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Abstract—Requirements elicitation has recently been comple-
mented with crowd-based techniques, which continuously involve
large, heterogeneous groups of users who express their feedback
through a variety of media. Crowd-based elicitation has great
potential for engaging with (potential) users early on but also
results in large sets of raw and unstructured feedback. Con-
solidating and analyzing this feedback is a key challenge for
turning it into sensible user requirements. In this paper, we
focus on topic modeling as a means to identify topics within
a large set of crowd-generated user stories and compare three
approaches: (1) a traditional approach based on Latent Dirichlet
Allocation, (2) a combination of word embeddings and principal
component analysis, and (3) a combination of word embeddings
and Word Mover’s Distance. We evaluate the approaches on a
publicly available set of 2,966 user stories written and categorized
by crowd workers. We found that a combination of word
embeddings and Word Mover’s Distance is most promising.
Depending on the word embeddings we use in our approaches,
we manage to cluster the user stories in two ways: one that is
closer to the original categorization and another that allows new
insights into the dataset, e.g. to find potentially new categories.
Unfortunately, no measure exists to rate the quality of our results
objectively. Still, our findings provide a basis for future work
towards analyzing crowd-sourced user stories.

I. INTRODUCTION

In traditional Requirements Engineering (RE), techniques
like surveys, workshops, observations, and interviews are used
to gather stakeholder input and elicit software requirements [1].
Usually, these techniques are limited and can only be applied to
end-users within organizational reach [2]. With the emergence
of new data sources, this changes: Researchers have shown
different approaches to extract requirements from feedback
channels such as tweets or app store reviews [2[], [3]. Another
approach to gather a broad range of feedback is crowd-
sourcing [4]. In 2016, Murukannaiah et al. elicited 2,966
requirements for smart home applications from crowd work-
ers [5]. Such forms of user feedback can be used to identify,
prioritize, and manage requirements [6] for software products
and to increase user satisfaction [7]. However, automatic
techniques are necessary to derive useful insights the from
large amounts of raw data the crowd can produce [6]], [8],
[4]. This becomes even more apparent as the decision-making
process in requirements engineering shifts towards a more
data-driven approach [9]. The automatic analysis of crowd-
based requirements comes with some challenges, though, as
Murukannaiah et al. declared [8]. With our paper, we work on
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how to summarize crowd-acquired requirements automatically.
In our evaluation, these requirements are represented in the form
of user stories, which seem to be an appropriate form for crowd-
sourced requirements elicitation [10], [[11]. Our contribution
is a method to cluster requirements through the combined use
of topic modeling techniques and similarity metrics based on
word embeddings. The goal is to provide the basis for an
automatic solution that identifies groups of requirements or
features in crowd-sourced data. Existing work for automatic
requirements clustering is mostly based on Latent Dirichlet
Allocation (LDA), a statistical model that characterizes a
requirement by a distribution over certain latent fopics. In
contrast, we cluster user stories based on word embeddings
and distance measures. Although an objective and quantified
evaluation is not possible in our study setup due to a missing
ground truth, we conclude that a clustering approach based
on pretrained word embeddings and Word Mover’s Distance
(WMD) as distance measure produced the most promising and
interesting results in our setting.

II. BACKGROUND
A. The CrowdRE Dataset

With the intention to “facilitate large scale user participation
in RE”, Murukannaiah et al. [8]], [5] conducted an empirical
study on the Amazon Mechanical Turkl]_-] platform, resulting
in the CrowdRE dataset consisting of 2,966 crowd-generated
requirements for smart home applications.

The dataset was generated in two phases: First, 300 crowd
workers were asked to formulate requirements for smart home
applications in the form of user stories (As a [role], I want
[feature] so that [benefit]). The authors had to assign one of five
domains to the requirement (Energy, Entertainment, Health,
Safety, or Other). Additionally, an arbitrary number of free-text
tags could be added.

In the second phase, 309 additional crowd workers rated the
requirements of the first phase with regard to clarity, usefulness,
and novelty. For our work, the results of the first phase are
the primary data source since we want to extract topics based
on the textual data. Below, an exemplary requirement and its
annotated domain and tags is given:

Uhttps://www.mturk.com/
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Requirement:  “As a pet owner, [ want my smart home to let
me know when the dog uses the doggy door, so
that I can keep track of the pets whereabouts.”

