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Abstract—The detailed reconstruction of neural anatomy for 

connectomics studies requires a combination of resolution and 
large three-dimensional data capture provided by serial section 
electron microscopy (ssEM). The convergence of high throughput 
ssEM imaging and improved tissue preparation methods now 
allows ssEM capture of complete specimen volumes up to cubic 
millimeter scale. The resulting multi-terabyte image sets span 
thousands of serial sections and must be precisely registered into 
coherent volumetric forms in which neural circuits can be traced 
and segmented.  This paper introduces a Signal Whitening 
Fourier Transform Image Registration approach (SWiFT-IR) 
under development at the Pittsburgh Supercomputing Center 
and its use to align mouse and zebrafish brain datasets acquired 
using the wafer mapper ssEM imaging technology recently 
developed at Harvard University. Unlike other methods now 
used for ssEM registration, SWiFT-IR modifies its spatial 
frequency response during image matching to maximize a signal-
to-noise measure used as its primary indicator of alignment 
quality. This alignment signal is more robust to rapid variations 
in biological content and unavoidable data distortions than either 
phase-only or standard Pearson correlation, thus allowing more 
precise alignment and statistical confidence. These improvements 
in turn enable an iterative registration procedure based on 
projections through multiple sections rather than more typical 
adjacent-pair matching methods. This projection approach, 
when coupled with known anatomical constraints and iteratively 
applied in a multi-resolution pyramid fashion, drives the 
alignment into a smooth form that properly represents complex 
and widely varying anatomical content such as the full cross-
section zebrafish data. 
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I. INTRODUCTION 
To attain comprehensive understanding of information 

processing in the brain, we need to understand how neurons are 
interconnected and how their connectivity generates neuronal 
function. Structural data that are currently used to develop this 
understanding are captured by a variety of imaging techniques 
over a range of resolutions and from both fixed and in vivo 

specimens.  An overview of imaging methods and challenges 
involved is provided by Lichtman and Denk [1].  

Reconstructive mapping of detailed wiring in local brain 
circuits, or even the entire brain of small animals currently, at 
EM resolution requires massive volumes of image data. The 
need for such large data sets comes from  the combination of 
long branching neural pathways, typically spanning hundreds 
of microns, together with the high resolution needed to reliably 
map axons and dendrites down to ~50 nm diameter. The 
summary from a 2011 neuroscience mini-symposium describes 
several state-of-the-art projects using large-scale automated 
histology methods to study links between brain structure and 
function [2]. These papers further explain the need for high-
resolution neural circuit reconstruction using ssEM imaging.  

An example of one section in a 10,000 section 100 Tvoxel 
ssEM dataset from mouse visual thalamus, described in [3], is 
shown in Fig. 1 below. The full section, shown at upper left in 
~300x reduction, is stitched from 16 raw image tiles. The full 
area of each section contains near molecular level detail as 
apparent by the nuclear membrane near the top of the lower 
right image that is composed of two lipid bilayers. The entire 
physical section area, ~400 microns square, was imaged at 
4nm/pixel sampling to produce this 10 Gpixel plane along with 
10,000 other similar sections aligned into the entire 3D dataset. 

Registration is an essential first step to transform stacks of 
raw ssEM images, such as Fig. 1, into coherent volumetric 
forms prior to 3D content analysis. High quality alignment is 
critical for the speed and accuracy of the later content analyses 
that have to follow rapidly changing biological structures 
within the assembled 3D volumes. Ideally we would align an 
entire dataset before content analysis begins; in practice, 
though, there is always some preliminary analysis even while 
an image set is being acquired in its entirety. Results from 
these analyses identify damaged sections, areas of systematic 
distortion and provide useful constraints that help to guide and 
accelerate registration processing. 

 



II. BACKGROUND 
There are numerous approaches for registering images 

according to various content and purposes, of which this paper 
mentions but a few.  Many registration codes derive from a 
least squares intensity differencing approach first proposed 35 
years ago by Lucas and Kanade at CMU [4] and later refined 
into the Kanade-Lucas-Tomasi (KLT) feature tracker [5]. 
These methods can be very effective when changes of content 
between adjacent pairs are small and intensities well matched; 
hence, they are widely used in 2D tile stitching and video 
stabilization. In our experience, also noted by others working 
in this area [6], they are less effective for ssEM registration due 
to multiple optima in the difference function and excessive 
sensitivity to rapid changes of adjacent image content, artifacts, 
and overall variations of intensity and contrast. 

