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Abstract—Structure-from-Motion (SfM) applications attempt
to reconstruct the three-dimensional (3D) geometry of an underly-
ing scene from a collection of images, taken from various camera
viewpoints. Traditional optimization techniques in SfM, which
compute and refine camera poses and 3D structure, rely only on
feature tracks, or sets of corresponding pixels, generated from
color (RGB) images. With the abundance of reliable depth sensor
information, these optimization procedures can be augmented to
increase the accuracy of reconstruction. This paper presents a
general cost function, which evaluates the quality of a reconstruc-
tion based upon a previously established angular cost function
and depth data estimates. The cost function takes into account two
error measures: first, the angular error between each computed
3D scene point and its corresponding feature track location, and
second, the difference between the sensor depth value and its
computed estimate. A bundle adjustment parameter optimization
is implemented using the proposed cost function and evaluated
for accuracy and performance. As opposed to traditional bundle
adjustment, in the event of feature tracking errors, a corrective
routine is also present to detect and correct inaccurate feature
tracks. The filtering algorithm involves clustering depth estimates
of the same scene point and observing the difference between
the depth point estimates and the triangulated 3D point. Results
on both real and synthetic data are presented and show that
reconstruction accuracy is improved.

U.S Government work not protected by U.S. copyright

I. INTRODUCTION

Many modern applications require the reconstruction of
three-dimensional (3D) geometry from imagery of some object
or scene from different viewpoints. Often, a point cloud
representing the 3D structure is produced. This process re-
quires a number of stages, such as feature tracking, frame
decimation, self-calibration, camera pose estimation, structure
computation, and parameter optimization. State-of-the-art ap-
plications [1], [2] are already capable of producing accurate
large scale reconstructions, but increasing the accuracy and
performance of these systems is an ongoing problem in the
reconstruction community.

A variety of algorithms for multi-view reconstruction, also

known as structure-from-motion (SfM), are available, but the
great majority contain a final non-linear optimization stage
for all computed parameters, known as bundle adjustment [3],
which has been proven to be necessary but also very expen-
sive. There are a number of issues with this approach. First,
traditional SfM techniques are usually based on computing
feature tracks, or sets of corresponding pixels, across a set of
RGB images of a given scene. Although these tracks may be
noisy, they are then used to compute and refine the parameters
of the camera(s) viewing the scene, along with its 3D struc-
ture. Finally, bundle adjustment uses these potentially noisy
feature tracks as ‘ground truth’ to perform camera parameter
and structure optimization. Given the noisy estimates, it is
possible for the optimization to converge to a local instead of
global minimum, providing incorrect final parameter estimates.
Furthermore, the quantity which is typically minimized, the
reprojection error [4] between the computed scene structure
and corresponding feature tracks, is the best estimate of error in
the absence of ground-truth information, but its minimization
does not ensure that a physically-correct set of parameters is
obtained in a ground-truth sense.

At the same time, RGB-D cameras, also commonly known
as depth cameras, have become very popular during the
past few years, particularly with the advent of the Microsoft
Kinect [5]. The reliable (though possibly noisy) depth sen-
sor information provided by such cameras introduces more
information about the scene than measurements acquired solely
with RGB cameras, such that multi-view reconstruction should
benefit from the extra information. Optimization procedures
can be augmented to increase the accuracy of the reconstruc-
tion, which is the approach we investigate in this work.

Given the issues that arise with traditional bundle adjust-
ment, and the recent ubiquity of depth sensors such as the
Microsoft Kinect, this paper presents a general cost function,
which evaluates the quality of a reconstruction based upon
a previously established angular cost function and includes
depth data estimates. The cost function takes into account two
error measures: first, the angular error between each computed



3D scene point and its corresponding feature track location,
and second, the difference between the sensor depth value
and its computed estimate. A bundle adjustment parameter
optimization is implemented using the proposed cost function
and evaluated for accuracy and performance. As opposed to
traditional bundle adjustment, in the event of feature tracking
errors, a corrective routine is also present to detect and correct
inaccurate feature tracks. The algorithm involves clustering
depth estimates of the same scene point and observing the dif-
ference between the depth point estimates and the triangulated
3D point. Results on both real and synthetic data are presented
and show that reconstruction accuracy is improved. Related
Work is presented in Section II, followed by the algorithms in
Section III. Experimental results are presented in Section IV,
conclusions in Section V, and future work in Section VI.