Domain: Safety

Tags: Pets, Cats, Dogs

B. Latent Dirichlet Allocation (LDA)

LDA proposed by Blei et al. [12] is a generative probabilistic
model used to observe hidden groups of similar data called
topics within a dataset. The authors define a word as an item
from a vocabulary, a document as a sequence of words, and
a corpus as a collection of documents. The approach aims to
find a limited number of topics that are latent in the documents
of the corpus. To do so, it is assumed that each document
is a mixture of a limited number of latent topics with each
topic being modeled as the probability distribution over all
words in the vocabulary. Based on this generative model for a
collection of documents, the LDA approach uses backtracking
to find a set of topics that likely have generated the corpus.
Therefore, for a new document, it is possible to infer the
involved latent topics and assign a topic label [[13]. However,
LDA suffers from order effects [14] i.e. if the input data
is shuffled, different topics can be retrieved. This leads to
different results each time the algorithm computes the topics
and therefore introduces new challenges for subsequent text
mining algorithms. Additionally, being a probabilistic model,
LDA models describe the relationship between words as a
statistical relationship of occurrences without considering the
semantic information embedded in words [13]]. Therefore,
the similarity between words based on their meaning cannot
be discovered [15] which, in turn, can result in too broad
topics [13]].

C. Word Vectors and Word Embeddings

To overcome the introduced shortcomings, continuous space
neural network language models can be trained to capture
both the syntactic and the semantic regularities of language.
A common defining feature of such models is that each word
is converted into a high-dimensional real-valued vector (word
vector) via learned lookup-tables. A property of these models
is that similar words are likely to have similar vectors [16].

1) Word2Vec: Although several architectures for the com-
putation of word vectors exist [15], [L6], according to
Mikolov et al., none of these “architectures has been suc-
cessfully trained on more than a few hundred of millions of
words” [15], as they become computationally very expensive
with larger data sets. This also applies to the previously
mentioned LDA. Addressing this shortcoming, Mikolov et al.
propose two optimized neural network architectures for calcu-
lating word vectors at a significantly reduced learning time: the
Continuous Bag-of-Words (CBOW) model and the continuous
skip-gram model [15]].

The idea behind the CBOW architecture is to predict the
current word based on the context, whereas the Skip-gram
model predicts surrounding words given the current word [[15].
Both are shallow neural network architectures consisting of
an input layer, a projection layer, and an output layer [15],

[17]. Once the language model is trained on any of these
architectures, the projection layer holds a dense representation
of the word vectors, also called word embeddingﬂ These
embeddings preserve the syntactic and semantic information
of the words. Therefore, when displayed in vector space, it is
possible, to express these syntactic and semantic similarities
by vector offsets, where all pairs of words sharing a particular
relation are related by the same constant offset [[16].

2) Word Mover’s Distance: While word2vec is a sophis-
ticated approach when it comes to generating quality word
embeddings, the word vectors alone are not sufficient regarding
the task of topic modeling. Consider the two documents: “My
smart home should turn on my favorite music when I come to
my home.” and “My smart home shall play my most favored
songs when I arrive at my place.” The sentences basically
convey the same information. Plotting these sentences with
word embeddings, some of their vectors will even be close,
especially if word-wise similarity is given (e.g. the pairs <music,
songs> and <come, arrive> are close. The closeness of the
whole sentences, on the other hand, cannot be represented
in the word2vec model alone. To overcome this shortage,
Kusner et al. introduced Word Mover’s Distance (WMD) as a
word-based distance measure for whole sentences [18]]. Based
on previously created word embeddings (as for example those
from word2vec), the distance between two text documents
A and B is described as the minimum cumulative distance
that words from document A need to travel to match exactly
the point cloud of document B. Using this method, WMD
reaches a high retrieval accuracy while being completely free
of hyper-parameters and therefore straightforward to use.

III. RELATED WORK

When it comes to topic modeling, the LDA algorithm is the
most widely-used technique in recent approaches throughout
software engineering [14]. In the following, we will introduce
some LDA-based approaches and approaches based on word
embeddings.

