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Abstract—GATR (Globally-scalable Automated Target 

Recognition) is a Lockheed Martin software system for real-time 

object detection and classification in satellite imagery on a 

worldwide basis. GATR uses GPU-accelerated deep learning 

software to quickly search large geographic regions. On a single 

GPU it processes imagery at a rate of over 16 km2/sec (or more 

than 10 Mpixels/sec), and it requires only two hours to search the 

entire state of Pennsylvania for gas fracking wells. The search 

time scales linearly with the geographic area, and the processing 

rate scales linearly with the number of GPUs. GATR has a 

modular, cloud-based architecture that uses Maxar’s GBDX 

platform and provides an ATR analytic as a service. Applications 

include broad area search, watch boxes for monitoring ports and 

airfields, and site characterization. ATR is performed by deep 

learning models including RetinaNet and Faster R-CNN. Results 

are presented for the detection of aircraft and fracking wells and 

show that the recalls exceed 90% even in geographic regions 

never seen before. GATR is extensible to new targets, such as 

cars and ships, and it also handles radar and infrared imagery. 
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I. BACKGROUND 

Automatic Target Recognition (ATR) is the detection and 
recognition of targets, or objects of interest, in remotely sensed 
image data [1-4].  It has a long and rich history closely 
associated with the detection of enemy aircraft and bombers in 
radar data during World War II. Afterwards, ATR developed 
into the science of detecting objects in radar, optical, and 
infrared imagery from airborne and spaceborne sensors for the 
purposes of weapons targeting, reconnaissance, and navigation. 

Closely associated with ATR is image interpretation, 
which is the analysis of objects and features in remotely sensed 
imagery [5]. Examples include aircraft, vehicles, ships, oil 
wells, deforested land, and construction sites. Applications 
include the monitoring of military equipment, economic 
forecasting, land management, archeology, and natural disaster 
response. Although image interpretation is performed manually 
by humans, there is room for automation. The application of 
deep learning to ATR shows promise for reducing the manual 
labor of image interpretation by performing tasks such as 
searching very large images or monitoring sites for change. 

This paper introduces a Lockheed Martin software system 
called GATR that uses deep learning ATR algorithms to assist 
with the tasks of image interpretation and geospatial analysis. It 
applies these algorithms to find objects of interest anywhere in 
the world, perform broad area search, and monitor “watch 
boxes” over sites of interest. 

In the field of deep learning, ATR is usually referred to as 
object detection and classification. It is the problem of finding 
objects in an image and classifying them into an object class 
(e.g., airplane, car, or ship) or type (e.g., Boeing 747 jet or C-
130 cargo plane). This paper uses the term ATR synonymously 
with object detection and classification. 

II. ARCHITECTURE 

 GATR, or Globally-scalable ATR, is a software system 
that uses deep learning ATR algorithms to assist with the 
process of image interpretation by searching large geographic 
regions for objects of interest. This is sometimes called broad 
area search. It also monitors sites for changes of interest. 
GATR has the following features: 

• Global Scalability: It finds objects of interest anywhere 
in the world. 

• Cloud Architecture: It is modular, cloud capable, and 
provides an ATR “analytic as a service”. 

• Speed: Graphical processing units provide acceleration. 

• Accuracy: It uses state-of-the-art deep learning 
detection and classification algorithms. 

• Extensibility: It can be trained on practically any type 
of object, facility, or feature, including aircraft, 
vehicles, ships, oil wells, and construction sites. 

Fig. 1 shows the architecture of GATR. Satellite data flows 
to a data server, which supplies imagery to the training and 
detection algorithms of GATR on Amazon’s AWS [6]. The 
satellite imagery is provided by Maxar Technologies’ GBDX 
platform [7]. Detection results are saved in a geospatial 
database and sent to end users for analysis.  

GATR uses two types of imagery from GBDX. 
WorldView-3 [8] is a high-resolution multispectral imaging 
satellite that provides imagery with a ground sample distance 
(GSD) of 0.3 meter. It is suitable for finding objects as small as 
cars. Sentinel-2 [9] is a low-resolution multispectral imaging 
satellite that provides imagery with a GSD of 10 meters. It is 
suitable for finding large objects and facilities such as oil and 
gas fracking wells. Its chief advantage over high-resolution 
satellites like WorldView-3 is its high revisit rate of 5-12 days. 
This makes it possible to collect sequences of satellite images 
for time-series characterization and monitoring of an object or 
facility [10].  