II. BACKGROUND

There exist many algorithms for multi-view reconstruction,
but the following sequential stages are common to most sys-
tems. Typically, feature matches (between consecutive pairwise
views) and tracks (concatenating across multiple views) are
generated. Such tracking can be sparse [6], [7] or dense [8]
and consists of computing and linking the pixel coordinates in
all images for each scene point, whenever it is visible. Frame
decimation [9] is often applied at this point, particularly for
sequential image sets, to remove images with very small or
very large baselines. A baseline is the relative separation of
images in world space. Small baselines lead to bad numerical
conditioning in pose and structure estimation, whereas large
baselines introduce problems in feature tracking. Next, camera
intrinsic parameters are estimated through a process called
self-calibration [4]. In most cases, much of this information
is already known. Also, epipolar geometry can be estimated
from pairs or triplets of views. Epipolar geometry encapsulates
the intrinsic projective geometry between groups of views and
is used in the process of determining camera pose (position
and orientation). Only relative positions and orientations can
be obtained between views. Once camera parameters are
estimated, computation of scene structure is achieved through
triangulation methods, such as linear triangulation [4]. In this
method, the 3D position of a scene point, given a set of
cameras and pixel feature track positions corresponding to
the point, is computed as the best-fit intersection position in
space for the set of rays from each camera center and through
the feature track positions. Finally, because errors in all of
the above steps influence accuracy of the computed structure,
bundle adjustment [3] is performed to optimize some, or
even all, of the camera and structure parameters. This section
will describe the process of bundle adjustment in-depth and
highlight recent techniques involving RGB-D (depth) cameras
to provide context for the proposed bundle adjustment + depth
algorithm.

A. Bundle Adjustment

The result of pose estimation and triangulation are re-
spectively the projection matrices P and P ′ and a set of 3D
points, one corresponding to each feature track. If all estimates
were perfect, a set of rays starting from each camera center
would go through each corresponding pixel in each image
plane, finally intersecting at an exact 3D position is space.

Since in general this situation will not occur, the objective
of bundle adjustment is to adjust these rays in such a way
that the ‘total reprojection error’ of the 3D points with respect
to their corresponding 2D feature tracks in each camera is
minimized. The end result of this minimization is a change
in both the positions of the original 3D points as well as in
the cameras’ projection matrices P1.....PM , where intrinsic
and radial distortion parameters may be allowed to vary in
the minimization along with the pose parameters, which are
typically optimized. The cost function which is traditionally
minimized can be expressed as the sum of squares of the
reprojection error between each 3D point and the feature
matches which yielded it, as shown in Eq. 1 for the general
case of N 3D points seen in M cameras.

min(ai, bj)

n∑
i=1

m∑
j=1

vij(d(Q(ai, bj), xij))
2 (1)

Reprojection error is a non-linear, real-valued function. The
number of terms in the sum can potentially be very large.
Here, xij is the position of the ith feature on image j. The
binary variable vij equals ‘1’ if point i is visible in image
j (‘0’ otherwise). The vectors aj and bi parameterize each
camera j and 3D point i, respectively, with Q(aj , bi) as the
reprojection of point i on image j. Finally, d is the Euclidean
distance in each image between each original correspondence
and its associated reprojection. This minimization involves a
total of 3N + 11M parameters, and can be achieved using the
Levenberg-Marquardt (LM) algorithm [3].

The minimization is achieved using non-linear least-
squares algorithms, from which LM has proven to be one of the
most successful, due mainly to its use of an effective damping
strategy that lends it the ability to converge quickly from a
wide range of initial guesses. By iteratively linearizing the
function to be minimized in the neighborhood of the current
estimate, the LM algorithm involves the solution of linear
systems known as the ‘normal equations’. The solution of such
linear systems determines an increment to the current estimate.
In the particular case of bundle adjustment, these equations
have a sparse block structure due to the lack of interaction
between the parameters.

