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Abstract—Generalized Fourier series with orthogonal
polynomial bases have useful applications in several fields,
including differential equations, pattern recognition, and
image and signal processing. However, computing the
generalized Fourier series can be a challenging problem,
even for relatively well behaved functions. In this paper, a
method for approximating a sparse collection of Fourier-
like coefficients is presented that uses a collocation tech-
nique combined with an optimization problem inspired by
recent results in compressed sensing research. The dis-
cussion includes approximation error rates and numerical
examples to illustrate the effectiveness of the method. One
example displays the accuracy of the generalized Fourier
series approximation for several test functions, while the
other is an application of the generalized Fourier series
approximation to rotation-invariant pattern recognition in
images.

I. INTRODUCTION

This paper discusses an efficient method to approx-
imate the sparse generalized Fourier series of a given
function in terms of orthogonal polynomials in several
dimensions. That is, given a functionf : R

d → R

satisfying certain properties, we seek to compute the
Fourier-like coefficients{ĉn : n ∈W} such that

f ≈
∑

n∈W

ĉnπn, (1)

where {πn} is a collection of orthogonal polynomials
andW is is a sparse collection of multi-indices.

To compute the sparse collection of Fourier-like co-
efficients, we propose using a collocation method in
an optimization scheme motivated by recent results in
the field of compressed sensing. This method seeks a
sparse collection of coefficients such that the finite sum
appearing in (1) nearly interpolatesf at carefully chosen
nodes.
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The notion of sparsity has been increasingly em-
phasized in recent literature. As the amount of useful
data collected continues to increase, the extraction of
meaningful data is often hindered by the so-called ‘curse
of dimensionality’. Too alleviate its effects, methods
exploiting any natural sparse or hierarchical structures
in data have been developed. Research in sparse grids,
particularly when coupled with a hierarchical scheme us-
ing Smolyak’s algorithm, laid the foundation for accurate
computation of high dimensional problems while sig-
nificantly reducing the computational complexity from
O(Nd) to O(N logd−1N), where d is the underlying
dimensionality of the problem andN is the number of
grid points in each coordinate direction [3], [19].

For linear regression problems, the importance of
sparsity has emerged in recent advances in compressed
sensing. Given a sensing matrixX ∈ R

m×p with m≪ p
and a collection of under sampled linear measurements
y = Xc, using compressed sensing techniques one may
approximate the sparse vectorc via the optimization
problem

c̃ = argmin ‖c‖1 satisfyingXc = y.

Under certain sparsity and coherence conditions, the
recovery will be exact [2], [4], [5], [7].

On the other hand, sparse generalized Fourier series
approximations with orthogonal polynomial bases typi-
cally use spectral or pseudospectral approximations on
sparse grids [6], [9], [11], [15], [16]. These methods
determine the sparse collection of multi-indices a priori,
which may lead to unintentional deletion of significant
terms in the approximation. To compute the coeffi-
cients in the aforementioned works, detailed hierarchical
quadrature methods have been developed to perform
the numerical integration required for the desired accu-
racy while keeping the computational complexity low.
Although effective, these methods can be difficult to
implement.
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In comparison, the method proposed in this paper has
a straightforward implementation. In addition, a major
strength of the proposed method is that the sparse index
set does not need to be selected in advance. Instead, the
optimization scheme will select the best sparse selection
of multi-indices to approximate the function.

The following notation will be used throughout this
work. Vectors will be denoted by boldface letters. Let
R denote the real numbers,N the natural numbers and
N0 = N∪{0}. LetRd denote the usuald-dimensional Eu-
clidean space with obvious analoguesN

d andNd
0. Let nj

denote thejth entry of the vectorn. Let C(Ω) equal the
space of all continuous real-valued functions defined on
a domainΩ. The space ofω-weighted square-Lebesgue
integrable functions overRd is denoted byL2

ω(R
d) with

the associated weighted inner product〈·, ·〉ω defined
by〈f, g〉ω =

∫

Rd fg dω for all f, g ∈ L2
ω(R

d). The ω-
weighted inner product naturally induces the weighted
norm ‖ · ‖ω.

