
Using Machine Learning to Classify Test Outcomes
Marc Roper

Department of Computer and Information Sciences
University of Strathclyde, Glasgow, UK

Email: marc.roper@strath.ac.uk

Abstract—When testing software it has been shown that there
are substantial benefits to be gained from approaches which
exercise unusual or unexplored interactions with a system –
techniques such as random testing, fuzzing, and exploratory
testing. However, such approaches have a drawback in that
the outputs of the tests need to be manually checked for
correctness, representing a significant burden for the software
engineer. This paper presents a strategy to support the process
of identifying which tests have passed or failed by combining
clustering and semi-supervised learning. We have shown that
by using machine learning it is possible to cluster test cases
in such a way that those corresponding to failures concentrate
into smaller clusters. Examining the test outcomes in cluster-
size order has the effect of prioritising the results: those that
are checked early on have a much higher probability of being a
failing test. As the software engineer examines the results (and
confirms or refutes the initial classification), this information is
employed to bootstrap a secondary learner to further improve
the accuracy of the classification of the (as yet) unchecked tests.
Results from experimenting with a range of systems demonstrate
the substantial benefits that can be gained from this strategy,
and how remarkably accurate test output classifications can be
derived from examining a relatively small proportion of results.

I. INTRODUCTION

The importance of testing in the software development
life-cycle is widely acknowledged and several quite different
strategies exist to support the process. Amongst these are
approaches like random testing, fuzz testing and exploratory
testing, which seek to investigate in particular how a system
responds to less predictable and unplanned or unforeseen
events. A significant limitation of these approaches is that
unless a reliable test oracle exists for the system under test
(which is very unlikely), the outputs of the tests need to
be checked manually – a problem exacerbated by the fact
that these approaches tend to generate very large volumes of
tests. Consequently, techniques such as fuzzing are limited to
exposing very obvious automatically detectable failures such
as security vulnerabilities in the form of buffer overflows
and memory leaks (see the work of Miller et al. [1] for
example). The approach presented in this paper aims to make
such techniques viable for the detection of a much larger
class of faults by combining unsupervised and semi-supervised
learning.

II. OVERVIEW OF A TEST CLASSIFICATION STRATEGY

The test classification strategy consists of two phases:
1) Unsupervised learning (clustering) is used to create an

initial grouping of tests where the smallest clusters
contain a greater proportion of failures. Manual checking

of tests then focuses on these smallest clusters first as
they are more likely to contain failing tests.

2) Having checked a small proportion of the test outcomes,
semi-supervised learning is then employed to use this
information to label an initial small set of data and derive
automatic pass/fail classifications for the remainder of
the tests.

The combined effect of these is to create a far more efficient
process than just checking the outcome of every test in order.
Failing outputs are far more interesting than passing ones so
finding these earlier is both more important and cost effective.
Clustering creates a small subset of tests in which failures are
more prevalent, and using semi-supervised learning allows the
tester to focus next on those outputs considered to be failures.

In an earlier study [2] we explored a range of clustering
algorithms using either just test inputs and outputs, or inputs,
outputs and execution traces, and found that small (less than
average sized) clusters contained more than 60% of failures
(and often a substantially higher proportion). Moreover, as
well as having a higher failure density they also contained
a spread of failures in the cases where there were multiple
faults in the programs.

We have also explored the potential of semi-supervised
learning to classify faulty test cases (again using the same data)
using a variety of algorithms and found that the most reliable
approach came from using inputs, outputs and execution traces
along with a mixture of positive and negative labels (i.e.
passing and failing test cases) [3].

This paper represents the first step to explore how these two
results may be effectively combined.

III. AN ILLUSTRATIVE CASE STUDY

The case study is based upon several versions of the
NanoXML system which is available from the Software In-
frastructure Repository (SIR)1. NanoXML is an XML parser
written in Java and consisting of 24 classes and 5 versions
(version 3 is examined here, which has 7 faults and 169
supplied test cases), with error rates (the proportion of the test
cases which fail) in the range 31-39%. The inputs and outputs
to the system along with the execution traces are encoded
to make them more amenable to processing by the machine
learning algorithms (see earlier papers for details).