Most other registration codes use either normalized cross-
correlation (NCC), also called Pearson correlation, or phase-
only correlation (POC). The computations are usually done in 
the frequency domain to obtain the speed advantages provided 
by the FFT. Although FFT correlation, performed by inverting 
the frequency domain multiplication of the two input images, 
does not directly provide the ±1 range of the Pearson 
correlation coefficient, a simple cumulative area correction 
produces the equivalent result when required [7]. Many 
researchers begin with the assumption that NCC is the gold 
standard metric of image matching. General familiarity with 
statistical correlation makes it the most widely chosen method 
for image matching although, as discussed shortly, it has severe 
limitations in practice. 

Frequently, scale invariant feature transforms (SIFT) [8] or 
speeded-up robust features (SURF) [9] are used to locate initial 
corresponding key-points between pairs of images. Along with 
a search procedure, such as RANSAC [10], these points help to 
initialize the larger scale match process by producing an initial 
approximate alignment. To gain efficiency these methods are 

usually implemented using a multi-resolution hierarchy in 
which the coarsest levels are solved first and successively feed 
into higher resolution solutions.  In the computing field this is 
called a pyramid or, more recently, a multi-grid strategy. 

The principles of the above methods, including the KLT 
and FFT-based registration, have been incorporated into many 
programs. The National Library of Medicine Insight 
Segmentation and Registration Toolkit (ITK) [11][12], 
primarily targeted to biomedical applications, provides open 
source versions of a variety of registration and segmentation 
algorithms. Elastix [13], for example, is a deformable 
registration toolkit that is very useful for aligning stacks of 
single images, most commonly CT and MRI, that is 
implemented using ITK. 

Several registration approaches have been taken by 
researchers at the HMMI Janelia Farm research campus. 
TrakEM2, http://imagej.net/TrakEM2, originally developed by 
Albert Cardona while at the Institute of Neuroinformatics in 
Zurich and now maintained by Cardona’s group at Janelia 
incorporates viewing, user driven circuit tracing, and Pearson-
correlation-based registration. Stephan Saalfeld and Cardona 
have also worked on several alternative techniques [14][15]. 
Louis Scheffler, Bill Karsh and others have developed a large 
scale parallel processing pipeline used for EM alignment of 
drosophila datasets [16]. 

Tolga Tasdizen and colleagues at the Scientific Computing 
and Imaging Institute at the University of Utah have developed 
their NCRToolset [6] which has been used for volumes up to 
15 Tvoxels. Its base level FFT correlation uses an image 
filtering process to reduce the number of local minima. The 
Utah software achieves a differential frequency effect as a 
result of median and Gaussian smoothing which helps to 
improve convergence.  However, in some cases that smoothing 
may limit the final registration precision which ultimately 
depends on high frequency Fourier coefficients. 

Work by our PSC group in 2009 aligned a 4nm resolution 
10 Tvoxel mouse visual cortex volume [17] from transmission 
electron microscopy data and a recent 100 Tvoxel volume 
using the same capture and registration methods [18]. This 
alignment software, AlignTK written by Greg Hood, can be 
downloaded from http://www.mmbios.org. AlignTK is based 
on Pearson correlation and stochastic hill-climbing, combined 
with a spring mesh relaxation technique for global smoothing. 

Despite this range of alignment tools, unresolved issues 
remain due to critical parameters such as spring mesh 
tensioning, multimodal image match signals with Pearson 
correlation, lack of robustness with phase only correlation, and 
relatively slow computational speeds when stochastic methods 
such as RANSAC are used or when iterative methods have 
slow convergence. All of these issues become more severe as 
data size grows and particularly when faced with extreme 
variations of content and the need for geometrical fidelity as 
exemplified by the zebrafish alignment described later in this 
paper. Therefore, it is useful to reexamine the core mechanisms 
that can be used for computational registration and to test their 
utility with current leading edge ssEM datasets. 

 
Fig. 1 Progressively zoomed views of a single 10 Gpixel section within a 
10,000 section 100 Tvoxel ssEM stack from mouse visual thalamus.  The 
images are progressively 400 microns wide at top left, 80 microns middle 
and 2.5 microns at bottom right. 