Although GATR works primarily with multispectral 
imagery, it has also been tested with other types of imagery, 
including panchromatic, short wave infrared, and radar 
imagery such as Sentinel-1 [11]. 

The authors are listed alphabetically. 
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Fig. 1.  Cloud architecture of GATR. Satellite imagery (left) flows to GBDX, 

which supplies imagery to the training and detection algorithms of GATR on 

AWS (center). Results are sent to databases and image analysts (right). 

III. DEEP LEARNING ATR 

Signal processing techniques, such as correlation filters, 
feature extractors, and matching templates, have dominated the 
field of ATR for decades. Recently, deep learning techniques, 
driven by computer vision applications such as self-driving 
cars, have become very popular. Deep learning is a class of 
machine learning techniques that represent and manipulate data 
in large convolutional neural networks or CNNs [12,13]. These 
networks learn to recognize objects by means of supervised 
training on labeled image examples of the objects. Unlike 
conventional ATR methods, deep learning does not require the 
algorithm designer to engineer feature detectors. The networks 
themselves learn which features to detect, and how to detect 
them, as they train. These networks have achieved success in 
ATR and revolutionized computer vision and image 
understanding by combining CNNs with powerful graphical 
processing units (GPUs). Open source deep learning software 
libraries such as TensorFlow [14], PyTorch [15], and Keras 
[16] have helped to fuel continuing advances. 

Early applications of deep learning to ATR limited 
themselves to the classification, but not detection, of image 
chips [6]. Current applications deal with the full ATR problem 
of detecting and classifying objects in large satellite images 
[13,17]. We have found that end-to-end deep learning 
algorithms like RetinaNet [18] and Faster R-CNN [19] are very 
effective if tuned to the characteristics of satellite imagery [17]. 

A. Algorithm Training 

Deep learning algorithms work in two stages.  The first is 
an offline stage of supervised training, where the algorithm 
learns to recognize objects of interest as shown in Fig. 2. 
Object locations and times are compiled, and matching satellite 
images are retrieved. The objects, marked with labeled 
bounding boxes in the images, form the initial dataset. Next 
follows a labor-intensive step called dataset curation, in which 
human analysts correct the dataset. Objects obscured by cloud 
cover, for example, are removed, and unlabeled objects are 
labeled. The resulting dataset consists of images with labeled 
bounding boxes around the objects to be recognized. (The 
dataset must consist of real images and not just image “chips” 
of the objects.) The dataset is randomly split into two sets: one 
for training (typically 70-80% of the data) and the other for 
validation. The validation set is used to ensure that the 
algorithm does not “overfit” itself to the training data. 

B. Algorithm Inference 

After the algorithm is trained, it is ready for operational use 
(called inference) as illustrated in Fig. 3. The algorithm 
monitors a bucket or folder of imagery, processing new images 
as they arrive and saving the detected objects to a database. 

C. Measuring Accuracy 

The trained ATR algorithm is evaluated with a number of 
accuracy measures. After it is run in inference mode on the test 
(or validation) dataset, the true detections (TP or true 
positives), false detections (FP or false positives), and missed 
targets (FN or false negatives) are counted. The software then 
calculates the recall, precision, and F1 score according to the 
following formulas: 

 

The recall is the same as probability of detection. The precision 
is the proportion of detections that are correct, and the F1 score 
is the harmonic mean of the recall and precision. 

The software generates a precision-recall curve by varying 
the detection threshold and plotting the precision and recall 
values. Just as the ROC curve from conventional ATR shows 
the trade-off between the probability of detection and the false 
alarm rate [1-4], the precision-recall curve shows the trade-off 
between the recall and the precision. One can adjust the 
detection threshold to increase the recall, but this comes at the 
cost of decreasing the precision. 

The mean average precision, or mAP, is a standard 
measure of the detection and localization accuracy. It averages 
the precision over all recall values as a function of the 
intersection over union (IoU), which measures the degree of 
overlap between a predicted bounding box and the true 
bounding box that contains a detected object.  

