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ABSTRACT 

Weighting pixel contribution considering its location is 

a key feature in many fundamental image processing tasks 

including filtering, object modeling and distance matching. 

Several techniques have been proposed that incorporate Spa- 

tial information to increase the accuracy and boost the per- 

formance of detection, tracking and recognition systems at 

the cost of speed. But, it is still not clear how to efficiently ex- 

tract weighted local histograms in constant time using integral 

histogram. This paper presents a novel algorithm to compute 

accurately multi-scale Spatially weighted local histograms in 

constant time using Weighted Integral Histogram (SWIH) for 

fast search. We applied our spatially weighted integral his- 

togram approach for fast tracking and obtained more accurate 

and robust target localization result in comparison with using 

plain histogram. 

Index Terms— integral histogram, local histogram, spa- 

tial weights, fast matching, tracking 
 

1. INTRODUCTION 

In many image processing applications, histograms are com- 

monly used to characterize and analyze the region of inter- 

est within the image. Histogram-based features are space ef- 

ficient, simple to compute, robust to translation and particu- 

larly invariant to orientation for color-based features. How- 

ever, when computing a plain histogram, spatial information 

are missed which makes it sensitive to noise and occlusion. 

Several techniques are proposed to preserve spatial informa- 

tion including color Correlograms [1], Spatiogram [2], Mul- 

tiresolution histogram [3], locality sensitive histogram [4, 5] 

and fragment-based approaches that exploit the spatial rela- 

tionships between patches [6]. Spatially weighted histograms 

boost the performance of many image processing tasks at the 

expense of speed. In [7], Porikli generalized the concept of in- 

tegral image and presented computationally very fast method 

to extract the plain histogram of any arbitrary region in con- 

stant time. Integral histogram provides an optimum and com- 

plete solution for the histogram-based search problem. Since 

then many novel approaches have been presented based on in- 

tegral histogram to accelerate the performance of image pro- 

cessing tasks and incorporate the spatial information includ- 
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Fig. 1. Illustration of linear and non-linear distance kernels. 

ing filtering [8, 9, 10, 11], classification and recognition [3, 

12], and detection and tracking [13, 14]. 

Despite all different techniques that have been proposed 

to adaptively weight the contribution of pixels when comput- 

ing local histograms by considering their distance from cen- 

ter pixel, the problem of how accurately extract the spatially 

weighted histogram of any arbitrary region within an image in 

constant time using integral histogram is still unsolved. Frag- 

track [6] proposes a discrete approximation scheme instead 

of the continuous kernel weighting approach to give higher 

weight to the contribution of inner rectangle compare to re- 

gion margins for fast search. 

In this paper we present a novel fast algorithm to accu- 

rately evaluate spatially weighted local histograms in O(1) 

time complexity using an extension of the integral histogram 

method (SWIH). The main idea is to (1) split local histogram 

kernel into multiple quadrants qi and decompose the spa- 

tial filter into independent weights wi subsequently, (2) for 

all wi compute candidate region weighted integral histogram 

IHwi , (3) then for every quadrant qi compute its weighted 

local histogram using the corresponding IHwi and consider- 

ing its translation from center pixel, (4) normalize the local 

histograms and (5) finally add them together to build the full 

kernel spatially weighted local histogram (Figure 2). 

In the following section, we discuss the details of our new 

approach to extract the spatially weighted local histograms 

in constant time using integral histogram particularly for fast 

histogram-based similarity matching. Then, we evaluate the 

performance of SWIH and compare it with the brute-force 

implementation and approximation scheme in terms of com- 

putational complexity and accuracy. 
 

2. SPATIALLY WEIGHTED LOCAL HISTOGRAMS 

Weighting pixel contributions is a key feature in many funda- 

mental image processing tasks including filtering, modeling 
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Fig. 2. Computational flow of accurate spatially weighted 

local histograms computation using weighted integral his- 

togram for the region of interest (ROI) of size w × h. 

and matching to increase the accuracy of results in detection, 

tracking, recognition, etc.. 

The main idea is to assign lower weights to the pixels 

that most likely belong to background or occluding objects. 

One common technique is to define a weighting function 

that assigns weights to pixels with respect to their distance 

from target center (since undesirable pixels are usually con- 

sidered around the region contours) including Manhattan, 

Euclidean, Gaussian or exponential weighting distance func- 

tions (Figure 1). Having such kernels enables us to adaptively 

weight the contribution of pixels and diminish the presence 

of background information when computing weighted local 

histograms. Figure 3 shows the accuracy of intensity fea- 

ture likelihood maps based on sliding window histogram 

matching when using plain local histograms versus spatially 

weighted local histograms. As it can be seen, using spatially 

weighted local histograms generates more robust matching 

results. In the following sections, we describe the straightfor- 

ward convolution-based approach, the discrete approximation 

scheme and our proposed novel, fast and accurate algorithm 

based on weighted integral histogram to compute spatially 

weighted local histograms for fast search. 

