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Abstract

In this paper, we consider confocal microscopy based vessel segmentation with optimized features 

and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture 

curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians 

(LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we 

obtain better segmentation results in challenging imaging conditions. We obtain binary 

segmentations using random forest classifier trained on physiologists marked ground-truth. 

Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that 

we obtain better results compared to global segmentation approaches.

1. Introduction

Vasculature segmentation is an important requirement in many biomedical imaging domains 

such as microscopy, angiography, and optical fundoscopy. Various vessel segmentation 

methods has been considered in the past [1], [2], [3], [4], [5], see [6] for a review. Many of 

these methods rely on global or local intensity features and have limitations in terms of 

detecting thin vascular structures present fluorescence or confocal microscopy images. 

Confocal microscopy contains spatially varying noise and relying purely on intensity 

features alone without any learning approach can often lead to poor results in terms of 

capturing thin vessels and spatial continuity, see Figure 1 where we show a comparison of 

intensity based thresholding methods. As can be seen by comparing with ground-truth (GT), 

the intensity features based segmentation methods miss important vessel segmentations and 

also obtain spurious foreground pixels.
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To avoid these drawbacks, in [7] we used a set of vessel specific optimized features along 

with random forest (RF) classifier based segmentation for robust curvilinear structure 

extraction from epifluorescence imagery under challenging imaging conditions. In this work, 

we extend our work in [7] by utilizing intensity based Laplacian of Gaussian (LoG) for 

capturing the spatial variations which are unique to confocal imagery. Due to the nature of 

confocal imaging where local intensity information is important, adding a multiscale LoG 

based intensity feature improves the final segmentation accuracy. Experimental results on a 

set of confocal microscopy imagery of mice dura mater micro-vessel segmentation show that 

our proposed RF based approach obtains better results compared to global thresholding 

methods from the literature. Moreover, by comparing with manually annotated GT vessel 

structures our proposed approach obtained better quantitative results indicating high fidelity 

results.

We organized the rest of the paper as follows. Section 2 details the optimized features 

utilized in random forest based classification for confocal vessel segmentations. Section 3 

provides detailed experimental results on a set of confocal imagery along with comparisons 

of other global segmentation methods. Finally, Section 4 concludes the paper.

2. Optimized Feature Bank for Random Forest Classifier Based 

Segmentation

We use random forest (RF) classifier [8] based approach which is adapted for vessel 

structure and cell segmentation with high precision and recall [7], [9]. Our feature bank is 

optimized to capture curvilinear structures of varying width as well robust to scale changes. 

We next describe in detail the optimized feature bank which is devised to obtain better vessel 

structure segmentations from confocal imagery.

2.1. Vessel specific optimized feature bank

We chose a particular set of features which are fine-tuned to obtain optimal vessel 

differentiability from background. They are based on Hessian eigenvalues based multiscale 

Frobenius norms, multiscale Laplacian of Gaussians (LoG), a multiscale line detector [2]. 

Here we provide the basic details of each of these features and refer to [7] more details of 

these optimized feature bank for vessel segmentation.

• Frobenius norm of the Hessian matrix (6-D): A second order vessel structureness 
term was initially defined by Frangi et al [1]. The second derivative Hessian 

operator ℋσ is useful for detecting ridges, valleys and peaks. The Frobenius 

norm of the multiscale Hessian matrix usually has small values in the 

background where there are no strong linear or blob-like features; the maximum 

eigenvalue will be large in the foreground regions containing vessel-like 

structures. The eigenvalues are transformed using the hyperbolic tangent 

function:

(1)
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We use these transformed eigenvalues from the Frobenius norm at a scale σ,

(2)

We calculate the Frobenius norm (2) using scale normalized Gaussian filters for 

five scales, σ = {1, 2, 3, 4, 5}1. Additionally, we utilize the maximum response 

of the regular Frobenius norm (||ℋσ||F) of the Hessian across five scales followed 

by z-score sigmoid normalization.

• Oriented second derivatives (6-D)& Laplacian of Gaussian (LoG) filters (2-D): 
We used multiscale filters consisting of 18 oriented second derivative (6 

orientation, 3 scale, mean normalized) and 8 isotropic LoG filters. We used the 

maximum response of the 6 oriented second derivative filters over 3 scales 

( ). Further, the scale specific orientation feature is included for 

each pixel and assigns a discrete orientation angle index/label corresponding to 

the maximum filter response. Two LoG-based features are the maximum 

response over 8 scales (  and 3σ) and the corresponding scale 

index.

• Multiscale line detector (1-D): The multiscale line detector feature is based on 

the approach of Nguyen et al [2]. This method uses 12 oriented lines sampled 

regularly between 0 to 360 degrees. By varying the length parameter we can 

generate lines of different scales which can detect different diameter vessels. We 

select the window size (W) to be 15 and the range of length L in {3, 5, 7, 9, 11, 

13, 15}.

