
 

 

Deep Learning for Recognizing Mobile Targets in 

Satellite Imagery

Mark Pritt 

Lockheed Martin Space 

Rockville, Maryland 

mark.pritt@lmco.com

    

Abstract—There is an increasing demand for software that 

automatically detects and classifies mobile targets such as 

airplanes, cars, and ships in satellite imagery. Applications of 

such automated target recognition (ATR) software include 

economic forecasting, traffic planning, maritime law 

enforcement, and disaster response. This paper describes the 

extension of a convolutional neural network (CNN) for 

classification to a sliding window algorithm for detection. It is 

evaluated on mobile targets of the xView dataset, on which it 

achieves detection and classification accuracies higher than 95%. 
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I. INTRODUCTION 

Deep learning is a class of machine learning algorithms that 
have enjoyed astonishing success in object detection and 
classification [1] and automated target recognition (ATR). 
They have achieved this success by combining the 
computational power of deep convolutional neural networks 
(CNNs) with the processing power of graphical processing 
units (GPUs). Furthermore, unlike conventional ATR methods, 
CNNs do not require the algorithm designer to engineer feature 
detectors. The network itself learns which features to detect, 
and how to detect them, as it trains. 

Much work has been aimed at the problem of classification, 
which is the process of assigning a label or class to an image of 
a single object as shown in Fig. 1(a). The Intelligence 
Advanced Research Projects Agency (IARPA) recently 
sponsored a TopCoder competition called fMoW or Functional 
Map of the World [2,3] in which competitors developed 
classification algorithms for a global dataset of satellite images 
containing fixed facilities. The facilities were of 62 types or 
classes and included airports, shipyards, schools, stadiums, and 
towers as shown in Fig. 2(a). The high-resolution images came 
from the WorldView-2 satellite and had a ground sample 
distance (GSD) of 0.5m. The winning algorithms achieved 
classification accuracies approaching 80% [4]. 

Detection is a more complicated task than classification. It 
is the process of recognizing multiple objects in an image and 
classifying them as shown in Fig. 1(b). (This paper uses the 
term “detection” in the broad sense of detecting and classifying 
objects. It is essentially a synonym for recognition.) The 
National Geospatial-Intelligence Agency (NGA) and Defense 
Innovation Unit (DIU) recently sponsored a coding challenge 
called xView [5,6] in which competitors developed detection 

algorithms for a global dataset of satellite images containing 
mobile targets. The images were from the WorldView-3 
satellite and had a GSD of 0.3m. The targets consisted of 60 
classes of aircraft, motor vehicles, maritime vessels, 
construction equipment, and railway vehicles, as well as some 
fixed facilities, as shown in Fig. 2(b). See Table I for a 
complete list of the classes. 

The winners of the xView competition developed 
algorithms whose best metrics were much lower than those of 
the fMoW algorithms. The mean average precision (mAP), a 
common metric of detection success, did not exceed 30% [7]. 
Nor did the F1 score, a measure of accuracy and precision. 
These results testify to the difficulty of detecting mobile targets 
in satellite imagery. 

II. PROBLEM 

 There is an increasing demand for the recognition of 
mobile targets in satellite imagery. Car counting in satellite 
images is used by investors to estimate the retail activity of 
large businesses. It is also used to monitor traffic for purposes 
of road planning and traffic flow management. Aircraft 
detection is used to estimate air traffic volume at airports. 
Maritime surveillance is used for monitoring ship traffic, 
detecting illegal fishing activity, and protecting borders from 
drug runners and human traffickers. Even disaster response is 
an important application of mobile target detection as indicated 
by the xView competition [6]. 

 

                               (a)                                                         (b)       

Fig. 1. (a) The process of classification assigns a label to an image of an 

object.  (b) The process of detection recognizes multiple objects in an image. 

 

                               (a)                                                         (b)       

Fig. 2. (a) The fMoW (Functional Map of the World) dataset consists of 

images of fixed facilities such as bridges, towers, stadiums and road 

intersections.  (b) The xView dataset consists mainly of mobile targets. 