This sparse block structure can be exploited to greatly
speed up the algorithm, which is inherently time-consuming
and computationally expensive from the minimization involv-
ing perhaps millions of parameters.

A sparse bundle adjustment C/C++ package known as
SBA, written by Lourakis and Argyros [3], is widely used to
implement bundle adjustment given initial structure and pose
estimates. In this sparse variant of the LM algorithm, the zeros
pattern is explicitly taken into account to avoid storing and
operating on such elements.

Weighted Bundle Adjustment. As mentioned, the Levenberg-
Marquardt algorithm is based on solving the normal equations
at each iteration. In weighted bundle adjustment, each input
feature is weighted differently with the objective of improving
convergence by giving less weight to those features that are
more likely to be inaccurate. Such weights are implemented
as covariances. The normal equations have the form shown



in Eq. 2, but when using weighted bundle adjustment, the
equations change to the form shown in Eq. 3, where Σ
corresponds to a block-diagonal matrix consisting of 2 × 2
covariance matrices for each input feature, J is the parameter
Jacobian matrix, δp the parameter update step, µ the damping
term and ε the error vector.

(JTJ + µI)δp = JT ε (2)

(JTΣ−1x J + µI)δp = JTΣ−1x ε (3)

B. RGB-D Depth Cameras and Algorithms

RGB-D cameras, also commonly known as depth cameras,
have become very popular during the past few years, particu-
larly with the advent of the Microsoft Kinect. This device has
brought quality, low-cost and real-time depth sensing to the
masses, including researchers and enthusiasts. The Kinect uses
structured light to generate real-time depth maps containing
discrete range measurements of the physical scene [10]. This
data can be reprojected as a set of discrete 3D points (or
point cloud). The main issue with the acquired depth data
is noise. Depth measurements often fluctuate and depth maps
contain ‘holes’ where no readings were obtained. To generate
3D models for use in applications such as gaming, physics, or
CAD, higher-level surface geometry needs to be inferred from
the noisy data [10].

Perhaps the most popular application of the Kinect, and of
RGB-D cameras overall, has been the highly-successful Kinect
Fusion algorithm by Izadi et al. [10], which enables a user
holding and moving a standard Kinect camera to rapidly create
detailed 3D reconstructions of an indoor scene. Only the depth
data from Kinect is used to track the 3D pose of the sensor
and reconstruct a single and accurate 3D model of the physical
scene in real-time, such that a user can move the Kinect within
any indoor space and reconstruct a 3D model of the scene
in seconds. The system continuously tracks the 6 degrees-of-
freedom (DOF) pose of the camera and fuses new viewpoints
of the scene into a global surface-based representation. A novel
GPU pipeline allows for accurate camera tracking and surface
reconstruction at real-time rates.

One issue with the original Kinect Fusion algorithm is that
it is expensive in memory when constructing and updating the
global model. To this end, there are a number of recent algo-
rithms dealing with efficient model creation. Quiroga et al. [11]
propose a scene flow approach that exploits the local and piece-
wise rigidity of real world scenes. By modeling the motion as
a field of twists, the method encourages piece-wise smooth
solutions of rigid body motions. A general formulation is
provided to solve for local and global rigid motions by jointly
using intensity and depth data. Another approach to computing
dense scene flow between a pair of consecutive RGB-D frames
is presented by Hornacek et al. [12]. The availability of depth
data is exploited by seeking correspondences with respect to
patches specified not as the pixels inside square windows,
but as the 3D points that are the inliers of spheres in world
space. Steinbrücker et al. [13] propose a method to generate
highly detailed, textured 3D models of large environments
from RGB-D sequences. The system runs in real-time on a
standard desktop PC. To reduce memory consumption, the
acquired depth maps and colors are fused in a multi-scale

octree representation of a signed distance function. To estimate
the camera poses, a pose graph is constructed and dense image
alignment is used to determine the relative pose between pairs
of frames. Thomas and Sugimoto [14] describe a new 3D scene
representation using a set of planes that is cheap in memory use
and, nevertheless, achieves accurate reconstruction of indoor
scenes from RGB-D image sequences. Projecting the scene
onto different planes reduces significantly the size of the scene
representation and allows generation of a global textured 3D
model with lower memory requirements while keeping accu-
racy and easiness to update with live RGB-D measurements.
Raposo et al. [15] present a novel approach for estimating
the relative motion between successive RGB-D frames using
plane-primitives instead of point features. The planes in the
scene are extracted and the motion estimation is cast as a plane-
to-plane registration problem with a closed-form solution. The
algorithm by Bylow et al. [16] can also reconstruct large scale
3D scenes despite many planar surfaces.

