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Abstract—In recent years, there has been an increased interest
in point cloud representation for visualizing digital humans
in cross reality. However, due to their voluminous size, point
clouds require high bandwidth to be transmitted. In this paper,
we propose a temporal interpolation architecture capable of
increasing the temporal resolution of dynamic digital humans,
represented using point clouds. With this technique, bandwidth
savings can be achieved by transmitting dynamic point clouds in
a lower temporal resolution, and recreating a higher temporal
resolution on the receiving side. Our interpolation architecture
works by first downsampling the point clouds to a lower spatial
resolution, then estimating scene flow using a newly designed
neural network architecture, and finally upsampling the result
back to the original spatial resolution. To improve the smoothness
of the results, we additionally apply a novel technique called
neighbour snapping. To be able to train and test our newly
designed network, we created a synthetic point cloud data set
of animated human bodies. Results from the evaluation of our
architecture through a small-scale user study show the benefits
of our method with respect to the state of the art in scene flow
estimation for point clouds. Moreover, correlation between our
user study and existing objective quality metrics confirm the need
for new metrics to accurately predict the visual quality of point
cloud contents.

Index Terms—Cross Reality, point cloud, temporal interpola-
tion, digital humans, scene flow estimation

I. INTRODUCTION

Cross Reality (XR), a collective term for a range of tech-
niques, such as Augmented Reality (AR), Virtual Reality
(VR), and Mixed Reality (MR), has seen in recent years a
surge of popularity, thanks to the technological innovations
that have made it possible to bring together the digital and
physical world. One representation that is frequently used in
XR technologies is that of a point cloud: a structure that
models volumetric visual data as a set of individual points
in space [1], [2].

Points clouds do not require 3D reconstruction to be
rendered, thus making them suitable for real-time systems.
However, due to their large volume of data, concessions have
to be made either in spatial resolution (the amount of points in
each frame) or in temporal resolution (the frame rate) in order
to match the bandwidth requirements of existing transmission
systems. Low frame rate sequences are generally considered to
be less pleasant to look at than higher frame rate sequences [3],
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and jerkiness is often perceived in them. Thus, simply reducing
the temporal resolution is likely to have a strong negative
effect on the Quality of Experience (QoE). However, temporal
interpolation can be used to increase the frame rate, by
predicting frames in between existing frames. It then becomes
possible to transmit or capture a point cloud sequence at a
relatively low frame rate, and perform temporal interpolation
on the other end of the channel in order to achieve the desired
frame rate. Such reconstruction can drastically reduce the
bandwidth requirements of streaming and capturing dynamic
point cloud sequences, allowing this bandwidth to be used for
transmitting higher spatial resolution.

In this paper, we are interested in how temporal interpolation
of digital humans, represented using point clouds, can be
achieved. In particular, the research question we aim to address
is how to effectively design a neural network architecture capa-
ble of performing temporal interpolation on point cloud data
representing humans. Temporal interpolation through neural
networks has been extensively used in 2D video coding [4].
However, performing temporal interpolation on digital humans
presents a unique set of challenges, which makes the adoption
of existing techniques particularly complex. Specifically, learn-
ing on point cloud data requires rethinking of common neural
network approaches, in order to be adapted for unstructured
data. Moreover, the high number of points composing a point
cloud, and the fact that such number is usually varying within
different frames of a dynamic sequence, may pose a challenge.
Some networks have been proposed that deal with learning
with point cloud data such as networks for classification and
segmentation [5], [6]. However, their approach might not be
suitable for our needs, as they were designed and optimized
with different tasks in mind. Notably, temporal interpolation of
human movement requires different approaches than for rigid
motion, which is where most of the previous research has been
focused [7]. In order to effectively learn the characteristics of
human movement, a large data set of dynamic digital humans
is needed. Yet, real-world dynamic point cloud data sets are
limited in availability. Furthermore, in order to implement a
supervised-learning solution, a reliable metric to estimate the
goodness of the performed interpolation is needed. Several
objective quality metrics for point clouds have been proposed
in the past; nonetheless, studies have repeatedly shown how
they poorly correlate with users’ perception [8].

In this paper, we report the design of a neural network



architecture that is capable of performing temporal interpo-
lation on dynamic point cloud sequences. In order to train
the network, we created a synthetic data set by applying
animations to models of human bodies. We compare our
results against the state-of-the-art in scene flow estimation for
point clouds. We also compare our results against the non-
interpolated input sequences, in order to analyze the benefit
of temporal interpolation. Lastly, we conduct a small-scale
user study for a subjective evaluation of our algorithm. Results
demonstrate that our method can be successfully used to
achieve temporal interpolation of digital humans, showing
clear gains with respect to state-of-the-art approaches in point
cloud scene flow estimation. To the best of our knowledge, this
is the first work focusing on performing scene flow estimation
for non-rigid human motion using point cloud representation.