Brute-force Approach: the computational complexity of 

the brute-force approach to compute the adaptively weighted 

local histograms at each candidate pixel location is linear in 

the kernel size and the number of candidate pixels. Assuming 

a search window of size w × h and a neighborhood of size 

k × k and b-dimensional histogram, the computational com- 

Target Template 

   

(a) Region of Interest (b) Plain Histogram (c)   Weighted His- 

togram 

Fig. 3. Performance evaluation of intensity feature likeli- 

hood maps using sliding window (b) plain versus (c) spatially 

weighted histogram distance matching. 

Fig. 4.   (a) Wedding-Cake Approach: the discrete approx- 

imation scheme to obtain the spatially weighted local his- 

togram for the candidate region considering inner-nested win- 

dows and using integral histogram (wi < wi−1 < ... < 

wi−k ). (b) Tiling the kernel into four quadrants and decom- 

posing the weights to accurately compute spatially weighted 

local histogram. 

plexity of finding the best matched pixel location is O(b × 

k2 × w × h), which makes the system far away from real-time 

performance particularly when it comes to large scale high 

resolution image analysis. 

Wedding-Cake Approach: One solution to meet the de- 

mands of real-time implementation is to extract local his- 

tograms in constant time using integral histogram. However, 

as of our knowledge, there is still no solution to accurately 

and efficiently extract spatially weighted local histograms 

in O(1) using integral histogram but the discrete approxi- 

mate scheme presented in [6]. Frag-track proposed a simple 

approach to approximate the kernel function with different 

weights instead of pixel-level kernel weighting. Assuming 

that we want to calculate a spatially weighted local histogram 

in the rectangular region R centered at point P using integral 

histogram. Such counting can be approximated by consid- 

ering several inner-nested  windows Ri at multiple  scales 

around P (Figure 4). The goal is to compute the counts of the 

rings between two adjacent windows Ri and Ri−1 by sub- 

tracting their local histograms that are obtained in constant 

time using integral histogram. Then, rings histograms will be 

weighted appropriately with respect to their distance from P 

and combined to provide an approximate spatially weighted 

local histogram on R. The accuracy of this approximation 

relies on the number of considered inner-nested windows. 

In this paper, we present a new approach to compute spa- 

tially weighted local histograms that is more accurate than the 

wedding-cake method and takes constant time using integral 

histograms. 

2.1. Multi-scale Spatially Weighted Local Histograms in 

Constant Time Using Integral Histogram (SWIH) 

When using integral histogram, it is not clear how to weight 

pixel contributions when computing arbitrary rectangular re- 

gion histogram in O(1). We propose to address the pixel-level 

weighting problem by tiling the kernel into multiple quadrants 

as well as decomposing the weights (Figure 4(b)). In this sec- 

tion we describe our proposed algorithm in details when us- 
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(a) ROI (b) Brute Force (c) Plain Histogram (d) Wedding Cake (e) SWIH 

Fig. 5. Performance evaluation of intensity likelihood maps estimation using sliding window histogram matching. Weighting 

pixel contribution considering its location results in more accurate and robust target localization as shown in (b) and (e). 

ing Manhattan distance function to adaptively weight pixel 

contributions (Figure 1(a)) for fast matching. Assuming that 

we want to weight the contribution of each pixel within re- 

gion R centered at Pc = (xc, yc) by its Manhattan distance 

from P when computing histogram of region R. Manhattan 

or city-block weighting function measures the sum of the ab- 

solute distance between two points along each axis. In our 
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(b) Image Size (1k x 1k) 

case, Manhattan distance of any arbitrary point Pi = (xi, yi) 
withing region R is 

DistManhattan(Pi, Pc) =| xi − xc  | + | yi − yc  | (1) 

Since the filter is rectilinear and symmetric, we propose to de- 

compose it into four independent weighting functions in the 

shape of four quadrants: TopLeft(TL), TopRight(TR), Bot- 

tomLeft(BL) and BottomRight(BR) (Figure 4(b)). As it is 

shown, weights linearly increase from one corner to its diag- 

onally opposite corner in each of the quadrants covering four 

directions: {SE, SW, NE, NW}. We extend these weights for 

the region of interest and compute four differently weighted 

integral histogram. For each direction, we consider two cor- 

related images f and wdir to compute the weighted integral 

histogram up to point (x, y): 
  

Fig. 6. Performance comparison by increasing the local his- 

togram kernel size. Computational time of integral histogram- 

based methods are invariant of kernel size. 
 