Besides the seminal work of Izadi et al. [10] and others
on dense modeling, a great number of recent works explore
different applications of depth cameras. To give some concrete
examples, Stückler and Behnke [17] propose an expectation-
maximization (EM) framework for dense 3D segmentation
of moving rigid parts in RGB-D video, which segments two
images into pixel regions that undergo coherent 3D rigid-body
motion. Boom et al. [18] use the intensity image and depth
information from the RGB-D camera to estimate the point
light source position in a scene. Assuming the Lambertian
reflectance model, the RGB-D camera provides the image
and the surface normals, and the remaining unknowns are
the albedo and light parameters (light intensity and direction).
The algorithm of Saygili et al. [19] provides dense depth
estimations of transparent objects and specular surfaces with
high accuracy. A fully-connected CRF based hybrid refinement
algorithm is proposed, incorporating stereo cues from cross-
modal stereo between IR and RGB cameras of the Kinect and
Kinect’s depth map. The work by Zeisl et al. [20] addresses
the problem of wide-baseline registration of RGB-D data.
They utilize the principle of salient directions present in the
geometry and propose to extract (several) directions from
the distribution of surface normals or other cues such as
observable symmetries. For geometric pose estimation from
tentative matches, a fast and robust two-point sample consen-
sus scheme integrating an early rejection phase is proposed.
Finally, Song and Xiao [21] provide a unified benchmark
dataset of 100 RGB-D videos with high diversity. Additionally,
different kinds of RGB-D tracking algorithms using 2D or 3D
models are proposed, and a quantitative comparison of various
algorithms with RGB or RGB-D input are presented.

Despite the great number of recent algorithms which make
use of depth cameras, very few algorithms have dealt with the
incorporation of depth data into bundle adjustment optimiza-
tion [3] in scene reconstruction, which is the main topic of
this paper. The work by Afzal et al. [22] is, to the best of
our knowledge, one of the only algorithms closely related to
our work, but differs fundamentally on its use of the Iterative
Closest Point (ICP) algorithm to help guide the optimization.
They propose BAICP+, which combines the bundle adjustment
and ICP algorithms to take into account both 2D visual and 3D
shape information in one minimization formulation to estimate
relative pose parameters of each camera.



Fig. 1: The cost function takes into account two error metrics.
The first is the angular difference of the unit vectors ~̂v and
~̂w, where ~̂v is the unit vector from the camera center to the
3D scene point si and ~̂w is the unit vector from the camera
center that passes through the feature track location ki for si.
This portion of the cost function has a global minimum of
zero, which implies the camera parameters and 3D structure
match perfectly. The second portion is a difference between
the sensor depth value, D(ki), and its computed estimate ||~v||,
the distance between the camera center and 3D structure point.
Similarly, the second portion has a global minimum at zero.

III. METHODOLOGY

Two contributions to SfM applications are presented in
this paper. The first is a general cost function for parameter
optimization. The cost function evaluates the quality of a
reconstruction based upon an angular error metric, presented
by Recker et al. [23], and depth data estimates. The second,
as opposed to traditional bundle adjustment, in the event of
feature tracking errors, is a corrective routine to detect and
correct inaccurate feature tracks, based upon depth data as
opposed to traditional epipolar constraints.

A. Cost Function

The cost function takes into account two error measures:
first, the angular error between each computed 3D scene point
and its corresponding feature track location [23], and second,
the difference between the sensor depth value and its computed
estimate. Figure 1 contains a visual depiction of the cost
function. Mathematically, the cost function can be written as
the sum of two error terms, Eangular and Edepth, as in Eq. 4.