Guzman and Maalej [[19] applied NLP and sentiment analysis
to extract software features from user reviews together with a
summary of the user opinions about each feature. To identify
high-level features, they used LDA on a set of features they
extracted from the reviews.

Galvis Carrefio and Winbladh [20] extracted word-based
topics from reviews and assigned sentiments to them through
a combination of LDA and sentiment analysis. Similarly,
Chen et al. [21] proposed AR-miner, a review analytics
framework for summarizing informative app reviews. The tool
first filters noisy and irrelevant reviews, such as ratings. Then,
it summarizes and ranks the informative reviews using topic
modeling (LDA and Aspect and Sentiment Unification Model
(ASUM)) and heuristics from the review metadata.

Another approach is presented by Asuncion et al. [22] who
propose a method that automatically records traceability links
and then performs topic modeling. The topic model is learned

Zhttps://www.tensorflow.org/tutorials/text/word_embeddings
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over the artifacts and allows a semantic categorization and
topical visualization of the system. The presented tools aid
users to analyze the semantic nature of artifacts and the software
architecture itself.

Another LDA-based approach is presented by
Barua et al. [23]. They use LDA to automatically identify
the main topics in the textual content of Stack Overflow
discussions. They additionally quantify how these topics
change over time to retrieve emerging trends and gain more
detailed insights into the needs of developers. A similar
approach is presented by Zhou et al. [24]]. They evaluated over
200,000 Wikipedia articles and as a second analysis applied
their LDA-based approach to a set of twitter messages from
10,000 users. They were able to retrieve articles as well as
twitter users that cover similar content. However, due to the
large amount of data, the LDA-approach turned out to be
computationally expensive.

While the above-mentioned approaches mainly focus on user-
generated content (user reviews, Stack Overflow posts), Hin-
dle et al. have applied LDA to extract topics from documented
requirements at Microsoft [25] and found that many topics
were relevant to features and development effort. Stakeholders
who were familiar with the requirements documents tended to
be comfortable labeling the topics and identifying behavior,
but those who were not showed some resistance to the task of
topic labeling.

In contrast to the above-introduced approaches, methods
based on recent neural probabilistic language models [26] have
shown that they are able to address the shortcomings introduced
by the LDA-based approaches. In particular, the already
introduced Word2Vec approach proposed by Mikolov et. al [13]]
is used by multiple other approaches to build upon. One of
these approaches is presented by Qiang et al. who propose
an embedding-based Topic Model (ETM) that uses semantic
knowledge from word embeddings to alleviate the problem
of very limited word co-occurrence information in short texts.
They claim that their method outperforms the state-of-the-art
methods, including LDA, on two real-world datasets.

Another approach, built upon word embeddings, that aims
to solve the problem of sparseness in terms of word co-
occurrences, is presented by Li et. al. [27]. They propose a
method that is particularly suited to perform topic modeling on
short texts by incorporating knowledge about word semantics,
learned from a large number of external documents.

Wu and Li [28] present an approach called Topic Mover’s
Distance (TMD), being a topic-based distance metric for doc-
uments, inspired by WMD. In their approach, each document
is considered to be composed of predefined topics and each
topic is denoted by a word cluster. These word clusters are
then expanded to a vector space in which TMD measures how
far topics need to travel from one document to another.

IV. PROPOSED APPROACHES

In this section, we present the three topic modeling ap-
proaches we use. Figure [T] shows an overview of the different
process steps for each approach, with Al - 3 signifying the
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Fig. 1. Overview of the analyzed approaches (Al, A2, and A3)
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Fig. 2. Distribution of domains within the user stories.

three approaches as detailed later in the respective chapters. We
published the code of the three approaches to enable replication
and reuseEl Before detailing the separate approaches, some
common processing steps are covered.

A. Dataset Preparation

For our topic modeling approaches, we only use the text of
the requirements without any ratings or user characterization
added to the data. We therefore extract the sentences of the
Crowd RE datasef] to construct our dataset.

Additionally, we need a measure to compare the proposed
approaches. For this purpose, we used the domains assigned to
the requirements in the corpus as labels. The domains are
separated into five groups: Health, Energy, Entertainment,

3https://github.com/firstdayofjune/aire-20
4https://crowdre.github.io/murukannaiah-smarthome-requirements- dataset/
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Requirement Sentence

As a home owner I want to be notified
when my energy consumption
(electricity, gas) is higher than usual.