III. METHODS 
The SWiFT-IR method described in this paper is motivated 

by several factors in addition to those just mentioned. First, it is 
well known from communications and RADAR theory that the 
maximum likelihood detection and time localization of a 
specific signal template, such as a satellite GPS signal, in the 
presence of additive white gaussian noise is given by a 
matched filter [19].  That is, the correlation of an unknown 
signal with the shape of the template as it would be distorted 
by both the systematic characteristics of the communications 
channel and the additive noise. This principle is built into many 
systems when low-level, known signals must be robustly 
detected in the presence of noise. The proper correlation can be 
done in the frequency domain by manipulating the frequency 
responses to equalize the noise contributions across all 
frequencies[20]. Although most often stated as a time domain 
problem, this principle also applies to higher dimensional 
signals such as our ssEM 2D regional template matching [21]. 

The outputs of matched filters are evaluated by their peak 
signal-to-noise ratio (SNR) relative to statistical background 
fluctuations. In the ideal case of an identical noiseless image 
pair containing no repeating content, the POC  pushes the 
correlation energy into a single Dirac delta function [22]. 
When one of these identical images, hence noiseless with 
respect to each other, is shifted relative to the other, the Dirac 
correlation pulse appears in a position which indicates the 
relative image shift.  Multiplying the Fourier transform of the 
shifted image by the repositioned Dirac pulse’s Fourier 
transform will then shift the displaced image back into proper 
correspondence with the other. Images with repeating content 
will produce multiple peaks corresponding to the repeat 
positions. While this elegant behavior is not typically achieved 
in practice it is nevertheless important for understanding the 
underlying principles of image registration. 

Real images include noise and distortions which reduce the 
ideal Dirac pulse into a broadened signal that must be detected 
and localized. When content variations and noise reach a 
sufficiently high level, the correlation peak or peaks become 
undetectable and fade into background noise. The ultimate 
limits of registration accuracy are given by the Cramer Rao 
bound (CRB) [23][24], which is a theoretical limit of minimum 
alignment variance that could be achieved by any procedure. 
The CRB is a function of image content and noise variance. 

As described by Pham et. al.[25] for uncorrupted images 
with zero mean additive Gaussian noise the CRB can be 
realized by coarse-to-fine hierarchical registration. In the case 
of ssEM we clearly do not have uncorrupted images or additive 
white noise. From a mathematical perspective the generally 
large change of biological content from one section to another 
imposes the equivalent of a large non-Gaussian noise. 
Nevertheless, the Pham paper provides guidance by showing 
that quickly converging, hierarchically iterative alignment 
methods can be implemented in practice using image area 
based correlations. Area correlations avoid the need for 
preliminary feature identification, such as SIFT or SURF, and 
also avoid stochastic search procedures but their computations 
should be limited to areas of actual image content rather than 
regions of smooth background. 

Importantly, CRB analysis does not include the effects of 
anatomical pose when structures may be oriented differently 
than the lowest energy image match may indicate. Any ssEM 
image set captures an instantaneous configuration of the 
anatomical content.  At the smallest scales many features such 
as, in the case of connectomics image sets, synaptic vesicles 
and mitochondria would, in vivo, be in rapid motion and the 
overall bend of a flexible animal such as the zebrafish is 
different than may be indicated by their slice-to-slice 
correlations or than would be achieved by long range 
relaxation procedures.  Therefore, we need external objective 
guiding information in order to produce anatomically correct 
registrations. That information may be limited to symmetry 
considerations or may take into account the known shape of the 
fixed specimen block prior to sectioning, shape information 
from low resolution prefixation optical images or, in the best 
case, micro CT or electron beam tomography of the specimen 
within the block. This type of information is particularly 
important if the purpose of study is to characterize distances 
within a specimen or phenotypic shape variations. 

Another motivation for the SWiFT-IR approach is the 
excellent quality that had already been achieved many years 
ago in optical domain signal processing.  Discussions with the 
late Dr. Emmett Leith in conjunction with another project 
included review of his early work in nonlinear joint transform 
optical correlation achieved by the combination of optical 
domain Fourier transforms together with nonlinear optical 
sensing [26]. Related color pattern correlation work by Nicolas 
and Campos is included in a tribute publication to Leith and 
Denisyuk for their contributions to holography [27]. 