1http://sir.unl.edu/portal/index.php



A. Unsupervised Learning (Clustering)

The results of the initial clustering can be seen in figure 1
and show the spread of cluster sizes and distribution of failing
and passing tests. Different numbers of clusters were explored
and it was found that the best results were obtained when
the number of clusters was between 15-25% of the number
of test cases. The results here are for 15% of the number of
tests which resulted in 31 clusters being formed. As can be
seen there is a distinct tendency for the smaller clusters to be
dominated by failures.

Fig. 1. Clustering Results using Hierarchical Single Linkage

In this version there are 7 distinct failures and 4 of these
appear in the smallest clusters and a further 2 are revealed
once the clusters of size 4 are examined. By this point just 55
test cases will have been examined. For full details see [2].

B. Semi-Supervised Learning

In semi-supervised learning the learning algorithm is fed a
labelled subset of the data - instances for which the correct
classification is known - and uses this as the starting point
in the construction of a model which classifies the remaining
(unlabelled) data. There is a clear trade-off between the accu-
racy of the classifier and the volume of data used in training,
and the challenge is to build the most effective classifier from
the smallest amount of data. In the illustration here we look
at the impact of labelling just the data associated with the
smallest clusters (these are of size 1), and then increasing
this to observe the change in performance. The results of
this are shown in table I. The results show the cluster size
being considered (which includes all smaller clusters), the
proportion of data being labeled, the results in terms of the
confusion matrix, and the accuracy rate. The confusion matrix
is expressed in terms of true positives (TP: A passing test result
classified as passing test), true negatives (TN: A failing test
result classified as failing test) false positives (FP: A failing
test result classified as passing test) and false negatives (FN:
A passing test result classified as failing test). Accuracy is
just the proportion of tests outcomes which were correctly
classified.

The results for this case are particularly encouraging. Even
after examining and labelling the clusters of size one (just
8 test cases in this case) a classification accuracy of almost
64% is achieved. This increases to nearly 86% once clusters

TABLE I
THE IMPACT OF INCREASING LABEL SET SIZE ON SEMI-SUPERVISED

LEARNING

Cluster Data Confusion Matrix
Size Proportion (TP,TN,FP,FN) Accuracy
1 4.7% (39, 69, 0, 55) 63.9%
2 9.4% (57, 69, 0, 43) 74.6%
3 18.3% (76, 69, 0, 24) 85.8%
4 32.5% (49, 69, 0, 51) 69.8%
5 35.5% (47, 69, 0, 53) 68.6%
6 39.0% (45, 69, 0, 55) 67.5%

of size 2 and 3 are also included (another 23 tests, amounting
to 31 in total), and is based on less than 20% of the test cases
overall. However following this the accuracy drops. Curiously
this is caused by the emergence of 2 new failing test cases
in the next cluster which appears to cause passing tests to be
wrongly classified as failing.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a process for test classification based on
clustering and semi-supervised learning. Using an illustrative
case study we have shown how a remarkably accurate level of
classification can be achieved by first clustering (using their
inputs, outputs and execution traces), and then examining and
labelling them in cluster-size order. The impact of clustering
is to bring to the testers attention a diverse set of failing tests
which provides a good basis for the labelling on which semi-
supervised learning relies.

However, this is just an illustrative case study and by no
means generalisable, and other cases examined reveal variable
– but still encouraging – results. Future work will focus on
improving the accuracy of classification but primarily the
robustness and reliability. The main focus for this is the
definition of more sensitive distance measures for the input,
output and execution data. In this study we used euclidean
distance which does not recognise how close quite similar
attributes are – just that they are different. Another feature to
explore is the use of confidence measures in the classification
as further guidance to the tester.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
Dec. 1990. [Online]. Available: http://doi.acm.org/10.1145/96267.96279

[2] R. Almaghairbe and M. Roper, “Separating passing and failing
test executions by clustering anomalies,” Software Quality Journal,
vol. 25, no. 3, pp. 803–840, 2017. [Online]. Available:
https://doi.org/10.1007/s11219-016-9339-1

[3] ——, “Automatically classifying test results by semi-supervised
learning,” in 27th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada,
October 23-27, 2016, 2016, pp. 116–126. [Online]. Available:
https://doi.org/10.1109/ISSRE.2016.22