E(Ci, sj) = Eangular(Ci, sj)
2 + Edepth(Ci, sj)

2 (4)

Here Ci is a single camera (and its associated data) and sj is a
3D scene point. Eangular is the angular error used by Recker
et al. [23] and is rewritten in Eq. 5 in its singular form (for
one camera and scene point).

Eangular(Ci, sj) = 1.0− ~̂v · ~̂w
(5a)

Eangular(Ci, sj) = 1.0− ˆ(sj − Ci,c) · ˆ(Ci,P+kj − Ci,c)
(5b)

Note that Ci,c is the camera center of projection (camera
position), Ci,P+ is the right pseudo-inverse of the camera
projection matrix, and kj is the feature track location of sj
in Ci. Also, note that ~v and ~w are normalized to have unit
length, as in the original formulation [23].

Edepth measures the difference between the sensor depth
value and its computed estimate. The equation is presented in
Eq. 6.

Edepth(Ci, sj) = ||(sj − Ci,c)|| −D(kj) (6)

Here, D(kj) is the depth sensor value at the feature track
location for sj in camera Ci. In the current form, Eq. 4 only
evaluates a single camera and 3D scene point. To evaluate an
entire reconstruction, the cost function can be extended to its
final form in Eq. 7.

E(C,P ) =
∑
Ci∈C

∑
sj∈PCi

E(Ci, sj) (7)

In this equation, C is the set of all cameras and PCi
is the set

of all visible scene structure in camera Ci.

B. Cost Function Analysis

As with any cost function, examining its properties and be-
havior is important for determining appropriate use. One of the
most important properties to determine is convexity. Proving
a function is convex implies that there exists a single, global
optimum that can be easily obtained using standard convex
optimization algorithms. However, a convexity analysis of the
function’s Hessian is not tractable due to the dimensionality
of the problem.

Despite these problems, a simple yet effective approach
to obtaining insight into a function’s topology is to per-
form a scalar field analysis similar to that employed by
Recker et al. [23], as shown in Fig. 2. In order to obtain the
fields, Eq. 7 was densely sampled holding certain parameters
fixed while varying others. The renderings show the change
in function value when one of the parameters is changed. In
Fig. 2a, a single 3D scene position was varied given fixed
camera parameters. In Fig. 2b, a single camera position was
varied while holding the rotation and 3D scene structure fixed,
and in Fig. 2c, the camera rotation was varied while holding
the position and 3D scene structure fixed.

Upon initial inspection, the cost function tended toward a
single global optimum when holding certain parameters fixed
and varying others. Unfortunately, the true topology of the
function cannot be understood from visualization alone. First,
the function was sampled in order to generate the scalar fields
and therefore if a local minimum is not sampled it would
not be included in the analysis. In addition, color blending
might ‘hide’ local minima. Despite not fully understanding
the topology, the cost function still yielded good results when
used for SfM parameter optimization (bundle adjustment, see
Section IV).



(a) 3D structure variation (b) Camera position variation
(c) Camera rotation variation

Fig. 2: This figure contains the results of the scalar field analysis for the presented cost function. The fields were generated from
synthetic data and are 128× 128× 128 in dimension. In part (a), a single 3D structure point was projected into 36 cameras with
known parameters. The scalar field was centered over the 3D structure point and the function value at each point in the field
was computed with the synthetic data. The dimensions extended five units in each direction for each dimension. For (b) and
(c), a single synthetic camera was generated with 100 known 2D/3D correspondences. In (b), the scalar field was centered over
the camera position and a test camera was generated with the scalar field position and original camera rotation. The test camera
previously generated was used to generate each cost function value in the scalar field. In (c), spherical coordinates (θ ∈ [0, 2π]
and φ ∈ [0, π]) were used to define the view direction, and along with the general up vector, ~up = (0, 1, 0)T , provided a camera
rotation matrix. The test camera in this scenario was generated with the computed rotation matrix and original camera position.
In all three figures, the cost function tends toward a single global optimum, namely the original data, which indicates good cost
function behavior.