 

 

TABLE I.  CLASSES OF THE XVIEW DATASET. EACH CLASS HAS AN 

IDENTIFICATION NUMBER AND A LABEL. 

 
 

 

Because the mobile targets to be detected are so numerous, 
automated detection and classification algorithms are required. 
Yet traditional ATR algorithms are inaccurate and unreliable. 
What is needed is an advanced deep learning system that can 
recognize and label mobile targets automatically. Such a 
system must do so with metrics much higher than the poor 
results achieved by the xView competition. 

This paper presents a start in that direction. It describes an 
algorithm for the recognition of mobile targets in satellite 
imagery with an accuracy of 95% or higher. It focuses on the 
Passenger/Cargo Plane class of aircraft as an important class of 
mobile target. It also focuses on the Excavator and Ground 
Grader classes as examples of particularly small mobile targets 
that are difficult to detect and classify in satellite imagery. 

III. DATASET 

The xView dataset [6] was chosen for the experiments 
because it contains a wide variety of mobile targets. The 
dataset consists of approximately 1000 color satellite images 
from around the world with about 600,000 objects identified 
and labeled. The images, shown in Fig. 3, are orthorectified 
and from the WorldView-3 satellite. They are approximately 

3000x3000 pixels in size and have a GSD of 0.3 meters. The 
objects are classified into the 60 classes listed in Table I. Forty-
six of the classes are mobile targets and grouped into motor 
vehicles, construction equipment, railway vehicles, aircraft, 
and maritime vessels. The objects are identified by means of 
bounding boxes and labels in a GeoJSON file, whose structure 
is shown in Table II. 

The xView dataset is unparalleled as the largest global 
dataset of mobile targets in satellite imagery. It has been 
criticized, however, for its class ambiguities and inconsistent 
labeling [8]. For example, there are maritime vessels that are 
not labeled as Maritime Vessel. There is a Vehicle Lot class, 
but vehicles in parking lots are not always labeled with this 
class. It is not clear why some classes, such as Passenger Car 
or Tank Car, are not also classified as Railway Vehicle. The 
dataset also suffers from a very large class imbalance. There 
are 316,138 examples of the Building class and 210,938 
examples of the Small Car class but only 55 examples of 
Helicopter and 17 examples of Railway Vehicle. 

TABLE II.  XVIEW GEOJSON FILE STRUCTURE 

 
 

 

Fig. 3. Some of the 1000 satellite images from the xView dataset. 



 

 

IV. METHODS 

The goal of the work described in this paper was to develop 
a deep learning algorithm for the detection and classification of 
mobile targets in satellite imagery. A classifier on the 60 
xView classes was first trained to assess the quality of the 
dataset. A binary aircraft classifier was then trained and 
integrated in a sliding window detector, which detected and 
classified aircraft in satellite images. An excavator and ground 
grader classifier was then trained and inserted in the sliding 
window detector. This demonstrated the ability of the 
algorithm to detect and classify small mobile targets. 

A. Metrics 

The most common metric for evaluating detection and 
classification algorithms is accuracy. It is the probability of 
detecting and classifying an object into its correct class. Also 
called Pd , probability of detection, or recall, it is the proportion 
of a given class that is correctly detected and classified. 
Precision is a complementary measure that is defined to be the 
proportion of classifications of a given class that are correct. If 
TP is the number of true positives, FP the false positives, and 
FN the false negatives, then the precision P and recall R are 
defined by the equations 

        P  =  TP/(TP + FP), R  =  TP/(TP + FN). 

A confusion matrix expresses the precision and recall of all 
the classes. It is a table that records the class accuracies along 
the diagonal and the likelihood of class confusion on the off-
diagonal elements. Another metric is the F1 score, which is the 
geometric mean of the precision and recall: 2PR/(P + R). 
Finally, mAP or mean average precision is a measure that is 
commonly used for detection. It measures the precision and 
also the effectiveness of localization (i.e., accurate placement 
of the detection bounding boxes.)  

