3 contains infinitely many nonzero coefficientsyields

However, as in the Taylor expansion of the exponential

function, the coefficients decay quickly and an accurate my, ~ / F(@,y)ma(z, y)e” @ T2 dzdy
approximation can be obtain by using only a few terms, R

as seen in Figurgl 1. — // Zétﬂ.t(w’y)ﬂn(w’y)e—(xQ-i-y?) dzdy
From Tabld Il one can see the drawbacks of using the Ry

predetermined sparse multi-index $&f. The parameter = Z ¢ (T, ), »

N must be much larger to achieve accuracy on par tew

With the fuII?grid rectangular and_ triangu_lar index S&\hich reduces to just the elemefyt since the hermite
implementations, even for a function as simplefas polynomials are orthonormal relative to the weightm
Experiment 2. In this experiment, the sparse Fourier- aAjthough Theorenf3]1 is written in the continuous

Hermite series approximation is used to perform patteg3se the discrete case follows by a straightforward
recognition of unknown images with possible rotationsybstitution of summations for integrations. Using the
The Fourier-like coefficients are used to compute thgermite functions instead of the Hermite polynomials is
rotation invariant Gaussian-Hermite moments of ordefigportant and guarantees that the Fourier-like coefficient
2,3, and 4, which are then used to classify the unknowgctor is a close approximation to the corresponding

images. Gaussian-Hermite moment for each indexgif,. From
Consider a collection of images in the training sat small collection of these approximated Gaussian-
Tr = {1, 1s,...,Ix}, where eachV/ x M image has Hermite moments, one can determine the rotation in-

been transformed to &/ x 1 vector. For each vectdi; variant Gaussian-Hermite moments of orders 2, 3,

in the training set, the Fourier-like coefficient vecigr and 4. A list of the formulas for these rotation invariant
is computed as in Equatiof](6) where the collocatianoments is given in the Appendix.

matrix X is slightly changed. Instead of using the For this experiment, seven images form the training
Hermite polynomials, each entry iX is an evaluation set. These images are 8-bit grayscafex 50 images

of a Hermite functionX;; = mx(x;)exp(—|x;||3/2). of simplified Chinese characters, which were studied
Throughout this example, the triangular multi-index sét [17]. The training set is displayed in the top row of
T3 is used. Although the pixels in each image naturallyigure[2. Note that Images 1-3 are visually similar, as
form an equally spaced collection of nodes, for compare Images 4-5 and Images 6-7. The testingBeis
tational convenience the nodes are mappedox Z,,, formed by rotating the images in the training set and
where Z,,, are the zeros of tha/'*" Hermite univariate adding noise:

polynomial.
From the Fourier-like coefficients approximated usincglfS =R tz:vetnde{0n/dn/2,....Tn/8},

the optimization and collocation method as [ (6), onghere the operatoz, performs counterclockwise ro-
can approximate the Gaussian-Hermite moments of gflion through an angle of, and  is a collection of
image. independent and identically distributed normal random
Theorem 3.1: Supposef € L2(R?) and leté be a variables with mea® and standard deviation. For any
solution to [6) using the orthogonal hermite functiomector x in the training or testing set, leb, € R!!
basis. Then the elements @fapproximate the geometricbe the vector of the rotation invariant Gaussian-Hermite



sparse generalized Fourier series approximation of sev-
eral test functions were computed, and the approximation
errors were presented. In the second set of experiments,
the coefficients in the sparse generalized Fourier series
were computed and used as rotation invariant feature
vectors to perform pattern recognition on unknown ro-

White Noise Bit-flip
o Identified | Categorized|| Identified | Categorized
0.00 1.0000 1.0000 1.0000 1.0000
0.05 0.9764 1.0000 0.8032 0.9932
0.10 0.9657 1.0000 0.6950 0.9593
0.15 0.9421 0.9975 0.6107 0.8782
0.20 0.9175 0.9979 0.5007 0.7653
0.25 0.9079 0.9943 0.4000 0.6250

TABLE llI: Average ratio of images correctly identified
and sorted into the three categories over 50 simulations
using all images in the testing data set with white Gaus-
sian noise at level and bit-flipped pixels at proportion

g. 2]

(3]
moments of orders 2 thru 4 corresponding to the vectctﬂ]
X.

To perform classification of the rotated images, say
x € Ts is classified as a rotation of imagec Tr iff -

[@x — @yll; < [[Px — Pall; Vz € Tr.