REGEX Parser

As a home owner I want to be notified
when my energy consumption
electricity gas is higher than usual

Tokenizer

['As', 'a', 'home', 'owner', 'I', 'want',
'to', 'be', 'notified', 'when', 'my',

'energy', 'consumption', 'electricity',
'gas', 'is', 'higher', 'than', 'usual']

Remove Stopwords

['As', 'home', 'owner', 'I', 'want',
'notified', 'energy', 'consumption',
'electricity', 'gas', 'higher', 'usual']

Y

Remove Template Words

['notified',
'electricity',

'energy', 'consumption',
'gas', 'higher', 'usual']

Fig. 3. Processing an exemplary requirement sentence through our NLP
preprocessing pipeline.

Safety and Other. The Other category contains additional user-
defined, specific domains. For our study, we focus on the five
top-level domains. Figure [2] shows the distribution of domains
within the user stories. The Safety domain shows the most
associated requirements while the least represented domain,
Other, exhibits roughly half the number of requirements. Still,
the latter category contains about 400 requirements. Therefore,
there is no under-representation of any of the categories. This
labeling approach results in every requirement receiving a label
and the number of categories remaining rather small, as to not
over-complicate the supposed topics to be identified.

B. Natural Language Processing Pipeline

In order to condition the data for further processing, we
perform several Natural Language Processing (NLP) operations.
Our NLP pipeline is shown in Figure [3] with an exemplary
application to a requirement from the dataset.

As some of the requirements sentences contain special
characters, an initial data cleaning is necessary. We remove all
but alphabetic characters as they do not provide any semantic
value.

We apply tokenization to separate the requirements into
sequences of tokens [29]]. In our application, the tokens are
simply the single words separated by whitespace. Therefore, all

whitespaces and punctuation is removed from the requirements.
The tokenization yields a list of tokens per requirement. After
this step, the data exhibits 4,968 unique tokens.

Stopword-removal is applied to remove words from the
data that do not provide any semantic value [30]]. In addition
to the stopwords, we remove all template wordf] from the
requirements, as these are common to all requirements and
therefore do not provide information to distinguish different
topics. This reduces the size of the vocabulary, i.e. the number
of unique tokens, to 4,851.

C. Approach 1: LDA

The presented LDA approach is mainly introduced to serve
as a reference to the results of the two other neural network
approaches. In Figure [I] this approach is denoted as Al.

After initial preprocessing, Bag-of-Words (BoW) [13] is ap-
plied to transfer the requirements to a numerical representation.
Bag-of-Words is one of the basic techniques used to simplify
sentences or documents in numerical space. In this application,
a BoW vector is constructed for each requirement. Each vector
has the size of the vocabulary of the dataset, i.e. the number
of unique tokens in the dataset. For each requirement, there is
a count per token in the vector representing how often each
word in the vocabulary appears in the requirement.

Subsequently, a weighting scheme is applied to these BoW
vectors, precisely we chose the Term Frequency — Inverse
Document Frequency (TF-IDF) [31]. The term frequency is the
rating how often a specific term occurs in the text, as already
specified by the BoW vectors. The inverse document frequency
is a measure of how relevant a term is in relation to all samples
within the dataset [32]. For example, if a term occurs in every
sample of the dataset, it is assumed to not be very informative
towards differentiating samples. Very rarely occurring words
are assumed to exhibit more explanatory power.

With every requirement represented as a weighted vector,
an LDA is applied to identify the latent topics within the data.
As our labeling approach from Section [[V-A] introduces five
different labels to the requirements, we set the number of topics
to be detected by the LDA to the same value. Therefore, the
LDA produces vectors for the requirements containing the five
probabilities that a requirement belongs to one of the identified
topics. The resulting matrix is shown in Figure f(a)]

Lastly, we apply t-SNE [33], a dimensionality reduction
technique, to this matrix to get a 2-dimensional representation
for each requirement, which can be plotted.

D. Approach 2: Word Embeddings and PCA

In order for our approach to include semantic aspects of
the requirements, we apply word embeddings as introduced in
Section This approach is denoted in Figure [T as A2.