This paper uses precision, recall, F1 score, and confusion 
matrices to measure the effectiveness of the algorithms. 

B. xView Classification 

To assess the xView dataset, a multi-class CNN classifier 
was trained and evaluated. This was deemed necessary to 
determine if classification accuracies significantly higher than 
the low metrics (30%) of the xView competition could be 
achieved. It was considered important because of the dataset’s 
weaknesses of inconsistent labeling and class imbalance. 

As with the Lockheed Martin fMoW classifier [9], a new 
class called “False Detection” was defined with the purpose of 
teaching the CNN what the 60 xView classes did not look like. 
This new class was defined by sampling the xView images 
(Fig. 3) at random locations and extracting bounding boxes at 
the locations, which were then added to the GeoJSON file. As 
in [9], the training data was split 80%-20% into a training 
dataset, used for training the CNN, and a validation dataset, 
which was used only for calculating the metrics of the CNN: 
precision, recall, and F1 score. To mitigate the class imbalance 
of xView, the number of examples per class was capped at 
10,000, and each class was weighted according to its training 
set size. The training data was augmented by means of flips 
and 90-degree rotations as in [9], in addition to random image 
shifting and re-sizing.  

A DenseNet-161 CNN [10] was implemented in Python 
with the TensorFlow [11] and Keras [12] deep learning 
libraries. The CNN weights were initialized with ImageNet 
weights as in [9] and trained for one epoch with a learning rate 
of 0.0005, dropout 0.6, and GPU batch size 16.  

When evaluated on the validation dataset, the CNN 
classifier exhibited a total accuracy of 73%. Fig. 4 shows the 
class accuracies. They ranged from a high of 100% for the 
classes of Straddle Carrier and Helipad to a low of 28% for 
Utility Truck and 21% for Engineering Vehicle. The accuracies 
of 9 classes exceeded 90%. Fig. 5 shows the confusion matrix. 
The strong diagonal indicates a strong classifier, with the off-
diagonal elements indicating classes that were confused with 
others. The most common confusion was between Tower and 
Storage Tank (33%). Passenger Vehicle was confused with 
Small Car 31% of the time, but this was probably due to 
labeling ambiguities in the training data. Ground Grader was 
confused with Front Loader/Bulldozer 25% of the time, most 
likely because of their similar appearances. 

 

Fig. 4. Class accuracies of the 61-class xView classifier. The classes 

consisted of the 60 xView classes and a False Detection class. 

 

Fig. 5. Confusion matrix of the 61-class xView classifier (including the False 

Detection class). 



 

 

The precision and recall of the Passenger/Cargo Plane class 
were 98% and 89%, respectively. Those of the Excavator class 
were 80% and 90%, while those of the Ground Grader class 
were only 24% and 37%. 

C. Aircraft Classification 

Next a binary classifier was trained to recognize airplanes 
and distinguish them from background clutter. A ResNet-50 
CNN [13] was trained on the two classes of Passenger/Cargo 
Plane (Fig. 6) and False Detection. (The DenseNet-161 CNN 
[10] yielded similar results.) There were 719 sample images of 
Passenger/Cargo Plane in the xView dataset, and the usual 
80%-20% dataset split was performed along with augmentation 
of the training images by means of flips, rotations, shifts, and 
scale changes. The CNN weights were initialized with 
ImageNet weights as in [9] and trained for two epochs with a 
learning rate of 0.0005, dropout 0.6, and GPU batch size 16.  

When evaluated on the validation dataset, the binary 
classifier exhibited an accuracy of 97% and a precision of 94% 
as shown in Table III. The accuracy was 8% higher than that of 
the aircraft in the xView multi-class classifier. The failures are 
shown in Fig. 7. Several were caused by the false classification 
of small aircraft. Two failures were actually not failures at all, 
because they were caused by human labeling mistakes in the 
validation dataset. Moreover, a passenger plane in a hangar 
building with only its tail exposed was correctly classified even 
though it had been left unlabeled in the dataset. 