Table 1 summarizes the optimized feature bank which are used as 15 dimensional input 

vector to the RF classifier based segmentation approach. Figure 2 shows features computed 

for an example confocal image (20 × 11). In addition to these 15 features we utilize a novel 

intensity driven multiscale LoG scale-map feature that captures vessels in confocal imagery 

where the contrast is varying widely and eliminate the noisy background:

• LoG with intensity: We consider the scale map of LoG maximum response 

computed over 8 scales and multiply it by the input image’s intensity fellowed by 

z-score normalization. This feature captures multi-scale vessel structures and 

regions where the contrast is low and eliminate the noisy background. Figure 3 

shows an example result of this feature for image 20 × 21. As can be seen in 

Figure 3(c), the noisy background has been eliminated by this feature.

In our experiments we found that adding this extra feature increased the accuracy by 7% 

over RF-15 and 3% over RF-16, see Section 3.2 and Table 2. The intuition from this table is 

to show that adding the intensity in a smart way lead to improve the performance and 

overcome the drawbacks of the noisy background.

1Each scale uses a filtering window size of [−3σ, 3σ]
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2.2. Random forests classification for vessel segmentations

The RF classifier was used with a total of 24 mice dura mater confocal microscopy images 

with pixel dimensions 1024 × 1024. We use three-fold cross validation to get the results, the 

dataset has been randomly split in to three sets; each time we train one set to get the 

prediction of the other two. As a result, each image has two values from different tests, the 

results have been calculated by averaging the two values. For each experiment, the 

dimensionality of the feature vector is 16 dimensions with 8, 388, 608 observations. We used 

manually labeled ground-truth (GT) segmentations of the microvasculature images 

supervised by an expert physiologist for pixel-based training using the gray scale 

images.There is neither preprocessing nor post processing to generate the results.

3. Experimental Results

3.1. Setup and parameters

We utilized a set of 24 at different resolutions (10×, 20×, 20×, 40×) confocal stacks obtained 

with a IX-70 Olympus (inverted) microscope with Solamere confocal unit and 2 camera 

(B&W and ultra low Mega-10). We applied a multiscale focus fusion method [4] to obtain 

fused confocal images which are then utilized as input images to automatic segmentation 

methods. To quantitatively compare the automatic segmentation methods we use the Dice 

coefficient,

(3)

where A and B are the pixel level automatic and GT segmentations. Dice values closer to 

one indicate better performance compared to the physiologist expert verified gold standard 

segmentations.

3.2. Effect of intensity LoG feature in RF segmentation

Table 2 shows the effect of intensity feature in our RF classifier based segmentation 

approach. We show RF-intensity which is based only on intensity feature, RF-15 using 15 

features described in Table 1 (see also Figure 2, Section 2.1), RF-16 with intensity, and 

RF-16-LoG which includes the multiscale LoG with intensity feature (see Figure 3). Figure 

5 shows comparison of segmentations between these different RF variations. Overall, it can 

be seen that the RF-16-LoG obtained best possible results across most input images 

indicating that vessel specific optimized feature bank augmented with LoG with intensity 

feature has better vessel discriminative power, see Table 2 last column.

3.3. Comparison results

We compare our RF classifier based segmentation approach with Niblack and Otsu which 

are intensity based thresholding and segmentation methods. Extensive parameter sweeping 

was used to search for the optimal Otsu and Niblack segmentation parameters like local 

window size and threshold. Table 3 shows the Dice values obtained with Niblack, Otsu and 
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our proposed RF classifier based segmentation approaches. As can be seen, the proposed 

method obtained higher Dice, and accuarcy values indicating superior performance. In 

addition, we calculate the average sensitivity, specificity and accuracy and show in Figure 4. 

We note that though both Niblack and Otsu methods obtained high specificity values their 

sensitivity values are ver low. This is due to the fact that both of these methods miss a lot 

vessel foreground pixels (true negative). Figure 6 shows three example segmentation results 

with manual GT, Otsu, Niblack [3]) and our RF classifier based segmentation methods. We 

obtain good vessel segmentations with segmenting the low intensity regions that have been 

missed in Niblack and Otsu represented by red color.

4. Conclusions

In this paper, we considered micro-vessel segmentation from confocal microscopy images 

using vessel-specific feature bank and random forest classifier. By combining multiscale, 

multi orientation features with intensity masked by LoG scale map we obtain a reliable bank 

of features which are then utilized for foreground-background segmentation of vasculature 

images. Random forest was trained using a set of ground-truth segmentations provided by 

the expert physiologist which in turn provided accurate classification results. Experimental 

results on a set of different resolution confocal microscopy images of mice dura mater in the 

brain shows that we obtain better results when compared to other global segmentation 

methods. Currently we are working on utilizing an anisotropic diffusion based vessel 

smoothing and enhancing filter [10] prior to random forest classification.
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Figure 1. 
We obtain robust, and higher precision vessel segmentations when compared to other purely 

intensity based segmentation methods. (a) Input confocal image (10× resolution, contrast 

enhanced for visualization), (b) Ground-truth (GT) marked by an experienced physiologist, 

and automatic segmentation results from, (c) Niblack (Dice 0.7156), (d) Otsu (Dice 0.7538), 

and (e) our proposed random forest (RF) classifier based approach (Dice 0.8710). Our 

method was able to capture vessel branches with low texture content in contrast to Niblack 

and Otsu methods, see the boxed regions in (a) and (e).
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Figure 2. 
The 15 vessel specific features (shown here for image 20 × 11) used in the random forest 

classifier are: Frobenius norm of Hessian (2) at 5 scales and its sigmoid scale map, 

maximum response of second derivatives at 3 scales over 6 orientations and orientation maps 

