
TT-RecS: The Taxonomic Trace Recommender
System

Michael Unterkalmsteiner
Department of Software Engineering

Blekinge Institute of Technology
Karlskrona, Sweden

michael.unterkalmsteiner@bth.se

Abstract—Traditional trace links are established directly be-
tween source and target artefacts. This requires that the target
artefact exists when the trace is established. We introduce the
concept of indirect trace links between a source artefact and a
knowledge organization structure, e.g. a taxonomy. This allows
the creation of links (we call them taxonomic traces) before target
artefacts are created. To gauge the viability of this concept and
approach, we developed a prototype, TT-RecS, that allows to
create such trace links either manually or with the help of a
recommender system.

Index Terms—Traceability, Requirements, Domain-specific
Taxonomy, Recommender System

I. INTRODUCTION

Traceability from requirements specifications to downstream
artefacts has shown to lead to more efficient and correct soft-
ware maintenance [1], is a pre-requisite for requirements-based
testing [2], and in certain application domains a necessity to
demonstrate compliance to regulations [3].

However, manual creation and maintenance of trace links
is in practice often not feasible due to their number and the
complexity of information that needs to be maintained over
time. Many requirements management tools support manual
trace link creation or even automated trace link recovery.
However, none of them supports, to the best of our knowledge,
taxonomic traces, explained next.

II. TAXONOMIC TRACES

In systems and software engineering, a “trace” is often
defined as a triplet consisting of a source artefact, a target
artefact and a link associating the two artefacts [4] (Figure 1a).
We propose1 to introduce indirect trace links to a taxonomy
or similar knowledge organization systems such as controlled
vocabularies, taxonomies or ontologies (Figure 1b).

Before we delve into the technical solution we prototyped
with the Taxonomic Trace Recommender System (TT-RecS)
described in Section III, we illustrate the limitations of the tra-
ditional artefact-to-artefact trace link approach. Conceptually,
trace links connect artefacts along the following dimensions:
abstraction, structure and time.

1We do not claim novelty of this idea since, as far as we know, Noll and
Ribeiro [5] were first to outline in their position paper from 2007 on how to
enhance traceability using ontologies in the Unified Process.

a) Abstraction: Traced artefacts usually exist on different
abstraction levels of domain concepts. For example, a require-
ment may describe the capabilities of a bank account, while
a class BankAccount in an object oriented design provides
an implementation. Someone (or something, e.g. an algorithm)
that aims to establish a direct trace link needs to be able to
handle the difference in abstraction.

b) Structure: With the structure dimension we refer to
how information about domain concepts in different artefacts
is stored. For example, requirements are typically stored in
tools that support natural language text (word processors or
dedicated requirements management tools). Other artefacts
(design models, source code, test cases) are stored and man-
aged with different tool sets, specialized for the particular task.

c) Time: The time dimension refers to the fact that
artefacts typically are not created at the same time, making
it impossible to create trace links when the source artefact is
developed. For example, when a requirement is elicited and
specified, typically the implementation and test cases do not
exist yet2.

We briefly outline motivations why taxonomic trace links
(Figure 1b) address the above issues:

1) The abstraction level gap can be reduced as engineers
need only their domain expertise and their skills specific
to their profession. This might be less important for a
scenario with full-stack engineers of DevOps. However,
system and civil engineers are specialized and technical
domain experts, without necessarily being proficient in
design and implementation tasks. Hence, experts in the
problem and the solution domain respectively can create
trace links to a common knowledge organization struc-
ture, without the need to tap into unfamiliar knowledge
areas.

2) The structure gap can be bridged by a common taxon-
omy that connects information silos by removing the
need of direct interoperability. Profession specific infor-
mation management systems (for requirements, design
documents, source code) can be adapted to support
traces to knowledge organization structures (such as
a taxonomy) instead of directly supporting trace links

2Test driven- and behaviour-driven development are examples of means to
reduce this time gap.

ar
X

iv
:2

31
2.

07
09

3v
1 

 [
cs

.S
E

] 
 1

2 
D

ec
 2

02
3



Source
Artefact

Primary trace link direction

Reverse trace link direction

Target
Artefact

(a) Traditional trace link (adapted from [4]

Knowledge 
Organisation 
Structure

Source
Artefact

P
rim

ar
y 
tra

ce
 li
nk

 d
ire

ct
io
n R

e
ve

rse
 tra

ce
 lin

k d
ire

ctio
n

Target
Artefact

(b) Taxonomic trace link

Fig. 1: Traditional vs. taxonomic trace links

between myriads of different systems. This is especially
important for scenarios where engineering work is out-
sourced, and clients rely on trace links to perform de-
livery verification. Hence, knowledge organization struc-
tures represent a conceptual Application Programming
Interface (API) that information management systems
can implement independently, enabling interoperability.

3) The temporal gap is removed as engineers can create
trace links at the same time they create the artefact,
removing the necessity to recover trace links when
downstream artefacts become available. Furthermore,
the taxonomic trace links can be used to analyse the
artefact, for example in case of requirements for their
completeness or consistency. Hence, by benefiting the
creators of taxonomic trace links through their immedi-
ate usefulness, they provide intrinsic motivation and are
therefore more likely to be created at all.

While these benefits of indirect, taxonomic tracing are very
promising, they have, to the best of our knowledge, not yet
been evaluated in practice. We have therefore implemented
a prototype system, evaluated in a pilot experiment [6], and
present here its basic design and functionality.