The optical correlator that relates most directly to SWiFT-
IR’s process is by Bahram Javidi [28] which demonstrates the 
large gain in two-dimensional signal detection and localization, 
particularly for  “colored” noise (non Gaussian) situations, that 
is achieved using an easily implemented exponential power 
scaling of Fourier transform components. This is extremely 
important for ssEM registration because we have highly non-
Gaussian “noise” due to variations in biological structure from 
section to section, the similar appearances of different cells and 
other common biological structures, along with artifacts and 
unknown distortions of the tissue. These effects are much 
larger than image capture noise in the classical sense. 

In the frequency domain, represented by the components of 
a Fourier transform, this whitening process accentuates higher 
spatial frequencies and therefore sharpens edges. Signal 
whitening in natural vision also performs edge enhancement 
and localized decorrelation of information in the visual system. 
Although Javidi’s team implemented their pattern matching 
procedures directly in the optical domain [29][30], the same 
mathematics applies to computation using FFT correlation but 
with nonlinear digital manipulation of the magnitudes of the 
individual frequency components. We can make a simple 
analogy to an audio tone control to accentuate treble or bass or 
finer tonal control by a multi-channel audio graphic equalizer. 

Although it is well known that the phases of Fourier image 
representations contain substantially more important visual 
content than the amplitudes, it is significant that nonlinear 
whitening, as just discussed, modulates only the amplitudes 



and does not modify the phases which contain the relative shift 
information that registration processes need to uncover. In fact, 
power based amplitude scaling does not directly use the 
frequency of the Fourier coefficients. Rather, it systematically 
affects signals according to frequency only because, like nearly 
all natural images, ssEM image content has much larger low 
frequency content which falls off at higher spatial frequencies. 

Nevertheless, these power based amplitude changes have a 
large impact on the effectiveness of correlation processes 
which depend on the underlying phase shifts. SWiFT-IR takes 
advantage of the frequently overlooked importance of using a 
broad range of whitening levels from normalized correlation at 
one extreme to POC at the other. NCC is a special case with no 
signal whitening in which original amplitudes are preserved, 
while POC is the most extreme whitening which normalizes all 
frequencies to a uniform amplitude. SWiFT’s implementation 
controls this behavior using a 0 to 1 scalar parameter as the 
exponent for an amplitude power function. In SWiFT-IR 
computations, this is adjusted to optimize the matching process 
giving a more robust foundation for automated registration. 

Fig. 2 below illustrates the whitening parameter’s effect 
when locating damaged region B in undamaged area A. The 
three bluish images show match responses for NCC at left, 
SWiFT center and POC right.  White is a strong signal, black is 
negative correlation, and blue is no match. NCC, at left, does 
not properly locate the best match position and presents a 

dilemma of how to use its smeared result. Although hard to see 
in printed form SWiFT generates a single bright response 
indicating the proper match location with minimal response 
elsewhere while POC, shows a less distinct lower score at the 
proper position along with other scattered ambiguous speckles. 

The excessive emphasis of high frequencies makes POC 
intolerant of geometric distortion. This is because distortions 
and biological variations, which are large relative to normal 
high frequency Fourier terms, push the high spatial frequencies 
out of phase.. If the relative shape of Fig 2 A and B had been 
slightly worse the match position would be lost in background 
speckles. Therefore POC is not very useful for section-to-
section image matching due to its unacceptable failure rate.  

As the SWiFT-IR name implies, the technique can be 
implemented to run quickly due to its low computational 
complexity and the availability of highly optimized  FFT 
codes. We generally process large ssEM images as a tiled 
series of local patches rather than as full area images. This 
reduces the size of the individual FFTs, also improving speed. 
This computational framework is enhanced, relative to usual 
FFT correlation, by performing adjustments of the amplitudes 
of the transform components, either before or after the 
frequency domain multiplication that is the core of FFT 
correlation. Each of these whitening positions has its own 
operational advantage while still producing equivalent results.

. 

 
Fig 2. Correlation responses for whitening levels of 0, NCC, at left 0.7 middle and 1.0, POC, at right. See discussion in text.