The rest of this paper is organized as follows. In
Section 2, the proposed method for approximating the
sparse generalized Fourier series of a function is pre-
sented, along with an analysis of the approximation
error. The advantages of the proposed method are stated
and compared to the difficulties exhibited by existing
methods. Section 3 includes numerical experiments in
which the proposed method is implemented. The first
set of experiments approximates the sparse generalized
Fourier series of several bivariate test functions. The sec-
ond set of experiments applies the sparse approximated
Fourier-like coefficients to compute the rotation-invariant
Gaussian-Hermite moments, and uses these moments
to perform classification of unknown rotated images.
The paper concludes with a summary and directions of
possible future work.

II. SPARSEGENERALIZED FOURIER SERIES WITH

ORTHOGONAL POLYNOMIAL BASES

The proposed method approximates a given function
by a sparse generalized Fourier series with an orthog-
onal polynomial basis. After selecting a set of multi-
indices and evaluating the orthogonal polynomials at pre-
determined nodes, the sparse collection of coefficients is
computed using a collocation method with a convex opti-
mization problem. This section explores the multi-index
and node selection, thoroughly explains the collocation
model used to approximate the Fourier-like coefficients
and discusses the approximation errors. We begin with
preliminary facts about orthogonal polynomials and gen-
eralized Fourier series.

A. Full and sparse grid orthogonal polynomial repre-
sentations

Let Ω ⊆ R
d. Let ω : Ω → R be a continuous weight

function. That is, supposeω ≥ 0 on Ω andω satisfies
∫

Ω
dω = 1.

Associated with each weight function is a collection of
orthogonal polynomials. A set{πn : n ∈ N

d
0} satisfying

both of the following conditions is the collection ofω-
orthogonal polynomials:

1) Eachπn is a multivariate polynomial.

2) 〈πn, πm〉ω :=

∫

Ω
πnπmdω = 0 if n 6= m.

Some common collections of univariate orthogonal poly-
nomials and their associated weight functions are given
in Table I [1].

Name ω Ω

Chebyshev (First Kind) 1/
√
1− x2 [−1, 1]

Chebyshev (Second Kind)
√
1− x2 [−1, 1]

Legendre 1 [−1, 1]

Laguerre e−x [0,∞)

Hermite e−x
2

R

TABLE I: Some common univariate orthogonal poly-
nomials, their associated weight functionsω, and their
domainsΩ.

Let {πn : n ∈ N
d
0} be a collection of multivariate

orthogonal polynomials relative to the weightω. Suppose
the orthogonal polynomials have been normalized so that
‖πn‖ = 1 for eachn. Since the orthogonal polynomials
relative to the weightω form a complete orthogonal basis
of L2

ω(R
d), any functionf ∈ L2

ω(R
d) can be expressed

as
f =

∑

n∈Nd
0

cnπn, (2)

where the equality is understood to mean convergence in
norm and the Fourier-like coefficients are given exactly
by

cn = 〈f, πn〉ω. (3)

The expression in Equation (2) is called the exact gen-
eralized Fourier series off .

The computation of Equation (2) presents several dif-
ficulties. Not only does the full-grid generalized Fourier
series involve infinitely many terms, but the Fourier-
like coefficients can be difficult or impossible to com-
pute exactly even for seemingly innocuous functions
f . Moreover, it is challenging to implement numerical



integration techniques achieving the desired accuracy
due to the highly oscillatory behavior of the integrands.
Therefore methods to estimate the generalized Fourier
series (2) must tackle both the series truncation and
coefficient computation issues while ensuring that the
approximation error for one does not overwhelm the
other.

To tackle the series truncation difficulty, we explore
three sets of multi-indices. Fix a positive integerN and
consider the sets of candidate full-grid multi-indices

Y d
N =

{

n ∈ N
d
0 : n ≤ N

}

,

T d
N =

{

n ∈ N
d
0 : ‖n‖1 = N

}

,

and the sparse-grid hyperbolic cross-shaped multi-
indices

Sd
N =







n ∈ N
d
0 :

d
∏

j=1

(nj + 1) ≤ N + 1







.

Clearly |Y d
N | = O(Nd) and |Sd

N | = O(N logd−1 N). It
can be shown thatSd

N ⊂ Y d
N [3]. These pre-determined

multi-indices are commonly used in spectral and pseu-
dospectral methods [9], [11], [15], [16].