Fig. 2: Example objects from CoClass

III. TAXONOMIC TRACE RECOMMENDER SYSTEM

TT-RecS is built on top of INCEpTION [7], a general
purpose text annotation platform that can be extended with
custom recommenders. INCEpTION allows importing knowl-
edge organization structures from RDF files or connect to a
remote knowledge base using SPARQL. Since we developed
TT-RecS in the context of a collaboration with Trafikver-
ket, the Swedish Transport Authority, we used the domain
specific taxonomy CoClass3 which organizes concepts from
the construction domain in a hierarchical taxonomy. Figure 2
shows an example of the imported data from CoClass in
INCEpTION’s knowledge base.

The recommender configuration (Figure 3) provides two
relevant options:

1) The threshold value for the recommendation confidence
(a value computed by the different predictors explained
in [6]). Recommendations with a lower value than
specified here are not shown.

2) The maximum number of rejects after which a sugges-
tion is not shown any more.

INCEpTION allows the user to import documents in dif-
ferent formats (plain text, JSON, HTML, PDF and different

3https://coclass.byggtjanst.se/about#about-coclass

Fig. 3: Recommender settings

https://coclass.byggtjanst.se/about#about-coclass


Fig. 4: Manually identified taxonomic traces through search

Fig. 5: Taxonomic traces identified by the recommender

NLP tool exchange formats). These documents can in turn be
opened in INCEpTION’s annotation interface.

Figure 4 shows an example where a document with a
requirement is opened without TT-RecS. The user must use
his/her domain knowledge, i.e. use the correct search terms,
to find the objects from CoClass that can be associated to the
requirement in question.

Figure 5, on the other hand, shows the same requirement
with CoClass objects suggested by TT-RecS. The user can
now either accept or reject the suggestions, based on the
information shown about the suggested CoClass object.

We have evaluated TT-RecS in a pilot experiment with
seven domain experts with varying experience in CoClass
and reading/writing requirements [6]. The goal of the pilot
was to validate the experiment instrument and get some
indication whether domain experts are able (with or without
recommender) to create taxonomic trace links. The main take-
away of that study is that the trace task was challenging,

independently of whether the recommender was used or not.
While this result was not encouraging, we are currently
improving TT-RecS and incorporate the lessons learned from
the qualitative analysis from the experiments results. We
conjecture that the main gain can be achieved by tuning the
recommendations such that they take the context of nouns
into account. Since the tracing task is challenging even for
domain experts, we conjecture that recommendation systems
are essential to make taxonomic traces practicable.

IV. DEMONSTRATION PLAN

Since the concept of taxonomic traces is novel, and as far
as we know not yet implemented in a tool, we preface our
demonstration with an explanation of the concept and pointing
out the differences and advantages w.r.t. traditional trace links.
Then we illustrate how to set up the demonstrator4 and point to

4Available here: http://doi.org/10.5281/zenodo.3827169

http://doi.org/10.5281/zenodo.3827169


the source code of TT-RecS that is under active development5.
The demonstration proper illustrates how to configure IN-

CEpTION with the recommender and import documents. We
then compare the manual creation of trace links using INCEp-
TION’s annotation interface with the recommender suggested
trace links.

V. CONCLUSIONS

We believe that our research will serve as a base for future
studies on taxonomic traces, in particular as we have developed
a working prototype that has been used in an experiment with
industry participants. While the precision of the recommender
needs to be improved, we think it is important to evaluate
novel ideas in realistic settings, early in the ideation process,
in order to gauge the practical viability of the idea.

REFERENCES

[1] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical
Software Engineering, vol. 20, no. 2, pp. 413–441, Apr. 2015.

[2] E. Bouillon, P. Mäder, and I. Philippow, “A Survey on Usage Scenarios
for Requirements Traceability in Practice,” in Requirements Engineering:
Foundation for Software Quality. Essen, Germany: Springer, 2013, pp.
158–173.

[3] G. Regan, F. McCaffery, K. McDaid, and D. Flood, “Traceability-Why Do
It?” in 12th International Conference on Software Process Improvement
and Capability Determination. Palma, Spain: Springer, 2012, pp. 161–
172.

[4] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed, P. Grün-
bacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder, “Traceability
Fundamentals,” in Software and Systems Traceability, J. Cleland-Huang,
O. Gotel, and A. Zisman, Eds. London: Springer, 2012, pp. 3–22.

[5] R. P. Noll and M. B. Ribeiro, “Enhancing traceability using ontologies,”
in Proceedings of the 2007 ACM symposium on Applied computing, ser.
SAC ’07. Seoul, Korea: Association for Computing Machinery, Mar.
2007, pp. 1496–1497.

[6] M. Unterkalmsteiner, “Early Requirements Traceability with Domain-
Specific Taxonomies - A Pilot Experiment,” in 28th IEEE International
Requirements Engineering Conference. Zurich, Switzerland: IEEE, Sep.
2020.

[7] J.-C. Klie, M. Bugert, B. Boullosa, R. E. d. Castilho, and I. Gurevych,
“The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented
Interactive Annotation,” in 27th International Conference on Computa-
tional Linguistics: System Demonstrations. Association for Computa-
tional Linguistics, Jun. 2018, pp. 5–9.

5https://github.com/munterkalmsteiner/inception

https://github.com/munterkalmsteiner/inception