C. Feature Track Filtering

Feature tracking correction and refinement with depth
estimates involved grouping each 3D triangulated point with
its corresponding 3D depth points. The 3D depth points are
obtained by unprojecting depth estimates from each feature
track location on each image back into the scene. Then each
cluster of triangulated point and depth points are analyzed to
determine whether to refine the feature track estimate or to
eliminate it.

While there are many metrics that can be applied to make
the refine/reject determination, this paper examines a few
simple yet effective metrics that were evaluated experimentally.
In the first metric, NormalSP, the average distance of the
depth points from the triangulated structure point is computed.
The standard deviation is computed and any depth point that
exceeds a user defined multiple of the standard deviation is
counted. If the count exceeds the expected population for
the distribution in this range of the total, then the cluster
is rejected. Similarly, NormalCoM evaluates a cluster based
upon an estimated normal distribution; however, instead of
computing the distance of the depth points from the structure
point, it evaluates the distance between each point in the cluster
and the cluster’s center of mass.

After all clusters have been evaluated, all rejected clusters
(and their associated feature tracks) are eliminated, leaving
only the clusters to be refined. Several refinement procedures
are presented in this paper, but more complicated algorithms
could be used in their place. The first refinement technique,
named CenterOfMass, simply takes the cluster’s center of mass
as the updated 3D position for the triangulated point. This

updated position is used to correct the feature track loca-
tion in each image. While CenterOfMass performs an evenly
weighted average across the entire cluster, WeightedAverage
allows uneven weighting to be applied to the triangulated point
and depth points within the cluster. Finally, DistanceWeighted
weights each point in the cluster based on its distance to the
cluster’s centers of mass, where the most distant point has the
lowest weight and the closest has the highest.

IV. RESULTS

The proposed algorithms were tested extensively for their
accuracy, processing time, and general behavior, on both real
and synthetic data. All implementation was done using C++ on
a MacBook Pro with and Intel Core i7 processor at 2.66 GHz
with 4GB of RAM running Mac OS X Mavericks 10.9.5.

A. Bundle Adjustment Synthetic Testing

The initial set of synthetic tests evaluated the performance
of the bundle adjustment routine using the proposed cost
function. The routine, called ADBA (angular depth bundle ad-
justment), was implemented using Google’s Ceres-Solver [24]
and was compared against a Ceres implementation of the
traditional bundle adjustment cost function [3]. The data con-
sisted of 25 randomly placed cameras (varying orientations
and positions) looking at 100 scene points. The data was
perturbed in four specific scenarios. In the first, the 3D scene
structure was moved according to a normal distribution with
mean µ = 0 and standard deviation σ ∈ [1, 20] world space
units. The scene was crafted such that the largest σ value
corresponds to a change in position of about 20% of total scene



structure size. The second scenario varied the original camera
positions according to a normal distribution with µ = 0 and
σ ∈ [1, 20], and the third varied the camera rotation according
to a normal distribution with µ = 0 and σ ∈ [ π

180 ,
π
9 ]. The final

scenario varied these parameters simultaneously according the
distributions stated previously.

To compute the results, the scene configuration was gener-
ated 50 times for each σ value. Both optimization procedures
were applied to all the scene configuration runs. Six different
metrics were recorded and averaged across the 50 runs. A few
of the metrics were based upon an L1 norm, which effectively
can be though of as sum of error terms. The first metric,
L1 3D point distance to ground truth computed the total
distance between each original 3D scene point and its final
position after optimization for all 100 scene points. Similarly,
L1 camera distance to ground truth computed the total distance
between each original camera position and its final optimized
position for all cameras. In addition, a rotation error metric, L1

camera rotation to ground truth, computed the relative rotation
error between each original camera and its final rotation. The
relative rotation error was based on the formulation given by
Lepetit et al. [25]. Average execution time, average number
of optimization iterations, and total cost function value were
also computed. The results of this experiment are shown in
Figure 3.