D. Results on Aircraft Detection 

The RetinaNet [18] and Faster R-CNN [19] models were 
trained on the 719 images of “Passenger and Cargo Aircraft” in 
the xView dataset [20,21]. Examples of these aircraft are 
shown in Fig. 4. They were supplemented with 362 military 
airplanes curated from 20 WorldView-3 images (Fig. 5). 
Results of the inference stage are shown in Figs. 6 and 7.  

 

Fig. 2.  Training stage. Analysts identify the locations of objects of interest 
and retrieve satellite images of these objects. The most labor intensive step is 

the manual labeling of the objects (“Dataset Curation”). 

 

Fig. 3. Operational (or inference) stage. Once the ATR algorithm is trained, 

it is ready for the operational mission of finding objects in imagery.  
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The accuracy measures and precision-recall curves are 
shown in Fig. 8. For Faster R-CNN, the recall was 0.92 and the 
precision 0.96.  The F1 score was 0.94 and the mAP was 0.91.  

E. Results on Fracking Well Detection 

The algorithms were next trained on 1142 fracking wells in 
Pennsylvania. These wells were curated in WorldView-3 and 
Sentinel-2 imagery as two different datasets to determine the 
effect of GSD on ATR accuracy. Fig. 9 shows how a fracking 
well appears in each image. The results are shown in Fig. 10. 
For Faster R-CNN on WorldView-3, the recall was 0.94 and 
the precision was 0.90.  The F1 score was 0.92 and the mAP 
was 0.89. For lower-res Sentinel-2, the F1 and recall were 0.90 
and 0.88, respectively—only 6% lower than for WorldView-3. 

 

Fig. 4. Examples of “Passenger and Cargo Aircraft” in the xView dataset.  

 

Fig. 5. Examples of military aircraft collected and curated to supplement the 

xView aircraft dataset. (Images: DigitalGlobe, Inc.) 

 

Fig. 6. Aircraft detection results (green boxes) at a commercial airport. 

 

Fig. 7. Aircraft detection results (green boxes) at a military airbase in 

Germany. (Satellite image: DigitalGlobe, Inc.) 

 

Fig. 8.  Accuracy measures (for the Faster R-CNN model at the maximum F1 

score) and precision-recall curves of the aircraft ATR results. The two curves 

are for Faster R-CNN and RetinaNet. The dots mark the probability thresholds 

where the F1 scores are maximized.  

 

Fig. 9. Fracking well pad in WorldView-3 (left) and Sentinel-2 (right). Note 

that the Sentinel-2 image, whose GSD is rather low at 10 meters, lacks the 

fine detail of the WorldView-3 image, whose GSD is much higher at 0.3 

meter. (Images: DigitalGlobe, Inc.) 

 

Fig. 10.  Accuracy measures  (for the Faster R-CNN model on WorldView-3 

imagery at the maximum F1 score) and precision-recall curves of the fracking 
well results. The four curves are for two different ATR algorithms (Faster R-

CNN and RetinaNet) on two sources of satellite imagery: high-resolution 

WorldView-3 (labeled “DG”) and low-resolution Sentinel-2. The dots on the 

curves mark the probability thresholds at which the F1 scores are maximized. 
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IV. GLOBAL SCALABILITY 

To demonstrate global scalability, we trained the Faster R-
CNN model to recognize fracking wells from multiple 
geographic regions. We curated a labeled training dataset of 
wells from four diverse regions associated with shale rock 
formations in Pennsylvania, Canada, New Mexico, and Russia. 
Fracking well permits for the North American locations were 
retrieved from state government web sites, and their latitude 
and longitude coordinates were downloaded to serve as initial 
guesses for the locations of fracking wells. WorldView-3 
images at these locations were downloaded from the GBDX 
image server, divided into 5000x5000-pixel tiles, and manually 
curated at a GSD of 0.3 meter. The area of each tile was 1.5 x 

1.5 km or 2.25 km2. For Russia, we could find no records of 
fracking wells on the internet. After using Google Earth to 
search oil fields in Siberia, we found what appeared to be 
fracking wells and downloaded WorldView-3 imagery from 
the GBDX server for manual curation as described above. 