Pixel level match responses, such as Fig 2, are easily converted 
to Z scores repreresenting the number of standard deviations 
(i.e. sigma) away from the background distribution. This SNR 
is the most important information available for  making signal 
detection decisions relative to the background distribution. 
When a particular value has a sufficiently high SNR then it is 
statistically likely to be the proper match. In Fig 2 the SNRs 
are respectively 2.0, 13.5 and 8.5. 

     With extremely large ssEM image sets some number of 
individually unlikely events will occur by chance. SNR values 
help us to assess the likelihood that we have real matches 
rather than statistical outliers. To put this in perspective, a one 
tailed SNR of 6 sigma indicates, from the Q distribution of 
Gaussian tail probabilities, a 1 in 3 x 109 chance of being a 
statistical outlier. SNRs greater than 15, as frequently obtained 
even in the early stages of SWiFT-IR alignments, are excellent 
indications that we have correct matches and, unlike with NCC 
or POC, we can stop search processes to avoid time consuming 
and fruitless searches for even better matches. In later stages of 
registration we often see SNRs of 80 to 100. Such extreme 
levels indicate fat-tailed non-Gaussian distributions rather than 
random fluctuations but nevertheless indicate relative quality.    

These previous concepts, matched filtering and power 
scaling of Fourier coefficients, correspond to key elements that 
distinguish the SWiFT-IR approach.  Although we do not have 
the proper circumstances, known signal and additive Gaussian 
noise, to directly implement matched filtering we can make a 
step in that direction by noting that in the absence of gross 
defects the correlation within well-aligned regions of ssEM 
stacks between any particular section and the average of its 
neighboring sections in the Z direction perpendicular to the cut 
planes is stronger than to either of its immediate neighbors 
alone, whether done by NCC, POC or SWiFT’s SNR measure. 

In part this improvement is due to the effectiveness of  
noise reduction by the averaging process as 1/sqrt(N) where N 
is the number of averaged sections. Most of the image 
matching for SWiFT-IR uses this type of local average as a 
“model” template so that new parts of raw data are matched to 
the current model rather than to parts of adjacent raw data. In 
practice it is important to omit the section corresponding to the 
current raw data from its surrounding model and to also avoid 
putting severely damaged sections into the model. The number 
of sections N used in the model is typically reduced as 
registration progresses. 

The averaging of aligned sections provides a projection in 
Z that preferentially emphasizes features that are relatively 
perpendicular to the cutting plane and also provides natural 
continuity along linear and gently curved but obliquely 
oriented structures as they cross the corresponding raw 
sectioning planes. During early stages of registration, which 
are generally done at reduced resolution, a large number of 
sections can be used in the model to automatically get the 
desired global smoothing effect that would otherwise be done 
as post-processing steps using thin-plate splines [31], spring 
meshes, or other iterative relaxation mechanisms. 

Another important aspect of the model method is that we 
obtain an implicit parallelism since a given region of raw data 
usually does not have to be individually matched to each of the 

sections in the current model’s span. With rare exceptions the 
match process automatically incorporates the effects of the 
model’s Z averaging range all at once. Exceptions are cases of 
abrupt content or magnification changes where the projective 
match can become locked to one side or the other resulting in 
breaks within otherwise smooth alignments. These jumps can 
be fixed using a slightly more expensive matching procedure 
whereby any offending sections are matched separately to the 
models on either side of a jump so that a Bezier or other 
smoothing spline can be built across the failed region. 

In practice, many registration procedures have substantial 
complexity and computational overhead to compensate for the 
limited robustness of NCC and POC. As previously noted, the 
Utah registration process uses a filtering technique that helps 
reduce false matches. In our experience many available codes 
do not take advantage of a particularly useful form of spatial 
domain filtering that, in optics, is known as apodization. 
Apodization tapers the contrast of match region edges to avoid 
false matching effects that are particularly notable with FFT 
processing due to wrap around in the frequency domain. The 
SWiFT-IR technique applies a cosine taper to prevent this 
problem. This is slightly different from a windowing function, 
such as the often used Blackman window, since the cosine 
taper preserves more of the image content that is inside the 
local image blocks and therefore maintains higher sensitivity. 