Define the full and sparse-grid truncated generalized
Fourier series as

fW :=
∑

n∈W

cnπn (4)

for W ∈ {Y d
N , T d

N , Sd
N}.

The error rates for the truncated orthogonal polyno-
mial representations of a function (4) depend on the order
of the approximating polynomials as well as the behavior
of the function itself.

Theorem 2.1: For anys > 0 andf ∈ L2
ω(R

d),

‖f − fW‖ω ≤ N−s‖f‖κs ,

whereW ∈
{

Y d
N , T d

N , Sd
N

}

and ‖ · ‖κs is the Korobov
norm of orders induced by the inner product

〈f, g〉κs =
∑

n∈Nd
0

〈f, πn〉ω〈g, πn〉ω
d
∏

j=1

(1 + nj)
2s.

The proof of Theorem 2.1 regarding the accuracy of
the full and sparse-grid truncated generalized Fourier
series appears in [9], [11] for Hermite polynomial bases.
The proof can easily be generalized to bases of other
orthogonal polynomial classes.

B. Fourier-like coefficients

To tackle the coefficient computation difficulty, an
optimization problem with a collocation method will
be employed. To this end, LetΛ ⊂ R

d be a finite
collection of nodes with|Λ| = m, enumerated so
that Λ = {x1,x2, . . . ,xm}. ChooseN , let W ∈
{Y d

N , T d
N , Sd

N} and say |W | = p. EnumerateW so
that W = {n1,n2, . . . ,np}. Define the jth-row kth-
column entry of the collocation matrixX ∈ R

m×p by
Xj,k = πk(xj), and let thejth entry of the vectorf ∈ R

m

be given byfj = f(xj).
The collocation method seeks a sparse collection of

coefficients{c̃n : n ∈W} that satisfies

f(xj) =
∑

n∈W

c̃nπn(xj) ∀xj ∈ Λ. (5)

More succinctly, Equation (5) can be expressed as
f = Xc̃.

Although the Jacobi-like collocation matrixX is
full rank, it is not necessarily square. Indeed, we are
interested in the casem ≪ p. One could relax the
equality in (5) and seek̃c that minimizes‖f − Xc̃‖2.
This is exactly a least squares optimization problem with
solution c̃ = X†f , whereX† is the pseudoinverse ofX.
However, the least squares solution does not promote
sparsity. Unless one knew a priori the exact sparse set
W to use, it is unlikely using least squares would result
in a sparse representation off .

Instead, we propose approximating the collocation co-
efficients using the Dantzig selector, which is a solution
to the optimization problem

{

minimize‖c‖1
subject to

∥

∥D−1X⊤(Xc − f)
∥

∥

∞
≤ δ

, (6)

whereD is them×m diagonal matrix normalizing the
columns ofX and the scalarδ > 0 is small. Letĉ be a
solution of the optimization problem (6). Then a sparse
generalized Fourier-series approximation to the function
f is given by

f̂ =
∑

n∈W

ĉnπn. (7)

Several methods exist to quickly and accurately solve
the optimization problem (6), including an alternating
direction method [10] and an iterative method based
upon proximity operators [12].

Before performing the error analysis of the approxi-
mation (7), some notation must first be presented. For a
domainΩ ⊆ R

d, let C(Ω) denote the class of all real-
valued continuous functions onΩ, and let

Cm(Ω) = {f : f (α) ∈ C, ∀|α| ≤ m}.



For any positive integerm, define a seminorm
| · |Xm(Ω) on Cm(Ω) as

|f |Xm(Ω) = max
{

|f (α)(x)| : x ∈ Ω, |α| ≤ m
}

.

For any functionf : R
d → R, let the supnorm off

restricted to the domainΩ be given by‖f‖∞,Ω.
The error in the sparse orthogonal polynomial inter-

polation of a functionf greatly depends on the highest
order of the polynomials used in the summation as well
as the smoothness and behaviour off itself.

Theorem 2.2: If the nodes Λ =
{x : πM+1(xj) = 0} ⊆ R

d are a rectangular grid
of the zeros of theM + 1th orthgonal univariate
polynomial and if f ∈ L2

ω(R
d) ∩ Cm(Rd), then for

any simply connected domainΩ ⊆ R
d there exists a

constantc > 0 such that
∥

∥

∥

∥

∥

∥

f −
∑

n∈Y d
N

c̃nπn

∥

∥

∥

∥

∥

∥

∞,Ω

≤ c2−mM |f |Xm
M (Ω) .