Fig. 11 shows a map of the four regions and examples of 
the labeled training data from each region. Note the differences 
in the appearances of the wells. For example, Russian well 
pads are larger and more irregular than those of North 
America. Their access roads are also much wider. The wells of 
New Mexico are in the desert and exhibit much less seasonal 
variation than the other three regions. (For more information 
on fracking wells, see Refs. [10] and [17].) A total of 12,214 
wells from 4519 WorldView-3 images were identified and 
labeled. This required a total of 404 hours of manual labor. 
Table I summarizes the data curation. 

 

Fig. 11. Fracking wells were curated from Pennsylvania, Canada, New 

Mexico, and Russia. Examples of the curated images from the four regions are 

shown. (Satellite images: DigitalGlobe, Inc.) 

TABLE I.  GLOBAL DATA CURATION  

Dataset 
Number of 

Images 

Number of 

Wells 

Curation Time 

(hrs) 

Pennsylvania 1031 1521 110 

New Mexico 463 2801 62 

Canada 1603 5986 82 

Russia 1422 1906 150 

Total 4519 12,214 404 

 

After curation, we down-sampled the images by a factor of 
four to a size of 1250x1250 pixels and a GSD of 1.2 meters. 
We found that this reduced the inference execution time 
without significantly degrading the accuracy measures. We 
divided the training dataset into three subsets: training, 
validation, and test. The training dataset was used to train the 
ATR algorithm, and the validation dataset was used during 
training to ensure that the algorithm did not overfit to the 
training data. (Overfitting was avoided by monitoring the 
validation loss and the mAP on the validation data: when they 
plateaued, the training was halted.) After the training process 
finished, accuracy measures were computed from the test 
dataset. To avoid human bias in the selection of the test 
images, the software performed stratified sampling on the 
geographic regions, using a 70-20-10 split: 70% for training, 
20% for validation, and 10% for testing. Thus, a random 
sample of 10% of the images from each region was set aside 
and reserved for measuring the accuracy. Because of the large 
number of images in each region, the test set had a good mix of 
conditions in each region (e.g., snow cover and other seasonal 
variations). The test set comprised a total of 1312 wells taken 
from 452 images, which covered an area of 1017 km2. 

The precision-recall curve for the global results (i.e., all 
four geographic regions) is shown in Fig. 12. The recall, 
precision, F1 score, and mAP are shown in the table in the 
figure. The dashed light-blue line indicates a recall of 0.85. The 
dashed black curve indicates an F1 score of 0.80. The red star 
on the red curve indicates the maximum F1 score at which the 
accuracy measures are computed. We found that relaxing the 
localization constraint by decreasing the IoU from the 
conventional value of 0.50 to 0.20 improved the mAP.  

 

Fig. 12.  Accuracy measures (at the maximum F1 score) and precision-recall 

curve of the global results. The recall is 0.90, the precision 0.84, the F1 score 
0.87, and the mAP score 0.92. The star on the precision-recall curve marks the 

probability threshold at which the F1 score is maximized. 
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As can be seen, the maximum F1 score is 0.87.  At this 
detection threshold, the recall is 0.90 and the precision is 0.84.  
The mAP is 0.92. When the software is in operation, the user 
can tune the detection threshold to increase or decrease the 
number of detections. If a high recall is desired with little 
regard for false detections, the threshold can be decreased. 
Conversely, if a low false alarm rate is desired with less regard 
for low recall, the threshold can be increased. The software sets 
the default threshold to the maximum F1 score, which is 
marked by the star on the precision-recall curve. 

How does GATR perform on a region of the world it has 
never seen before? We performed a “blind test” by running the 
Faster R-CNN model on a set of 54 images from North Dakota. 
The dataset covers an area of 120 km2 and contains 44 wells. 
The region is marked on the map in Fig. 13 below, and the 
images show examples of the wells. 

The accuracy measures on North Dakota are comparable to 
the tested accuracy measures shown in Fig. 12. The recall is 
0.90, and the precision is 0.85.  The F1 score and the mAP are 
0.88. The precision-recall curve is shown in Fig. 14. 

 

Fig. 13.  Region of North Dakota where GATR was blind-tested. The images 

show fracking wells in this region. (Satellite images: DigitalGlobe, Inc.) 

 

Fig. 14.  Accuracy measures and precision-recall curve of the blind test on 

North Dakota fracking wells. The recall is 0.90, the precision is 0.85, the F1 

score is 0.88, and the mAP is 0.88. The star on the precision-recall curve 
marks the probability threshold at which the F1 score is maximized. Compare 

these results with those of Fig. 12. 