The ability of SWiFT-IR signal matching to properly to 
identify and localize corresponding image regions for virtually 
all areas of usable image content simplifies our registration 
process so we need only a few relatively simple program 
modules for image conversion, scaling, matching, rendering 
and averaging.  We currently implement these by programs 
respectively named icon, iscale, swim, mir and remod. 

Icon converts from initial 16-bit to 8-bit forms and, during 
that process, also adjusts intensity and contrast. Iscale produces 
the hiearchical source pyramid that is used during alignment 
processing. This is usually by powers of 2 although multiples 
of 3 and 5 are also useful. Swim implements the signal 
whitened image matching process. Mir, multiple image 
rendering, produces aligned output images according to linear 
least squares solution of correspondence points found by swim. 
This is implemented as a software texture mapping process 
applied to a triangulated mesh. Each triangle is locally affine 
but higher order curved representation, Bezier or other splines, 
can be generated by triangle subdivision. Finally, remod 
generates locally Z averaged models which, as noted earlier, 
provides geometric smoothing along Z and  noise reduction. 

Registration begins with highly reduced images, the base of 
the pyramid hierarchy, selected to be small enough to allow 
very fast processing but large enough so that large structures, 
which are implicitly the alignment features, can be seen by 
both automated and visual means and in which the overall 
alignment pose can be established. In ssEM data, large 
structures include capillaries, blood cells and even cell nuclei 
roughly 10 microns across. When viewed at one micron per 
pixel sampling, these features are easily visible, so this is a 
convenient starting scale. The exact value is not critical. With 
our data, one micron per pixel corresponds to reduced scale full 
section images a few hundred pixels wide. 



  

      With wafer mapper datasets we have an additionial source 
of data that is very useful for building the starting pyramid.  
These data are complete sets of low resolution overview 
images. In their original purpose these images, such as the A 
and B examples shown at the top of Fig 3, were used for 
locating sections on the wafers and determining coordinates for 
controlling the stage position and rotation during later high 
resolution scans. Typically the high resolution scans are limited 
to user-selected regions of interest (ROI) that are much smaller 
than the full block face to reduce the already large volume of 
image data and speed up the high resolution scanning process. 

Due to their low resolution and generally lower quality, it 
was originally expected that there was no further use for the 
overview images. However, there are several valuable aspects 
of the overviews that are not present in the high resolution 
scans. First, as mentioned, the overviews capture the entire 
block face.  This is important because the block edges are the 
most objective indicators of specimen shape when blocks are 
trimmed into known size and shape. This information transfers 
directly into making high quality approximations of  interior 
ROI configurations. Second, each section overview is captured 

in a single untiled image so there is no issue of ROI drift 
whereas the limited precision of ROI targeting always leaves 
ragged edges around the full resolution data.  Third, despite 
higher per pixel noise the full area intensities of overview 
images are more consistent than corresponding high resolution 
scans and particularly for tiled datasets. This overview 
information can be easily fed forward to constrain intensity and 
contrast equalizations on the full resolution data. Finally, since 
the full overview set is captured before high resolution scans 
are started, an initial alignment of the overview is useful for 
establishing the specimen pose, for identifying regions with 
artifacts or other problems, and for accurately selecting the 
regions of interest needed for later full resolution analyses. 

Images C and D shown above in Fig 3 are perpendicular 
cuts through the initial SWiFT aligned volumes of the low 
resolution overview image stacks for LGN, left image C, and 
zebrafish, image D on the right. Notice that in both cases, 
despite being viewed edge on to the cutting planes, there is 
coherent and realistic image detail.  The largest white features 
in the LGN are capillaries and the light oval shapes are neuron 
cell bodies. The vertical scale is very compressed and spans the 

 
Fig 3. Examples of low resolution full block face images at top and corresponding preliminary 3D reconstructions. 



entire 10,000 section stack. Similarly in the right side image D 
the preliminary low resolution zebrafish alignment through 
16,000 sections properly displays the outer structure of the fish 
along with its appropriate internal structure. The dark area on 
the left is external supporting material, mouse brain in this 
case. Most critically, the left edge that fades into white is the 
straight edge of the tissue block as trimmed prior to sectioning. 
That edge is our most objective external reference governing 
vertical shape of the reconstructed fish body.  Faint horizontal 
streaks across the fish are variations of section intensities and 
contrasts that were left uncorrected during this early alignment. 