D. Sliding Window Detection 

For the detection algorithm, a sliding window detector was 
implemented. This algorithm consisted of the following steps: 

1. Divide the input image into overlapping windows of a 
predetermined size as shown in Fig. 8. 

2. Submit each window to the classifier and save the 
windows whose classification (prediction) probabilities 
exceed a predetermined threshold. 

3. Apply a non-maximal suppression algorithm to remove 
overlapping windows, ensuring that each object is 
detected only once. The windows that remain are output 
as the detections. 

The advantages of this algorithm are its simplicity and the 
natural way it extends the classifier. It is a simple matter to 
“plug and play” a different classifier in step 2, such as an 
ensemble [9]. The main disadvantage of the algorithm is its 
relatively slow speed compared to one-pass algorithms such as 
Faster R-CNN [14]. It is possible, however, to speed it up by 
means of a selective search [15] or pre-screening algorithm. 
Another disadvantage is that the algorithm tends to have poor 
localization for aircraft. In other words, the detection windows 
are not always centered on the airplanes they contain. 

 

Fig. 6. Examples of the “Passenger/Cargo Plane” class in the xView dataset. 

TABLE III.  AIRCRAFT CLASSIFICATION RESULTS 

Metric Value 

Recall (Accuracy) 97% 

Precision 94% 

F1 Score 96% 

True Positives 111 

False Positives 3 

False Negatives 7 

True Negatives 2818 

 

 

Fig. 7. Failures of the aircraft classifer. 

 

Fig. 8. Sliding window algorithm. 

Fig. 9 shows the results of the sliding window algorithm for 
aircraft detection. The red boxes are the detection windows that 
resulted from step 3. Note the poor localization of some of the 
windows, as well as the false positive detection. The latter 
resulted from the presence of the wing tips of two airplanes in 
the window, which provided enough features to trigger the 
CNN with a high prediction probability. It is possible that a 
better non-maximal suppression algorithm would remove this 
false detection and exhibit better localization. 

The size of the windows in step 1 was determined by the 
sizes of the bounding boxes in the training dataset. In general, 
it could be set to the mean size or a set of sizes, in which case 
step 1 would consist of two or more passes. In the case of 
aircraft, which can be small (e.g., a corporate jet) or large (e.g., 
a jumbo jet), it was set to two different sizes: the mean size and 
the 75th percentile of the bounding box sizes. 

The probability threshold in step 2 was determined by the 
prediction probabilities recorded in the validation step of the 
CNN classifier training. It was set to μ - 3σ, where μ was the 
mean of these probabilities and σ was the standard deviation. 



 

 

E. Excavator Classification and Detection 

A binary classifier was next trained to recognize 
excavators. The xView dataset has 846 examples of this class. 
Fig. 10 shows an excavator and four examples of excavators in 
satellite imagery. A ResNet-50 CNN was trained on the two 
classes of Excavator and False Detection. The usual 80%-20% 
dataset split was performed along with augmentation of the 
training data by means of flips, rotations, shifts, and scale 
changes. The CNN weights were initialized as usual with 
ImageNet weights and trained for two epochs with a learning 
rate of 0.0005, dropout 0.6, and GPU batch size 16.  

When evaluated on the validation dataset, the classifier 
exhibited an accuracy of 94% and a precision of 91% as shown 
in Table IV. When implemented in the sliding window 
detector, it was noted that excavators were often confused with 
ground graders, which are shown in Fig. 11. A three-class 
CNN classifier was then trained on Excavator, Ground Grader, 
and False Detection. Even though xView has only 83 examples 
of the Ground Grader class, the resulting detector achieved 
significantly better results as shown in the following section.  

 

Fig. 9. The red boxes are the detection results. All the aircraft were detected, 

but there was a false positive detection straddling two airplanes. 