The proof of Theorem 2.2 appears in [11] for multivari-
ate Hermite orthogonal polynomials. The generalization
to other classes of orthogonal polynomials is straightfor-
ward.

Finally, since the polynomials{πn} are orthonormal
relative toω, the error in approximatinĝf by the in-
terpolated polynomial̃f =

∑

n∈W c̃nπn is characterized
by the difference in their coefficients:

∥

∥

∥
f̂ − f̃

∥

∥

∥

2

ω
=

∥

∥

∥

∥

∥

∑

n∈W

(ĉn − c̃n)πn

∥

∥

∥

∥

∥

2

ω

= ‖ĉn − c̃n‖2ω ,

which is guaranteed to be small providedc̃ has a smallℓ1
norm. Indeed, the constrant in (6) forces the coefficient
error to be small between the recovered polynomial and
the interpolated polynomial.

III. N UMERICAL EXAMPLES

In the following experiments, the sparse generalized
Fourier series approximation is computed for various test
functions using the collocation approach presented in
Section 2. In Experiment 1, various node and multi-index
selection methods are used for several test functions.
The accuracy of the approximation for each test function
is presented. To illustrate the utility of the proposed
method, the collocation method presented above is used
to quickly generate the Gausian-Hermite moments of
several images in a training set in Experiment 2, which
are then used for classification of rotated images in a
testing set.

The Hermite polynomials are used as the orthogonal
basis in the sparse representations. Consider the collec-
tion of orthogonal univariate Hermite polynomials with
associated weight functionω(x, y) = e−(x2+y2). The first
few univariate Hermite polynomials prior to normaliza-
tion areπ0(x) = 1, π1(x) = 2x, π2(x) = 4x2 − 2, and
satisfy the three term recurrence

πn+1(x) = 2xπn(x)− 2nπn−1(x)

for n ∈ N. Sinceω is separable, the multivariate Hermite
polynomials are products of the univariate ones:

πn(x) = πn1
(x1)πn2

(x2) · · · πnd
(xd).

The polynomials are then normalized as

πn ← πn/

√

n!2n
√
π.

To find the solution to the optimization problem (6),
we use the proximity operator based iterative method
recently proposed in [12]. The proximity operator based
method is straightforward and uses only two soft thresh-
olding operations at each iteration, requiringO(4mp)
multiplications in each iteration for am× p collocation
matrix X.

All experiments are performed in MATLAB 2014a on
a PC with an Intel Core i7-3630QM 2.40 GHz processor
and 16GB RAM running Windows 7 Enterprise with
machine precision2.2204e − 16.

Experiment 1.
In this experiment, the sparse generalized Fourier se-

ries approximation several given functions are computed.
Supposed = 2 and consider the functions

f1(x, y) = x2y2

f2(x, y) = x4y4

f3(x, y) = xey/2.

It is easy to check thatfj ∈ L2
ω(R

2) for eachj.
To create the collocation matrixX for use in the

scheme (6), we use the full-grid rectangular, triangular
and a sparse-grid hyperbolic cross shaped set of can-
didate multi-indices,Y d

N , T d
N andSd

N , along with nodes
formed by a rectangular collection the zeros of theM de-
gree univariate Hermite polynomials. The parameterN
determines the highest degree hermite polynomial used
in the approximation, and the parameterM determines
the number of nodes used as collocation points.

Figure 1 displays the sparse generalized Fourier Her-
mite approximations of the functionsf2, f3 with the
coefficients computed as in (6), and Table II gives
the error in computing the coefficients as in (6) of
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Fig. 1: The exact function (left), the approximated generalized Fourier series (center) and the pointwise approxi-
mation error (right) for the functionsf2 (top row) andf3 (bottom row) in Example 1. The approximations forf2
useY 2

5 as the collection of multi-indices andM = 5. The approximations forf3 useY 2
10 andM = 10.