IV. RESULTS 
The result of a large scale SWiFT-IR registration is best 

summarized by Fig 4. The large left side image is a coronal cut 
through the length of an aligned 16,000 section 60nm/pixel 
zebrafish dataset. Each of the 16,000 dewarped and mir 
rendered section images that are stacked on edge in this view 
are 9,500 by 8,600 pixels. Therefore, this particular cut is just 
one of the 8,600 possible coronal cuts. The image is reduced 
along its Z length from 16,000 to 2,000 pixels for printing and 
the horizontal direction proportionally scaled by 8x. Clearly 
there is substantial water filled, hence blank, space within the 
fish and outside of the body. Therefore the bounding box 
volume is several times larger than the number of fish voxels. 

The most important point of Fig 4 is that the overall shape 
of the fish including eyes, brain structure and even the fins, at 
the bottom left and right, are well aligned. Similar quality 
extends over the entire volume. The expanded regions on the 
right are full resolution zooms showing that registration fidelity 
is very good even at maximum detail. 

The full zebrafish dataset consists of four scans. The first, 
as discussed in relation to Fig 3, was the full low resolution 
overview series of 18,200 sections. Preliminary wafer mapper 
analysis of the overview resulted in microscope positioning 
coordinates for higher resolution scans. Based on biological 
content and some damage at the beginning of the sectioning 
process a primary data set of 16,000 sections was reimaged at 
60nm resolution covering full body cross sections plus a 
12,400 section span encompassing the entire brain area was 
also imaged at 20nm per pixel. At 20 nm per pixel there was a 
3:1 aspect ratio between the fixed 60nm section thickness and 
the pixel spacing. An 800 section span targeting one pair of 
neuromast sensory organs, was acquired at 4nm per pixel. 

Zebrafish registration started with the overview image set. 
Because overview images cover the full block face the shape of 
the block edges provided a convenient approximate alignment 
that was refined by several iterations of the SWiFT software. 
These initial alignments used the full block area, including 
mouse brain support tissue, and did not separately look at the 
zebrafish content. 

      After this preliminary step it was now possible to 
determine the relatively consistent systematic distortion of the 
fish blody due to compression during sectioning.  Because the 
fish happened to be positioned diagonal to the cutting direction 
cutting compression introduced an obvious shearing of the fish 
anatomy.  By measureing the angle between the vertical 
symmetry axis of the fish in a few areas, such as the eyes, that 

are known to be horizontally level in normal zebrafish anatomy 
the first estimate of shear could be computed and then applied 
to renormalize the shape of the edge based alignment volume.  

                                                                                

The next refinement pass used this geometrically corrected 
volume as a model for rematching onto the full raw overview 
dataset.  Thus we were already molding the reconstruction 
shape into a canonical pose that would not have been produced 
by typical registration processing. At this low resolution stage 
there was no need for triangulation. Full section area affine 
registration was sufficient. This process of image matching, 
rendering, and remodeling was iterated until there was no 
significant change in SNR scores from the swim process. 

At this initial stage, while the data was small and while 
debugging the process, it was very useful to review the entire 
registration output. The qiv program that is normally available 
with Linux allowed fast section-by-section viewing at up to 25 
frames per second. At that rate it was easy to review the entire 
16,000 image stack in about 10 minutes. A small modification 
to qiv recorded cursor and click positions. This was useful for 
quickly marking damaged and improperly aligned sections 
during high speed viewing. Additional visualization of aligned 
data as arbitrarily oriented 3D cut-planes used the PSC Volume 
Browser (PSC-VB) that we initially developed for use for the 
National Library of Medicine Visible Human and other large 
volumetric datasets. User controlled 3D navigation in PSC-VB 
allowed targted visual examination of volumes and regional 
areas to evaluate the correctness of anatomical structures. 

The main SWiFT-IR workflow is to iteratively align at 
some current working resolution until the SNR scores stabilize 
and then advance to the next higher resolution by first 
expanding the current model and then matching  new higher 
resolution to that model. The most computationally intensive 
part of this process, swim, runs at ~10 Mpixels/sec per core 
using single precision FFTW3 on our 3.3 GHz 32 core Intel 
E5-4627 machine with 512GB of shared memory. 