 

Fig. 10. The photo on the left is an excavator, and the other photos are satellite 

images of excavators. 

 

Fig. 11. The photo on the left is a ground grader, and the other photos are 

satellite images of ground graders. 

V. RESULTS AND DISCUSSION 

Table V shows the results of the sliding window detector 
on the Passenger/Cargo Plane class. The algorithm detected 
aircraft with an accuracy of 96% and a precision of 92%. The 
detection of aircraft under hazy visibility is shown in Fig. 12, 
and Fig. 13 shows the ability of the algorithm to reject 
confusing look-alikes: in this case, jetways that resemble 
airplane wings. 

Table VI shows the detection results on the Excavator 
class. The accuracy was only 89%. It was noted that many of 
the false detections were ground graders, which appear similar 
to excavators. Fig. 14 shows the detections on an image of a 
large airport construction site. The three false positives in the 
detail image were all ground graders. 

When the CNN classifier was retrained on the three classes 
(Excavator, Ground Grader, and False Detection) and plugged 
into the sliding window algorithm in step 2, the detection 
results improved substantially. Table VII shows the accuracy 
increasing from 89% to 95% and the precision increasing from 
81% to 91%. The results on the airport construction site are 
shown in Fig. 15. The false positives and false negatives 
disappeared in the detail image. 

Interestingly, in both cases of aircraft and excavator, the 
accuracy and precision of the detector generally matched those 
of the classifier. 

VI. CONCLUSION 

In this paper a sliding window algorithm was presented for 
the detection and classification of mobile targets in satellite 
imagery. The xView dataset was used to test the algorithm, 
which achieved accuracies of 95% and 96% on the aircraft and 
excavator classes. These metrics are higher than those achieved 
by the xView competition. Although slow and sometimes poor 
at aircraft localization, the algorithm enjoys the advantages of 
simplicity and the ability to substitute any classifier in “plug 
and play” fashion. 

TABLE IV.  EXCAVATOR CLASSIFICATION RESULTS 

Metric Value 

Recall (Accuracy) 94% 

Precision 91% 

F1 Score 92% 

True Positives 137 False Positives 9 

True Negatives 3314 False Negatives 14 

TABLE V.  AIRCRAFT DETECTION RESULTS 

Metric Value 

Recall (Accuracy) 96% 

Precision 92% 

F1 Score 94% 

True Positives 76 

False Positives 7 

False Negatives 3 



 

 

 

Fig. 12. Detection results on a hazy image. All nine airplanes were detected.  

 

Fig. 13. All nine airplanes were detected with no false positives. These results 

show the ability of the algorithm to reject confusing look-alikes (jetways). 

 

 

 

TABLE VI.  EXCAVATOR DETECTION RESULTS 

Metric Value 

Recall (Accuracy) 89% 

Precision 81% 

F1 Score 85% 

True Positives 50 

False Positives 12 

False Negatives 6 
 

 
 
 
 

 

Fig. 14. The top image shows the detection results on a satellite image of an 

airport construction site. The red boxes indicate the detections of excavators. 

The bottom image shows a portion of the image in magnified detail. Three of 
the detections were ground graders instead of excavators (false positives) and 

four of the excavators were not detected (false negatives). 

 

 

 



 

 

There are a number of ways the results could be improved. 
First, the non-maximal suppression of the detection windows in 
step 3 could be modified to provide more accurate object 
localization and better detection of objects that are crowded 
together. Second, a method could be devised to determine 
automatically the optimal set of target classes on which the 
classification CNN should be trained. This optimal set could be 
determined, for example, by the highest values of the off-
diagonal elements in the classifier’s confusion matrix. Third, 
the classification CNN could be replaced with an ensemble of 
CNNs [9] for higher classification accuracy, which would in 
turn produce better detection metrics. Finally, the sliding 
window algorithm could be compared with one-pass detection 
algorithms such as Faster R-CNN [14]. 
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