N

W M 2 3 4 5 6 7 8 9

f̂ 1

Y
2 N

N-1 3.1250e-01 1.8750e-01 1.5830e+00 6.9389e-17 1.3597e-16 2.3967e-16 8.7694e-16 2.0015e-16

N 1.8750e-01 2.3097e-16 6.9389e-17 1.6303e-16 2.3967e-16 1.2178e-16 2.0015e-16 1.2478e-15
N+1 2.3097e-16 6.9389e-17 1.6303e-16 2.3967e-16 1.2178e-16 2.0015e-16 1.2478e-15 5.4918e-16

T
2 N

N-1 3.0619e-01 1.7678e-01 1.7922e-01 6.9389e-17 7.9722e-17 6.2450e-17 3.0938e-16 6.7987e-17
N 1.7678e-01 3.0619e-01 6.9389e-17 1.2432e-16 6.2450e-17 9.3095e-17 6.7987e-17 7.8505e-17

N-1 3.0619e-01 1.0607e+00 1.2432e-16 1.6997e-16 9.3095e-17 4.6548e-16 7.8505e-17 5.1962e-15

S
2 N

N-1 3.0619e-01 1.7678e-01 3.0619e-01 1.0607e+00 2.3117e+00 4.0620e+00 1.1938e-16 1.6464e-15
N 1.7678e-01 3.0619e-01 1.0607e+00 2.3117e+00 4.0620e+00 6.3122e+00 1.6464e-15 2.5542e-15

N+1 3.0619e-01 1.0607e+00 2.3117e+00 4.0620e+00 6.3122e+00 9.0623e+00 2.5542e-15 6.4896e-15

f̂ 3

Y
2 N

N-1 7.2220e-01 7.3931e-01 8.2504e-02 1.3435e-02 1.6915e-03 2.6417e-04 2.0687e-04 2.0651e-04
N 9.5017e-02 1.6675e-02 2.1038e-03 2.5979e-04 2.0466e-04 2.0642e-04 2.0650e-04 2.0651e-04

N+1 1.0174e-02 1.2818e-03 1.9914e-04 2.0421e-04 2.0642e-04 2.0650e-04 2.0651e-04 2.0627e-04

T
2 N

N-1 7.1773e-01 6.6775e-01 1.6675e-02 2.1038e-03 2.5979e-04 2.0466e-04 2.0642e-04 2.0650e-04
N 5.0888e-02 1.0174e-02 1.2818e-03 1.9914e-04 2.0421e-04 2.0642e-04 2.0650e-04 2.0651e-04

N+1 1.4089e-01 4.8298e-02 1.5351e-02 3.8721e-03 9.1676e-04 3.1805e-04 2.1067e-04 2.0025e-04

S
2 N

N-1 6.4201e-01 6.6292e-01 1.4089e-01 4.8298e-02 1.0762e-01 4.4839e-02 9.2400e-02 2.5983e-02

N 1.1713e-02 1.4089e-01 3.2214e-01 1.0762e-01 1.7750e-01 9.2400e-02 1.6179e-01 4.6104e-02

N+1 1.4085e-01 3.2214e-01 5.3508e-01 1.7750e-01 2.6136e-01 1.6179e-01 2.5687e-01 6.7726e-02

TABLE II: The ℓ2 vector norm error‖c− ĉ‖2 for the generalized sparse Fourier series expansionsf̂1 and f̂3 from
Experiment 1 for various combinations ofN andM .



the test functionf1 for each multi-index scheme with
M ∈ {N − 1, N,N + 1} for N = 2, 3, . . . , 9. In
particular, the exact Fourier Hermite series expansion
of f1 has exactly 4 nonzero coefficients located at the
multi-indicesI1 = {(0, 0), (0, 2), (2, 0), (2, 2)}. As seen
in Table II, the locations and values of the nonzero
coefficients were approximated well providedI1 ⊂ W ,
and not well whenI1 6⊂W . Similarly, the exact Fourier
Hermite series expansion off2 has exactly 9 nonzero
coefficients located atI2 = {(n1, n2) : nj = 0, 2, 4}. On
the other hand, the exact Fourier Hermite series expan-
sion of f3 contains infinitely many nonzero coefficients.
However, as in the Taylor expansion of the exponential
function, the coefficients decay quickly and an accurate
approximation can be obtain by using only a few terms,
as seen in Figure 1.

From Table II one can see the drawbacks of using the
predetermined sparse multi-index setSd

N . The parameter
N must be much larger to achieve accuracy on par
with the full-grid rectangular and triangular index set
implementations, even for a function as simple asf1.