From Figure 3, it can be seen that the parameter opti-
mization utilizing the proposed cost function outperforms the
traditional bundle adjustment routine. In the scenarios that only
changed the 3D point and camera positions, the resulting L1

3D point distance to ground truth (Figure 3a) and L1 camera
distance to ground truth (Figure 3b) produce similar results,
with ADBA resulting in slightly more accurate values. Varying
the rotation resulted in far more accurate camera orientations
for ADBA, as shown in Figure 3c. Despite the compound
errors in the final scenario, ADBA is able to obtain values that
are far closer to the original data, as shown in Figures 3d–3f.
It should be noted that this additional accuracy comes with
some additional processing time. In the final scenario, ADBA
required an additional 5 seconds of processing time (about
14% of total execution time) compared to the original bundle
adjustment. This trade-off might be acceptable for applications
in which accuracy is favored over speed.

B. Feature Track Filtering Synthetic Testing

The next set of synthetic tests evaluated the performance of
the feature tracking correction routine. The correction routine
consists of a filtering metric and a refinement scheme. For this
experiment, NormalSP (NSP) and two versions of the Nor-
malCoM (depth only, NCOM, and both depth and structure,
NCOM2) metrics were used. Three refinement techniques,
CenterOfMass (COM), Weighted Average (WA) with a 50%
weight to the structure point and 50% to the depth point center
of mass, and DistanceWeighted (DIS), were also evaluated
such that each metric was paired with each refinement scheme.
Similar to the previous experiment, the reconstruction data
consisted of 25 cameras with random position and orientation
viewing 100 scene points. However, the data was only varied
by introducing simulated feature tracking noise. The feature
tracks were modified according to a normal distribution with
mean µ = 0 and standard deviation σ ∈ [1, 10] pixels. Again,

the scene was crafted such that the largest σ value corresponds
to a change in position of about 10% of total scene structure
size.

Each scene configuration was generated 50 times for each
σ value in the experiment. Two different metrics were recorded
and averaged across the 50 runs. The first metric, Average 3D
point distance to ground truth, is similar to L1 3D point dis-
tance to ground truth metric, except that the result is averaged
across the number of points in the collection. The average
3D point distance to ground truth was recorded for both the
refined structure points and feature tracks and the data prior
to refinement but after the metric was applied. Similarly, the
Average feature track distance to ground truth metric, which
measures the average distance between given keypoints and
their corresponding ground truth keypoints across a collection
of feature tracks, was recorded for both refined and pre-refined
data. For this specific experiment, the metrics need to be
averages because the number of remaining feature tracks can
differ between the applied filtering metrics. The results of this
experiment are displayed in Figure 4.

Results from Figure 4 indicate that reconstruction accuracy
can be improved by utilizing the proposed feature track filter-
ing and refinement mechanism. Analysis indicates that utilizing
the NCOM2 metric filters tracks that do not closely fit the
ground truth data as shown in Figures 4b and 4d. Interest-
ingly, NCOM2 actually retained 89% of the feature tracks,
with NSP retaining 88% and NCOM retaining 81%. NCOM2
performed best when paired with the COM and DIS refinement
techniques. With limited noise, the DIS refinement technique
performed better than the COM but as error increases, the
COM refinement surpasses DIS.

C. Real Datasets

In addition to the set of synthetic experiments, the proposed
algorithms were integrated into a depth SfM pipeline, which
was run on real images. The resulting reconstructions were
more accurate than with traditional bundle adjustment, though
the proposed procedures increase execution time. Figure 5
displays the results from the real datasets.

V. CONCLUSION

In conclusion, this paper presents two improvements to
the traditional structure-from-motion reconstruction pipeline,
both of which use depth data. The first is a general cost
function that evaluates the quality of reconstruction based on a
previously established angular cost function along with depth
data estimates. This cost function is used to implement a
bundle adjustment parameter optimization to increase recon-
struction accuracy. Second, in the event of feature tracking
errors, a corrective routine is present to detect and correct
inaccurate feature tracks. The algorithm involves clustering
depth estimates of the same reconstruction point and observing
differences between them.