V. SOFTWARE OPERATION 

In this section we describe the operation of the GATR 
software. Fig. 15 shows the graphical user interface, which 
uses a tile map service from ESRI to provide world map data 
[22]. The user can pan and zoom to any region of the globe, 
draw a box around the area of interest, define an optional date 
and time constraint, specify an object type, and then search for 
these objects in WorldView-3 or Sentinel-2 imagery from the 
GBDX platform. The third image shows the results of a search 
for fracking wells in Pennsylvania, where the detections are 
shown as small green boxes. The user can zoom in for a 
detailed look at any of these detections, as shown in the last 
image. GATR saves the detections in a database along with 
metadata such as object type, date, time, sensor, and location. 

Fig. 16 shows the results of other searches. The top image 
shows the results of a broad area search of the entire state of 
Pennsylvania. On a single NVIDIA Titan Xp GPU, it takes 
only two hours to search 119,000 km2 and discover 3200 
fracking wells. This is a processing speed of 16.8 km2/sec (or 
more than 10 million pixels/sec). With two GPUs, the speed 
doubles to 35.3 km2/sec, and with four GPUs, it quadruples to 
68.8 km2/sec. The other images show the detections of fracking 
wells in Canada, New Mexico, and Russia. 

Fig. 17 shows a broad area search for aircraft. The first 
image shows a search box that is drawn over the Crimean 
Peninsula, which takes 12 hours to search. (The search rate is 
slower because of the higher image resolution needed to detect 
aircraft versus the lower resolution for fracking wells.) The 
user can zoom to any of the green detection boxes. The second 
and third images zoom in on a cluster of boxes at a Russian 
airbase, showing the detections of helicopters and aircraft. The 
fourth image zooms in on an isolated set of boxes that reveal 
an unexpected find: crop duster aircraft. 

Broad area search is useful for searching large geographic 
regions and detecting unexpected objects, such as crop duster 
airplanes in Crimea. GATR can also set up “watch boxes” for 
monitoring sites of interest. This is useful for indications and 
warnings (I&W), such as alerting the user to the arrival of 
ships at a port, detecting the departure of aircraft from an 
airport, or counting objects over time. 

VI. CONCLUSION 

In this paper we presented GATR, which is a modular, 
cloud-based software system for real-time object detection and 
classification in satellite imagery on a worldwide basis. GATR 
uses GPU-accelerated deep learning software to quickly search 
large geographic regions. The search time scales linearly with 
geographic area, and the search speed scales linearly with the 
number of GPUs. ATR is performed by accurate deep learning 
models, including RetinaNet and Faster R-CNN, which exhibit 
recalls of over 90%. Applications include broad area search, 
watch boxes for monitoring ports and airfields, and target 
characterization. GATR is extensible to new target types and 
handles radar and multispectral imagery. Currently we are 
developing a process of continual improvement in which 
feedback from analysts is incorporated in the automated 
retraining of the ATR algorithm. This online training function 
(Fig. 18) will be described in a future paper. 
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Fig. 15. Detection of fracking wells. The top image shows the GATR world 
map, and the second image shows the view after zooming to a region of 

Pennsylvania. After selecting fracking wells as the object type, pressing the 
“go” button, and waiting a few seconds, the user sees the detected results 

show up as green boxes (third image). The user can zoom to any of the 

detections for a closer look, as shown in the fourth image. 

 

 

 

 

Fig. 16. Broad area search and global scalability. The top image shows the 
results of searching the entire state of Pennsylvania for fracking wells. The 

search of this 119,000 km2 region took only two hours and detected 3200 
wells. The other images show the detections of fracking wells in Canada, New 

Mexico, and Russia. The detections are marked as small green boxes, and the 

view of Russia in the last image is zoomed in to show detail. 
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Fig. 17. Detection of aircraft. The top image shows the search box drawn on 

the Crimean peninsula. It takes 12 hours to search this large region in high-

resolution imagery. The detections are shown as green boxes. The second and 
third images show zoomed-in views of a cluster of green boxes at a Russian 

airbase. The last image shows a zoomed-in view of other, isolated detections. 

They turn out to be crop duster aircraft, an unexpected find. 
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Fig. 18.  Online training for continual improvement of GATR’s accuracy. 