II. RELATED WORK

Temporal interpolation has already been successfully used
in 2D video coding to increase the frame rate of existing
sequences. In particular, neural network-based approaches
have been adopted to tackle the problem [9]–[12], and now
represent the state-of-the-art in video frame interpolation [4].
However, traditional neural network approaches, like convo-
lution, are not always directly applicable on data that does
not exhibit a regular, grid-like structure, such as point clouds.
Several strategies have been implemented in the literature to
deal with learning on point clouds. Some of them involve con-
verting the irregular structure into an intermediate format on
which traditional learning techniques can be applied. Among
others, view-based methods generate a set of 2D views of the
input point cloud, on which 2D-based learning techniques can
be applied [13]. Similar to view-based methods, volumetric
methods can learn on point cloud data by first converting
the point clouds to an intermediate format. In their case, this
intermediate format is a volumetric representation, for example
an occupancy grid [5], [6] or a KD-tree [14].

Other methods have focused on learning directly on irreg-
ular point cloud data. PointNet [15] works by first feeding
all the input points through a shared Multi-Layer Perceptron
(MLP), creating a local feature vector for each point. Next,
a symmetric function (for example, max pooling) is applied
along the first axis, resulting in a global feature vector that
is invariant to the order of the input. In the case of the
classification network, this global feature vector is fed through
another MLP which then produces the output scores. In the
case of the segmentation network, the global feature vector is
concatenated to each of the points, which are then fed through
more MLPs to generate the output scores. This ensures that the
segmentation scores take into consideration both local features
and global features. Its successor, PointNet++ [16], leverages
local neighbourhood structure by first partitioning the input
sets into overlapping local regions, after which the original
PointNet architecture is used as a building block to extract
features from these local regions. This process is repeated hi-
erarchically to generate increasingly high-level features. While
PointNet++ achieved state-of-the-art results at the time, it still

uses PointNet, which means points in local regions are still
processed independently and, as a consequence, it does not
consider relationships among the points. Dynamic Graph CNN
(DGCNN) [17] aims at improving performance by applying
convolutions on both input points and local neighbourhoods,
which are constructed through a k-nearest neighbour graph.
PointCNN [18] uses k-nearest neighbour search and MLPs
to learn a transformation χ to weigh the input features and
permute the input points into a latent and potentially canonical
order. After the input points have been transformed using the
learned χ-transformation, convolution can be applied.

Learning on point clouds has been successfully adopted to
perform scene flow estimation, which can be used to achieve
temporal interpolation. FlowNet3D [7] uses convolution layers
from PointNet++ [16] to learn point features from two input
point cloud frames. The features are then merged using a novel
flow embedding layer, and the scene flow is refined through
an up-convolution layer. The network is trained with synthetic
scene flow ground-truth data, which proves to transfer well to
the real-world data from the KITTI scene flow data set [19].
However, the model is only evaluated on data featuring rigid
motions, thus not including local deformation. Rigid Scene
Flow [20] focuses on point clouds obtained from 3D LiDAR
scans. Again, the assumption is that all transformations are
rigid, and thus that there is no local deformation. This as-
sumption holds up for LiDAR scans, where the focus might
typically be on moving objects such as cars. While the algo-
rithm is also tested on non-rigid data, there is no convincing
comparison to other work.

III. INTERPOLATION ARCHITECTURE

The high-level overview of the interpolation architecture is
depicted in Figure 1. Two 6-dimensional point clouds, pc1
and pc2, each having spatial position and color information,
are fed to the network. As the interpolation network uses
nearest-neighbour search, and thus scales O(n2) with n points
in computation time, only point clouds of limited spatial
resolution can be used. For this reason, pc1 and pc2 are
first uniformly downsampled to nd = 2048 points each.
The interpolation network then takes the two downsampled
point clouds and estimates the corresponding scene flow. Next,
the scene flow estimation is upsampled back to the original
resolution using 3D interpolation. Lastly, a neighbour snapping
algorithm is applied to increase the smoothness of the scene
flow estimation.

In the following paragraphs, we will present the components
of our algorithm. Subsection III-A introduces the main com-
ponents of our interpolation network, subsection III-B details
the 3D upsampling algorithm, while subsection III-C focuses
on the neighbour snapping algorithm.

A. Interpolation network

The interpolation network is the central part of our archi-
tecture. It consists of two modules, namely point matching
and flow refinement, which compute the scene flow estimation
between two input point clouds.
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Fig. 1: High-level structure of the temporal interpolation architecture.