For the second approach we compare two different imple-
mentations, one with self-trained word embeddings and one
with pretrained ones. Our self-trained vectors are produced via
the skip-gram method proposed by Mikolov et al. [34]. We

SPredetermined template words in the Crowd RE dataset: as, smart, home,
owner, i, want, be, able.
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Fig. 4. Final representation of requirements for each approach before visualization.

construct 50-dimensional word vectors. This size is chosen
due to the limited size of the vocabulary in the dataset. Most
of the 4,851 words in the vocabulary only occur in the data
very seldom. We empirically determine the best results to be
obtained with a minimum word occurrence of five. i.e. all
words that appear less than five times in the data, are dropped
from the vocabulary and are not represented in the embedding.
This results in about 24 % (1,159) of words being incorporated
in the self-trained embedding.

With our dataset being relatively small and the created
embedding not capturing all the semantic regularities due to
the dropped words, we chose to also incorporate pretrained
vectors. We use the word embedding from the Google News
datasef®] trained on a set of about 100 billion words. Due
to the large embedding and the extensive training data, the
individual vectors exhibit 300 dimensions. We thus expect the
quality of these word vectors to be much higher and, therefore,
positively affect our topic modeling results, although we may
loose the domain-specificity of self-trained embeddings. Of
the 4,851 unique tokens in our data, 93 % (4517 tokens) can
be represented by the pretrained embedding. Tokens that are
not included in the provided embedding are dropped. However,
this loss in vocabulary only affects 13 % of the requirements,
with the majority only missing one word.

To subsequently process the data, we first create a matrix for
every requirement in the corpus by replacing each word with
its vector representation. Due to the different lengths of the

requirements, the resulting matrices have different dimensions.

We apply a PCA to reduce the different dimensions to the length
of the shortest requirement in the dataset, therefore producing
requirements matrices of equal dimensions. For the approach
with self-trained embeddings, the shortest requirement exhibits
only one token. Therefore, after this dimensionality reduction,
each requirement is represented as one 50-dimensional vector
already. For the approach applying pretrained embeddings, the
minimal requirement length is three tokens. Therefore, each
requirement is represented by three 300-dimensional vectors
in this case. We subsequently combine all these matrices to a
single matrix 7.

Shttps://code.google.com/archive/p/word2vec/

For the pretrained representation, the result is a 3-
dimensional matrix T° € R™*4%s where n 2966 is the
total number of requirements, d = 300 is the dimension of
the word vectors and s = 3 is the length of the shortest
sample in the dataset. To be able to later plot the results, we
concatenate all word vectors per requirement to receive one
vector representing each requirement. The resulting matrix has
dimensions 7" € R™*4*s,

Figure [4(b)] shows the form of the resulting matrix for the
approaches with self- and pretrained embeddings. Finally, the
matrices for each approach are processed via t-SNE to a reduce
the dimensions per requirement for plotting.

E. Approach 3: Word Mover’s Distance

As mentioned in Section the document- or sentence-
wise similarity cannot be captured by solely using word
vectors. Therefore, the third and final approach employs word
embeddings again but the subsequent processing is done with
the Word Mover’s Distance (WMD). This approach is referred
to in Figure [T] as A3.

As in the previous approach, we use and compare both
the self-trained embedding as well as the pretrained one. We
then apply the WMD to calculate the distances between the
requirements. The result is a distance matrix D € R™*", with
n being the total number of requirements (see Figure @(c)).
This matrix is subsequently reduced with t-SNE for plotting.
The assumption is that requirements that are similar, show
similar distances to all other requirements and are therefore
plotted closely as well.

V. RESULTS

We expect to find four different topics in the dataset,
one for each of the predefined application domains: Energy,
Entertainment, Health, and Safety. We also assume sentences
categorized as Other to be visible as noise in the results, as
these sentences may overlap topic-wise with the four concrete
domains. To visualize the outcome of each approach, we
transform the word embedded user stories into 2-dimensional
space using t-SNE. The marker colors and shapes follow
the application domain the user stories are associated with:
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Fig. 5. Results of approach Al: LDA with TF-IDF (plotted with t-SNE)

Health (purpleo), Entertainment (beige x), Energy (tealo),
Safety (cherry +), and Other (orange [J).