(6]
To test the accuracy of the described classification
method, the elements if's were classified 50 times [7]
each foroc = 0,0.05,0.10,0.15,0.20, corresponding to
0%, 5%, etc. noise corruption. The average percentag[%]
of correctly classified digits in the testing data set for
each noise level is shown in Talilel lll. More details for
the values of|®x_,,, — @, |, for all v,y € Tr are shown [l
in Table[IM. It is clear from the table that although many
of the images are visually similar, the rotation invarianio)
Gaussian-Hermite moments are similar only for rotations
of the same images. Of course, if the Gaussian-Herm'{
moments are approximated well, then this method 'is
expected to yield 100% classification accuracy. The nogz]
elty comes from computing the method used to compute
the Gaussian-Hermite moments. Employing the soluti n
of (@) is an elegant way to compute the moments without
using quadrature schemes or hierarchical methods [BH]
[14].
V. SUMMARY (15]
In this paper, a method for computing a sparse gener-
alized Fourier series with orthogonal polynomial bases
of multivariate functions was presented. The method fiil? )
uses a truncated set of multi-indices, then approximates
the coefficients using the solution of an optimizatioH.7]
problem involving a collocation model. Several exampl
were presented to illustrate the accuracy and utility %STB]
the proposed method. In the first set of experiments, the

tated images.
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Fig. 2: The images forming the training set and testing sehfExample 2. The top row contains the seven images in
the training set and the remaining images form the testihgfsemages rotated counterclockwigg 45°,90°, 135°,

etc.

K\j 1 2 3 4 5 6 7
1 | 6.9480e-09  4.9948 4.5607 7.4822 10.5865 6.2996 8.6762
2 49948  2.1222e-09  2.9397 8.0141 11.3291 7.4386 7.0308
3 4.5607 2.9397  3.4982e-09  6.7547 10.4790 6.5229 7.5554
4 7.4822 8.0141 6.7547  9.8842e-10  6.7450 4.0142 5.3556
5 | 10.5866 11.3291 10.4790 6.7450  9.2692e-10  6.1498 6.7113
6 6.2996 7.4386 6.5229 4.0142 6.1498  3.9752e-09  3.5455
7 8.6762 7.0308 7.5554 5.3556 6.7113 3.5455  1.9313e-09

TABLE IV: Values of || @, — ®;,||,, wherez is the element; € Tr with a 90° rotation.



[19] C. ZENGER Sparse gridsParallel Algorithms for Partial Dif- APPENDIX
ferential Equations, W. Hackbusch (ed.), Notes on Numkrica .
Fluid Mechanics. 31, Vieweg, (1991). Below are the complete and independent set of rota-
tion invariants of Gaussian-Hermite moments of orders

2, 3 and 4[[18].

$1 =mao + Moz
¢2 =(ms3o + m12)® + (mog + ma1)?
b3 =(mao — mo2)[(Ma3o + ma2)* — (mos + mai)?]
+ 4my1(ms3o + mi2)(me3 + mai)
¢1 =ma1[(mzo + mi2)? — (mos + mar)?]
— (mao — moz2)(ms3o + mi2)(me3 + ma1)
¢5 =(m3o — 3miz)(m3e + mi2) X
x [(mso +mi2)® — 3(moz + ma1)?]
+ (mo3 — 3ma1)(mos + ma1) X
x [(mog +ma1)® — 3(mazo + mi2)?]
P =(m3o — 3mi2)(mo3 + ma1) X
x [(mo3 + ma1)® — 3(mso + ma2)?]
— (3ma1 — mo3)(mzo + mig) ¥

x [(mao + mi2)® — 3(mos + m3,]

¢7 =mag + 2maz + Mo
¢s =(mag — moa)[(m3o + mi2)? — (mar + mo3z)?]
+ 4(m31 + ma3)(mso + mi2)(mar + me3)
¢ =(ms1 + mas)[(mso +mi2)® — (ma1 + mos)”]
P10 =(mag — 6maz + moa)[(mszo + ma2)*
— 6(msg + mi2)?(ma1 + mds + (may + mes)]
+ 16(m31 — m13)(mao + mi2)(ma1 + moe3)x
x [(ma3o + m12)? — (may + mo3)?]
¢11 =(mag — 6maz + mo4)(Mm30 + mai2)(ma1 + moe3) x
x [(ma1 + moz)? — (m3o + mi2)?]
— (ma1 — mag)[(mso + ma2)*
— 6(mag0 + mi2)(ma1 + mo3)? + (ma1 + moz)?.



	I Introduction
	II Sparse Generalized Fourier Series with Orthogonal Polynomial Bases
	II-A Full and sparse grid orthogonal polynomial representations
	II-B Fourier-like coefficients

	III Numerical Examples
	IV Summary
	References
	Appendix