Experiment 2. In this experiment, the sparse Fourier-
Hermite series approximation is used to perform pattern
recognition of unknown images with possible rotation.
The Fourier-like coefficients are used to compute the
rotation invariant Gaussian-Hermite moments of orders
2,3, and 4, which are then used to classify the unknown
images.

Consider a collection of images in the training set
Tr = {I1, I2, . . . , IK}, where eachM ×M image has
been transformed to aM2×1 vector. For each vectorIi
in the training set, the Fourier-like coefficient vectorci
is computed as in Equation (6) where the collocation
matrix X is slightly changed. Instead of using the
Hermite polynomials, each entry inX is an evaluation
of a Hermite functionXj,k = πk(xj) exp(−‖xj‖22/2).
Throughout this example, the triangular multi-index set
T
2
N is used. Although the pixels in each image naturally

form an equally spaced collection of nodes, for compu-
tational convenience the nodes are mapped toZM×ZM ,
whereZm are the zeros of theM th Hermite univariate
polynomial.

From the Fourier-like coefficients approximated using
the optimization and collocation method as in (6), one
can approximate the Gaussian-Hermite moments of an
image.

Theorem 3.1: Supposef ∈ L2
ω(R

2) and let ĉ be a
solution to (6) using the orthogonal hermite function
basis. Then the elements ofĉ approximate the geometric

Gaussian-Hermite moments defined by

mn :=

∫∫

R2

f(x, y)πn(x, y)e
−(x2+y2)/2 dxdy.

Proof: Using an orthonormal hermite function basis
in (6) yields the approximation

f̂(x, y) =
∑

n∈W

ĉnπn(x, y)e
−(x2+y2)/2

similar to (7). Substituting the above result into the
formula for the geometric Gaussian-Hermite moments
yields

mn ≈
∫∫

R2

f̂(x, y)πn(x, y)e
−(x2+y2)/2 dxdy

=

∫∫

Rd

∑

t

ĉtπt(x, y)πn(x, y)e
−(x2+y2) dxdy

=
∑

t∈W

ĉt 〈πt, πn〉ω ,

which reduces to just the elementĉn since the hermite
polynomials are orthonormal relative to the weightω.

Although Theorem 3.1 is written in the continuous
case, the discrete case follows by a straightforward
substitution of summations for integrations. Using the
Hermite functions instead of the Hermite polynomials is
important and guarantees that the Fourier-like coefficient
vector is a close approximation to the corresponding
Gaussian-Hermite moment for each index inR

2
N . From

a small collection of these approximated Gaussian-
Hermite moments, one can determine the rotation in-
variant Gaussian-Hermite momentsφj of orders 2, 3,
and 4. A list of the formulas for these rotation invariant
moments is given in the Appendix.

For this experiment, seven images form the training
set. These images are 8-bit grayscale50 × 50 images
of simplified Chinese characters, which were studied
in [17]. The training set is displayed in the top row of
Figure 2. Note that Images 1-3 are visually similar, as
are Images 4-5 and Images 6-7. The testing setTs is
formed by rotating the images in the training set and
adding noise:

Ts = {Rθv + z : v ∈ Tr, θ ∈ {0, π/4, π/2, . . . , 7π/8} ,

where the operatorRθ performs counterclockwise ro-
tation through an angle ofθ, and z is a collection of
independent and identically distributed normal random
variables with mean0 and standard deviationσ. For any
vector x in the training or testing set, letΦx ∈ R

11

be the vector of the rotation invariant Gaussian-Hermite



White Noise Bit-flip

σ Identified Categorized Identified Categorized

0.00 1.0000 1.0000 1.0000 1.0000
0.05 0.9764 1.0000 0.8032 0.9932

0.10 0.9657 1.0000 0.6950 0.9593

0.15 0.9421 0.9975 0.6107 0.8782
0.20 0.9175 0.9979 0.5007 0.7653

0.25 0.9079 0.9943 0.4000 0.6250

TABLE III: Average ratio of images correctly identified
and sorted into the three categories over 50 simulations
using all images in the testing data set with white Gaus-
sian noise at levelσ and bit-flipped pixels at proportion
σ.

moments of orders 2 thru 4 corresponding to the vector
x.