Analysis showed that the cost function has a good topology
and behaved well in parameter optimization. Experiments
were performed that show increased reconstruction accuracy
in the presence of camera noise and imprecise 3D structure
computation, when compared to traditional bundle adjustment.
In addition, inaccurate feature tracks have been corrected



(a) 3D point distance versus ground truth, varying 3D points (b) Camera position distance versus ground truth, varying camera
positions

(c) Camera rotation distance versus ground truth, varying camera
rotations (d) 3D point distance versus ground truth, varying everything

(e) Camera position distance versus ground truth, varying every-
thing

(f) Camera rotation distance versus ground truth, varying every-
thing

Fig. 3: This figure compares the performance of the proposed bundle adjustment cost function with the traditional one. Synthetic
data, consisting of 25 randomly posed cameras and 100 scene points, was perturbed in four specific scenarios. In the first, the 3D
scene structure was moved according to a normal distribution with mean µ = 0 and standard deviation σ ∈ [1, 20] world space
units. The second scenario varied the original camera positions according to a normal distribution with µ = 0 and σ ∈ [1, 20],
and the third varied the camera rotation according to a normal distribution with µ = 0 and σ ∈ [ π

180 ,
π
9 ]. The final scenario

simultaneously varied these parameters according the distributions stated previously.



(a) L1 point distance to ground truth for all metrics and refine-
ments

(b) L1 point distance to ground truth for all metrics prior to
refinement

(c) L1 feature track distance to ground truth for all metrics and
refinements

(d) L1 feature track distance to ground truth for all metrics prior
to refinement

Fig. 4: This figure shows the performance of the various metrics and refinement techniques utilized in the feature track filtering
algorithm. Synthetic data, consisting of 25 randomly posed cameras and 100 scene points was modified by introducing feature
tracking noise. The noise was modeled using a normal distribution with µ = 0 and σ ∈ [1, 10]. Results were recorded for all
combinations of metric and refinement techniques.

(a) Kinect Table1 Dataset
(b) Kinect Bike Dataset

(c) Kinect Table2 Dataset

Fig. 5: This figure displays several reconstructions from real datasets. For the dataset in panel (a), traditional bundle adjustment
required 22.97 seconds and ADBA required 35.30 seconds. Traditional bundle adjustment required 7.50631 and 34.946 seconds
respectively for the datasets in panels (b) and (c), whereas ADBA executed in 9.28428 and 50.4467 seconds.



using an evaluation metric and refinement on clusters of
depth points generated from the track. Finally, a depth data
SfM pipeline, incorporating the proposed algorithms, produced
reconstructions on real datasets.

VI. FUTURE WORK

The proliferation of multi-sensor enabled hardware, such as
modern cell phones, presents interesting and unique challenges
for sensor fusion. Developing algorithms to accurately and
intelligently utilize the variety of data inputs is of key impor-
tance. This work addresses how depth data can be utilized to
increase accuracy in SfM applications. The authors would like
to pursue different error metrics and more advanced feature
track filtering techniques to further improve depth reconstruc-
tion pipelines. Additional investigation into the topology of the
proposed cost function is another direction of future research.
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[20] B. Zeisl, K. Köser, and M. Pollefeys, “Automatic registration of RGB-D
scans via salient directions,” in ICCV’13, 2013, pp. 2808–2815.

[21] S. Song and J. Xiao, “Tracking revisited using RGBD camera:
Unified benchmark and baselines,” in Proceedings of the 2013
IEEE International Conference on Computer Vision, ser. ICCV ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 233–240.
[Online]. Available: http://dx.doi.org/10.1109/ICCV.2013.36

[22] H. Afzal, D. Aouada, D. Fofi, B. Mirbach, and B. Ottersten, “RGB-D
Multi-View System Calibration for Full 3D Scene Reconstruction,” in
22nd International Conference on Pattern Recognition (ICPR), 2014.

[23] S. Recker, M. Hess-Flores, and K. I. Joy, “Fury of the swarm: Effi-
cient and very accurate triangulation for multi-view reconstruction,” in
International Conference on Computer Vision Big Data 3D Computer
Vision Workshop, S. Recker and M. Hess-Flores, Eds., Dec. 2013.

[24] S. Agarwal, K. Mierle, and Others, “Ceres solver.” [Online]. Available:
https://code.google.com/p/ceres-solver/

[25] V. Lepetit, F.Moreno-Noguer, and P.Fua, “EPnP: An accurate O(n)
solution to the PnP problem,” International Journal Computer Vision,
vol. 81, no. 2, 2009.