3. PERFORMANCE EVALUATION AND 

EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of our approach 

and compare it with brute-force implementation and approx- 

imation scheme with respect to computational complexity 

and accuracy. Figure 5 evaluates the performance of the es- 

timated intensity likelihood maps for a sample image from 

the VOT2016 data set [16] using sliding-window histogram 

matching. We compared the intensity likelihood map com- 

puted by the brute-force implementation with the matching 

results of the plain histogram, approximation scheme and our 
IHwdir (x, y, bi) = 

i≤x,j≤y 

δ(Q(f (i, j)) − bi)wdir (i, j) 
proposed accurate fast spatially weighted histogram. Back- 

f contains image feature values, Q is the quantization 
(2) 

func- 
ground clutter is one of the main challenges in object detec- 
tion systems relied on matching. We have selected an image 

tion that determines which bin to increase, δ is the impulse 

function and wdir is the pixel-wise weighing function that 

determine the value to increase at that bin. Having four dif- 

ferently weighted integral histogram, each of the quadrants 

spatially weighted local histogram will be computed in O(1) 

using its corresponding weighted integral histogram and con- 

sidering its translation from the kernel center point. We will 

normalize the histograms and add them together to build the 

full region spatially weighted histogram. Figure 2 illustrates 

the flow of the computation. It is noteworthy to mention that 

due to weights rectilinear changes, their values are indepen- 

dent of the pixel location in the region of interests. This char- 

acteristic enables us to appropriately normalize the computed 

weighted local histogram and match it with the target spa- 

tially weighted histogram regardless of its location. This new 

method provides multi-scale accurate spatially weighted local 

histogram in constant time and can be utilized for other spa- 

tial weighting functions. It can be easily adapted to any fast 

computation of integral histogram on GPUs to accelerate the 

computation [15]. 

that contains background clutter to make the matching pro- 

cess very challenging. It is shown that our proposed method 

not only provides exact results as the brute-force approach 

but is much faster. SWIH is 4.5 times faster than brute-force 

implementation for a candidate region of size 345 × 460 and 

sliding window of size 61 × 91 ( 5(a)). Figure 6 (a) and (b) 

shows the computational complexity of each of the discussed 

methods for standard image 640 × 480 as well as large scale 

image of size 1k × 1k for different sliding window size from 

small scale to very large scale. It can be seen that the local 

histograms computational time of the brute-force implemen- 

tation increases dramatically by enlarging the kernel size but 

is invariant of kernel size for the approximation scheme and 

SWIH. 

4. SPATIALLY WEIGHTED INTEGRAL 

HISTOGRAM FOR FAST TRACKING (SWIFT) 

 

Many of the generative region-based tracking algorithms rely 

on histograms for a fast and memory efficient appearance 
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(a) Likelihood map estimation using sliding window plain histograms matching 
 

 
 

(b) Likelihood map estimation using sliding window spatially weighted histograms matching 

Fig. 7. Performance evaluation of intensity likelihood map estimation using sliding window (a) plain histogram versus (b) our 

proposed accurate spatially weighted histograms matching approach for vehicle tracking in large scale aerial imagery. 

modeling of target object as well as candidate region includ- 

ing Mean-Shift [17] and kernel-based [18, 19] approaches. 

However, since many of these trackers discard the spatial in- 

formation when computing the conventional histogram, they 

rapidly lose the accuracy and converge to false targets. There- 

fore, many techniques have been presented to incorporate spa- 

tial information and enhance the tracker robustness which are 

either more computationally intensive and far away from real- 

time performance or a combination of different techniques to 

compensate the lack of spatial information [2, 20, 4, 13, 21]. 

Our proposed approach that retain spatial information as well 

as chromatic, shape or texture features presents a novel so- 

lution based on integral histogram that builds a robust and 

efficient histogram-based appearance model and provides ac- 

curate and fast histogram-based matching for visual tracking, 

detection and recognition purposes. 
 

We integrated our proposed technique into our tracking 

system named LoFT [22, 23] to evaluate the performance 

of intensity histogram matching when using plain histogram 

versus spatially weighted histogram. LoFT is an appearance- 

based Likelihood of Features Tracking (LoFT) system, spe- 

cialized for low resolution targets with large displacements 

caused by low frame rate sampling in Wide Area Motion Im- 

agery(WAMI). Matching likelihood maps for individual fea- 

tures are computed using sliding window histogram similarity 

operators. The integral histogram method is used to acceler- 

ate computation of the sliding window histograms for a pos- 

teriori likelihood estimation [15]. Figure 7(a) describes the 

flow of the likelihood map computation using plain intensity 

histogram of target object and candidate regions. Similar to 

the results obtained for the synthetic image shown in Fig- 

ure 3, using plain histograms results in less accurate local- 

ization of object. Hence, we applied our accurate spatially 

weighted integral histogram to estimate features likelihood 

maps instead of regular integral histogram for fast search. Fig- 

ure 7(b) illustrates the computational flow compared to plain 

histogram and presents the more accurate target localization 

results when using spatially weighted histograms. 

5. CONCLUSION 

This paper present a novel fast algorithm to accurately evalu- 

ate spatially weighted local histograms in constant time using 

an extension of the integral histogram method (SWIH). We 

have shown that SWIH produces exact local histograms com- 

pared to brute-force approach and is much faster. Utilizing the 

integral histogram makes it to be fast, multi-scale and flexi- 

ble to different weighting functions. This technique can be 

applied to fragment-based approaches to adaptively weight 

object patches considering their location. SWIH can be in- 

tegrated into any detection or tracking system to provide an 

efficient exhaustive search and achieve more robust and accu- 

rate target localization. 
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