A. LDA

Figure [5] shows that the LDA approach results in separable
clusters. Also, some similarities between the requirements
plotted next to each other can be found. However, the clusters
do not show a strong overlap with the original domain labels.

B. Word Embeddings and PCA

As shown in Figure [6] we can identify two clusters in
both plots resulting from the combination of word2vec and
PCA for dimensionality reduction independent of the choice
of self-trained (Figure [6(a)) or pretrained (Figure [6(b)) word
embeddings. As with most machine learning techniques, it is
difficult to say why exactly our approach resulted in these two
clusters [35]. Different settings for the perplexity and learning
rate of the t-SNE do not change the number of clusters, at
least. To better understand our results, we thus look into the
plotted sentences and find the following:

1) Sentences with multiple words in common are plotted
close to each other.

2) Sentences with fewer words in common are plotted
further away from each other.

As a consequence of (1), we achieve good results for require-
ments that overlap in vocabulary (e.g. “As a home owner I
want Room thermostat sensor so that The room is optimal
temperature for an occupant” at (-58.033, 11.973) and “As a
home occupant 1 want Room thermostats so that Protect the
room temperature” at (-57.890, 12.276)). However, because
of (2), sentences that express related requirements in different
words are not clustered reliably. E.g. “As a home occupant
I want music to be played when I get home so that it will
help me relax” at (-24.767, 4.210) and “As a home owner I
want music to play whenever I am in the kitchen so that I can
be entertained while cooking or cleaning” at (53.929, 4.752).
We anticipated the latter findings due to the shortcomings

of word2vec to identify similar sentences as mentioned in
Section [[I-C2] Therefore, we cannot model the topics as desired.
Nevertheless, this approach delivers deeper insight into the
dataset and needs relatively little computation time, as the
results are available within a few minutes.

C. Word Embeddings and Word Mover’s Distance

We achieve the best results in our third approach, using
word2vec and WMD. Figure [/| shows the plotted distance
matrices we created, as described in Section Here, we
can successfully distinguish clusters both spatially and content-
wise. Using the self-trained word vectors, in Figure [7(a)] we
can see that the domains Entertainment (gray sentences around
(0,0)) and Energy (stretching from (0,-45) to (10,57)) can be
distinguished clearly. Also, a cluster predominantly consisting
of Health requirements is apparent in the region from (0,20)
to (70,45).

Judged by the domain categories only, the clustering with
our self-trained word vectors seems to yield better results.
But as manual inspection shows, the clustering based on the
Google News vectors also brings new insights into the dataset:
In Figure we can see a much clearer demarcation between
the clusters. Also, two new domains become apparent. Although
the sentences seem unrelated at first (told by the different label
colors), the leftmost cluster, namely the area between (-65,-5)
and (-40,40), mostly contains sentences related to parenting and
children. Furthermore, the topmost cluster between (-30,55)
and (0,70) contains requirement sentences about animals.
These results show that the dataset may be clustered into
different clusters than the 4 domain-based clusters we initially
anticipated.

VI. DISCUSSION
A. Limitations and Threats to Validity

The Crowd REdataset contains requirements in the form of
user stories. We assume that the structured form of user stories
may facilitate any form of automated analysis (see [36], [37]).
Although the formulations within the free-text parts of the user
stories are quite different in terms of length and used words,
we cannot say how the approaches would work when applied
to unrestricted natural language requirements.

Even though the Crowd RE dataset is too large to process the
requirements manually, it is relatively small for the application
of automatic topic modeling techniques: LDA is a technique
proven to work well on large documents. Short texts instead,
contain very limited word co-occurrence information. This
hinders the LDA to work well on short texts [38], as we have
also seen in our results.

The word2vec approach is impacted by the text length
as well, since the document similarity cannot be accurately
measured under BoW representations due to the extreme
sparseness of short texts. [39]]. Also, when working with word
embeddings, in general more data (as opposed to simply
relevant data) creates better embeddings [18]. As already
mentioned, to benchmark word2vec, Mikolov et al. trained their
tool on the Google News dataset with 100 billion words, so a
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Fig. 7. Results of approach A3: Word embeddings and Word Mover’s Distance (plotted with t-SNE)

dataset 2000 times the size of our dataset. This suggests, better
results may be possible using the same techniques on a larger
data set. However, the meaning of requirements usually depends
on the considered application domain [40]. Therefore, domain-
specific word embeddings may lead to better results [41]]. In our
case, however, we achieved the best results using a pretrained
general-purpose model. This may indicate that the advantages
of domain-specific word embeddings are overruled by the
disadvantages of the small dataset. For the future, it may be
interesting to use domain-specific word embeddings trained
on larger data sets (e.g. Wikipedia or news paper articles on
home automation).