Typical undamaged zebrafish sections are sufficiently well 
formed that we were able to use affine registration all the way 
to the full 60nm resolution. At this final stage many residual 
nonlinear deformations, that were not accurately determined 
from lower resolutions, had to be corrected.  This was done 
using a locally affine triangulation mesh to approximate the 
overall nonlinear warping. In this process, each affine triangle 
is produced from the linear least squares solution of swim 
match points within that triangle’s area and also within an 
external band that includes the six surrounding triangles. 
Although most sections approached their final form with only 
one step of triangulation there are damaged or distorted areas 
that required more stages of nonlinear processing. In particular 
several spans of alternating thin and thick sections required 
four triangulation passes at 60nm plus three more to stabilize 
the 20nm data into consistency with the 60nm data. 

At the end of the process we have all four image 
resolutions, overview, 60nm/pixel, 20nm/pixel and the small 
4nm/pixel dataset, all aligned to the same global coordinate 
system. There were approximately 300 sections out of the 
16,000 that have more severe problems such as cuts, tears and 
other defects that required additional manual corrections. 



 

 
Fig. 4. Greatly reduced coronal view of the 16,000 section 60nm/pixel zebrafish data with three representative full resolution cut outs on the right. 



V. CONCLUSION 
In summary, our experiences during development of the 

SWiFT-IR approach have shown its effectiveness with two 
large wafer mapper datasets. We have demonstrated that the 
robustness of the tunable signal whitening technique provides 
substantial advantages, particularly in regions of damaged or 
otherwise marginal image content, and simplifies key parts of 
the registration process.  Of course the method can not 
reproduce missing data and there were cases, most notably 
encountered with the LGN dataset, where the density of 
similarly oriented cracks in the pick up tape were not properly 
handled by the SWiFT-IR code at that time. In the later 
zebrafish data there were initially difficulties in the vicinity of 
extremely high contrast features in the lens and retina where 
tissue staining is highly variable and around the outer surface 
of the fish.  These issues were largely part of the learning curve 
of discovering how to best apply the elements of the SWiFT 
method and particularly the importance of rejecting damaged 
and highly distorted regions during model building operations. 

The great benefit of wafer mapper overview images was a 
pleasant surprise. Its clear that, despite their limited quality and 
resolution, the availability of full block face imagery to 
establish objective references useful for correctly shaping the 
global alignment is superior to any result that would come 
from iterative relaxation methods. Particularly for the zebrafish 
this reference to overview data was the only way to be certain 
that bumps and curves in the reconstruction are real rather than 
registration artifacts. This gives added confidence that we have 
high anatomical fidelity throughout the entire specimen. 

It is also clear that providing improved low resolutions of 
the quality we achieved would be of great value in improving 
ROI targeting consistency for high resolution scans. Achieving 
high quality alignments from low resolution scans is further 
enhanced by having textured background across the full block 
face surrounding an embedded specimen. In the zebrafish data 
this was approximated by the supporting mouse brain tissue. 
We also suggest that with enhanced stage control and 
modulation of the SEM scan raster the direct acquisition of 
high resolution data in high quality affine alignment would be 
possible either as tiles or, by using dynamic stage motion, as 
long pushbroom column scans. This would greatly reduce the 
issues of ragged edges in the 3D reconstruction volumes. 

Finally, we have also seen there is still an important role for 
a human in the loop process. For the zebrafish this was most 
apparent in establishing a consistent bilateral centerline that 
would put the fish into a canonical straight line pose. An initial 
estimate from SWiFT matching of left right image flips was 
useful in the early stages. However, at higher resolution there 
were regions of asymmetry in this particular specimen where 
manual guidance gave a better result. Manual observation and 
intervention was also important in recognizing unexpected 
effects of alternate thin and thick section cutting that produced 
alternate directional bowing along the cut direction. In this case 
the automated model process produced jumps rather than a 
smooth result.  This was solved by manually removing the thin 
section images from the model. It would be straightforward to 
automate this process in the future if it becomes a common 
problem with other datasets. 

Further work is underway to make SWiFT-IR codes more 
user accessible through an appropriate user interface and also 
to greatly enhance the speed through both algorithmic means, 
such as pruned FFTs, and technical means including large 
memory parallel computers and OpenACC GPU acceleration.. 
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