(30 deg steps), maximum response of Laplacian of Gaussian (LoG) at 8 scales and its sigma 

scale map, and response of the multiscale line detector, see Table 1.
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Figure 3. 
Advantage of multiscale LoG scale map with intensity. (a) Input image (20x−21), (b) LoG 

scale map computed at eight scales with dice value 0.8037 whereas the final segmentation 

for the proposed approach for this image is 0.8768 as shown in Table 2. (c) LoG scale map 

masked with intensity. This feature succeeds in capturing multiscale vessel structures and 

regions where the contrast is not high in addition to filter out the noisy background.
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Figure 4. 
Comparison of global methods Niblack, and Otsu with our RF-16-LoG approach on 

confocal images in terms of different error metrics.
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Figure 5. 
Comparison of variations of our RF approach on different confocal images. Top to bottom: 

20x−15, 20x−21, and 20x−8. (a) Input confocal images (contrast enhanced for 

visualization), (b) ground-truth (GT) images marked by an experienced physiologist, (c) 

random forest with only intensity (RF-intensity) with dice values equal to 0.7314, 0.5937 
and 0.6128, (d) RF with all features except intensity (RF-15) with dice values equal to 

0.6603, 0.7129 and, 0.8826, and (e) RF with all features in addition to intensity (RF-16) with 

dice values equal to 0.8284, 0.6774 and 0.8804. White regions represent correctly segmented 

pixels, red are missing (false negative) and blue are extra regions (false positive) compared 

to ground truth. (f) RF with all features in addition to intensity masked with LoG scale map 

(RF-16-LoG) with dice values equal to 0.8548, 0.8768 and 0.9332. White regions represent 

correctly segmented pixels, red are missing (false negative) and blue are extra regions (false 

positive) compared to ground truth.
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Figure 6. 
Comparison of global methods with our RF approach on different confocal images. Top to 

bottom: 20x−11, 20x−1, 20x−19. (a) Input confocal images (contrast enhanced for 

visualization), (b) ground-truth (GT) images marked by an experienced physiologist, and 

and automatic segmentation results from (c) Niblack with dice values 0.8687, 0.8552,and 

0.7042, (d) Otsu with dice values 0.8315, 0.7962, and 0.7030, (e) our proposed RF-16 with 

dice values 0.9351, 0.8871, and 0.8905. White regions represent correctly segmented pixels, 

red are missing (false negative) and blue are extra regions (false positive) compared to 

ground-truth.
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TABLE 1

Description and dimensionality of the input feature vector for the random forest (RF) classifier (see Figure 2).

Feature Dim.

Modified Frobenius norm over 5 scales & max scale regular Frobenius 6

Maximum response of oriented 2nd derivatives over 3 scales & 3 orientation maps 6

Maximum response over eight scales of LoG filter & sigma map 2

Multiscale Line Detector 1
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TABLE 3

Comparison of automatic segmentation methods on confocal microscopy images of mice dura mater. We show 

the Dice values for our proposed random forest approach, compared with Niblack [3], and Otsu thresholding 

methods. Higher Dice values indicate better results when compared to the manual gold-standard ground-truth 

segmentations.

No. Image Res. Niblack Otsu Ours

1 10 × 1 0.7390 0.7541 0.7126

2 20 × 1 0.8552 0.7962 0.8871

3 20 × 2 0.6842 0.7187 0.8032

4 20 × 3 0.7699 0.7046 0.8521

5 20 × 4 0.7821 0.7625 0.8725

6 20 × 5 0.8532 0.8223 0.8915

7 20 × 6 0.7095 0.6318 0.8237

8 20 × 7 0.8322 0.6544 0.9102

9 20 × 8 0.8934 0.8596 0.9332

10 20 × 9 0.7304 0.6894 0.8625

11 20 × 10 0.7224 0.7123 0.8808

12 20 × 11 0.8687 0.8315 0.9351

13 20 × 12 0.7300 0.6769 0.8628

14 20 × 13 0.8161 0.7475 0.8974

15 20 × 14 0.7156 0.7538 0.8752

16 20 × 15 0.7051 0.7625 0.8548

17 20 × 16 0.7180 0.6949 0.8203

18 20 × 17 0.6421 0.6631 0.8074

19 20 × 18 0.6452 0.4907 0.8327

20 20 × 19 0.7042 0.7030 0.8905

21 20 × 20 0.8112 0.7627 0.7967

22 20 × 21 0.7995 0.7909 0.8768

23 20 × 22 0.7430 0.7468 0.8393

24 40 × 1 0.7772 0.7567 0.8716

Avg. 0.7603 0.7286 0.8579

Avg. Sensitivity 69.6105 61.8451 87.5669

Avg. Specificity 99.5039 99.6366 99.2003

Avg. Accuracy 97.9717 97.8936 98.7032
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