All of our approaches associate a user story with a point in
a high-dimensional vector space. We applied dimensionality
reduction techniques (PCA and t-SNE) to be able to compare
the results of the approaches visually. Dimensionality reduction

techniques provide an approximation of the original data, which
may result in information being lost in the process [42]]. A more
precise analysis of clusters may be possible by clustering the
points directly in the high-dimensional space (e.g. by applying
k-means). We did that for some of our results and found that
the clusters generated by k-means are similar to the visually
distinguishable clusters in the 2-dimensional plots.

For a proper and quantified evaluation of our results, manual
work would be needed. To rate our findings, the dataset has to
be labeled properly. Consider the following example:

RE1 “As a home occupant I want music to be played when I
get home so that it will help me relax” (Health)

RE2 “As a home owner I want music to play whenever I am
in the kitchen so that I can be entertained while cooking
or cleaning” (Energy)



With our word2vec & WMD approach, these sentences are
plotted nearby, both located inside the central Entertainment
cluster in Figure We cannot say that RE1 is surely
assigned to the wrong domain, we consider a relationship to the
Entertainment cluster to be equally valid, though. Also, with
RE2 the Energy domain may have been selected accidentally, as
the domains are next to each other in the select box of the form
the crowd workers used when they created the requirements.
When manually reviewing the dataset to fix the labels, our
results could also be improved through generally cleaning
the dataset. Cleaned datasets have a much higher impact on
the training results of ML models than the optimization of
hyperparameters [43]], [44].

B. Future Work

Besides cleaning the data, future work can be done for cross-
validation and performance improvements: Li et al. also created
a classifier using WMD [39]]. Using their approach one could
create clusters on the Crowd RE dataset to compare the findings
with our results. Regarding performance improvements, the
calculation of the WMD matrix is relatively time-consuming.
Wu et al. propose a different distance measure for document
clustering, which, compared to the WMD, “can achieve much
lower time complexity with the same accuracy” [28]]. In a new
approach called Word Mover’s Embeddings, Wu et al. also
use pretrained word embeddings and were able to improve
the accuracy and the calculation effort when they tested the
approach on several benchmark text classification datasets [45]].

Finally, our work may be used in future attempts to crowd
source user requirements for input validation in a web service.
When continuously learning and storing the word vectors for
new requirements, it would be possible to already suggest
similar sentences to the ones a crowd worker is about to
enter, based on WMD. If the crowd worker obtains that his
submission overlaps with an existing sentence, they could up-
vote the existing sentence instead of submitting their sentence.
This would not only avoid duplication, but also help in data-
driven RE to identify frequently requested requirements without
the need for additional data processing.

VII. CONCLUSION

Acquiring requirements and requirements-related information
from crowd workers facilitates a user-centered RE process
and enables engineers to consider requirements form a broad
and heterogeneous set of potential users [4]. However, crowd-
sourced information or information from other user feedback
platforms are raw and unstructured. Automatic techniques are
essential to preprocess, filter, and analyze the large amount
of gathered information. In this paper, we have proposed
and compared three approaches for clustering crowd-sourced
requirements given in the form of user stories. A “classical”
approach based on Latent Dirichlet Allocation and two ap-
proaches based on similarity measures in vector space models
generated from different word embeddings. To the best of our
knowledge, a combination of word embeddings with Word

Mover’s Distance as distance measure has not been used for
requirements clustering.

Our main reference for evaluation was a mapping of user
stories to one of five domains, which was defined by the
authors of the user stories. In our evaluation, a combination of
a vector space model based on a pretrained word embedding
(word2vec) and WMD as distance measure resulted in the most
interesting results. Most interesting means that the approach
resulted in a reasonable number of clusters with good overlap
to the original domains. In some sample cases, the clustering
pointed to potential misclassifications by the authors.
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