To perform classification of the rotated images, say
x ∈ Ts is classified as a rotation of imagey ∈ Tr iff

‖Φx − Φy‖1 ≤ ‖Φx − Φz‖1 ∀z ∈ Tr.

To test the accuracy of the described classification
method, the elements inTs were classified 50 times
each forσ = 0, 0.05, 0.10, 0.15, 0.20, corresponding to
0%, 5%, etc. noise corruption. The average percentage
of correctly classified digits in the testing data set for
each noise level is shown in Table III. More details for
the values of‖ΦRπ/2v−Φy‖1 for all v, y ∈ Tr are shown
in Table IV. It is clear from the table that although many
of the images are visually similar, the rotation invariant
Gaussian-Hermite moments are similar only for rotations
of the same images. Of course, if the Gaussian-Hermite
moments are approximated well, then this method is
expected to yield 100% classification accuracy. The nov-
elty comes from computing the method used to compute
the Gaussian-Hermite moments. Employing the solution
of (6) is an elegant way to compute the moments without
using quadrature schemes or hierarchical methods [8],
[14].

IV. SUMMARY

In this paper, a method for computing a sparse gener-
alized Fourier series with orthogonal polynomial bases
of multivariate functions was presented. The method first
uses a truncated set of multi-indices, then approximates
the coefficients using the solution of an optimization
problem involving a collocation model. Several examples
were presented to illustrate the accuracy and utility of
the proposed method. In the first set of experiments, the

sparse generalized Fourier series approximation of sev-
eral test functions were computed, and the approximation
errors were presented. In the second set of experiments,
the coefficients in the sparse generalized Fourier series
were computed and used as rotation invariant feature
vectors to perform pattern recognition on unknown ro-
tated images.
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Fig. 2: The images forming the training set and testing set from Example 2. The top row contains the seven images in
the training set and the remaining images form the testing set of images rotated counterclockwise0◦, 45◦, 90◦, 135◦,
etc.

k\j 1 2 3 4 5 6 7
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6 6.2996 7.4386 6.5229 4.0142 6.1498 3.9752e-09 3.5455

7 8.6762 7.0308 7.5554 5.3556 6.7113 3.5455 1.9313e-09

TABLE IV: Values of ‖Φx − ΦIk‖1, wherex is the elementIj ∈ Tr with a 90◦ rotation.
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APPENDIX

Below are the complete and independent set of rota-
tion invariants of Gaussian-Hermite moments of orders
2, 3 and 4 [18].

φ1 =m20 +m02

φ2 =(m30 +m12)
2 + (m03 +m21)

2

φ3 =(m20 −m02)[(m30 +m12)
2 − (m03 +m21)

2]

+ 4m11(m30 +m12)(m03 +m21)

φ4 =m11[(m30 +m12)
2 − (m03 +m21)

2]

− (m20 −m02)(m30 +m12)(m03 +m21)

φ5 =(m30 − 3m12)(m30 +m12)×
× [(m30 +m12)

2 − 3(m03 +m21)
2]

+ (m03 − 3m21)(m03 +m21)×
× [(m03 +m21)

2 − 3(m30 +m12)
2]

φ6 =(m30 − 3m12)(m03 +m21)×
× [(m03 +m21)

2 − 3(m30 +m12)
2]

− (3m21 −m03)(m30 +m12)×
× [(m30 +m12)

2 − 3(m03 +m2
21]

φ7 =m40 + 2m22 +m04

φ8 =(m40 −m04)[(m30 +m12)
2 − (m21 +m03)

2]

+ 4(m31 +m13)(m30 +m12)(m21 +m03)

φ9 =(m31 +m13)[(m30 +m12)
2 − (m21 +m03)

2]

φ10 =(m40 − 6m22 +m04)[(m30 +m12)
4

− 6(m30 +m12)
2(m21 +m2

03 + (m21 +m03)
4]

+ 16(m31 −m13)(m30 +m12)(m21 +m03)×
× [(m30 +m12)

2 − (m21 +m03)
2]

φ11 =(m40 − 6m22 +m04)(m30 +m12)(m21 +m03)×
× [(m21 +m03)

2 − (m30 +m12)
2]

− (m31 −m13)[(m30 +m12)
4

− 6(m30 +m12)
2(m21 +m03)

2 + (m21 +m03)
4].
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