The point matching module takes as input two point clouds,
P = {p1, ..., pNp

} and Q = {q1, ..., qNq
}, and learns a soft

mapping between points from P to points from Q. That is,
it learns a weight wi,j for all pairs i ∈ {1, ..., Np} and j ∈
{1, ..., Nq}, where weight wi,j describes how much point pi
is matched to point qj . We impose that ∀i ∈ {1, ..., Np} |∑Nq

j=1 wi,j = 1. The weights are used to compute the first
scene flow estimation S:

S ←
{ Nq∑

j=1

wi,j ∗ (qj − pi)
}Np

i=1

(1)

To learn the weights, we first find for each point p in
pc1 the k-nearest neighbours, where k is a hyper-parameter
determining the neighbourhood size. Higher values of k mean
more neighbours have to be considered, and thus require
more computation power. Lower values of k mean smaller
neighbourhoods, making it less likely to find the true se-
mantically corresponding point, in which case the network
will likely not output a good scene flow estimation. After
empirical testing, the value k = 50 was selected, to provide
a good balance between computational complexity and robust
scene flow estimation. For each point pn belonging to the
neighbourhood of p, we select the features {p, pn, pn − p}.
The features p and pn provide information about the absolute
position of the points, whereas the feature pn − p provides
information about the relative position of the neighbouring
points. These features are fed through multiple MLPs. In the
last MLP layer, we use only a single filter, in order to obtain
an output of dimensions n1 × k. We normalize the sum of
outputs to 1 for each base point, and then use these values as
weight w to derive the estimated scene flow as described in
Equation 1.

The flow refinement layer takes as input one point cloud
P = {p1, ..., pNp

} with scene flow estimation S =
{s1, ..., sNp

}, and refines the scene flow estimation. Similarly
to the point matching layer, it does this by learning a set of
weights, where weight wi,j describes how much the refined
scene flow estimation of point pi will depend on the original
scene flow estimation sj . The refined scene flow estimation
S ′ is then calculated:

S ′ ←
{ Np∑

j=1

wi,j ∗ sj
}Np

i=1

(2)

The weights are learned by first applying EdgeConv [17]
to learn high-level features for each scene flow estimation, in
order to detect and correct outliers. After the EdgeConv layer,
two MLP layers are applied. Similarly to the point matching
module, the sum of outputs is normalized to 1 for each base
point, and the values are used as weight w to compute the
refined scene flow as described in Equation 2.

B. Upsampling

In order to obtain a high resolution scene flow estima-
tion, we upsample our low resolution estimation through
3D interpolation [16]. Given a high resolution point cloud
P = {p1, ..., pNp

}, the downsampled low resolution point
cloud P ′ = {p′1, ..., p′Np′

}, and the low resolution scene flow
estimation S ′ = {s′1, ..., s′Np′

}, we calculate the upsampled
scene flow estimation S as described in Equation 3. Here w is a
normalized inverse-distance weight function, assigning higher
weights to points that are closer, and Nk(pi) describes the
k-nearest neighbourhood of pi.

S ←
{ ∑

p′
j∈Nk(pi)

w(pi, p
′
j) ∗ s′j

}Np

i=1

(3)

C. Neighbour snapping

In order to provide more smoothness in the temporal in-
terpolation, we propose neighbour snapping, a technique that
makes an existing scene flow estimation fully-connected. The
pseudo-code of the algorithm is shown in Algorithm 1.

Considering two point cloud frames Pi and Pi+1, and
their estimated scene flow F i→i+1, to achieve forward-
connectedness, we find for each point in Pi the point in
Pi+1 closest to its scene flow target location, and let that
point be the new scene flow target location. Subsequently, to
ensure backward-connectedness, we find all points in Pi+1

that are not backward-connected yet, and we change their
spatial location to that of the nearest point in Pi. The scene
flow for these points is adjusted accordingly, so that the target
location remains the same.

IV. VALIDATING EXPERIMENT

In this section, we outline the procedure followed to evaluate
the performance of our architecture. Specifically, section IV-A
illustrates how we acquired the data set used for training and
testing, whereas section IV-B details how the training was
carried out. In section IV-C, the test conditions are presented,



Algorithm 1 Neighbour snapping

1: procedure SNAP(pc1,pc2)
2: for point p1 in pc1 do
3: target ← p1.xyz + p1.sceneflow
4: target_nn ← nearest_neighbour(pc2,
target)

5: p1.sceneflow ← target_nn.xyz −
p1.xyz

6: end for
7: for point p2 in pc2 do
8: nn ← nearest_backward_connected_
neighbour(pc2, p2)

9: p2.sceneflow ← p2.xyz +
p2.sceneflow − nn.xyz

10: p2.xyz ← nn.xyz
11: end for
12: end procedure

followed by a description of the objective quality metrics
and the user test in sections IV-D and IV-E, respectively.
Finally, section IV-F describes the results of the performance
evaluation.

A. Data set

Due to the lack of sufficiently large point cloud datasets
for training and evaluation, we created a synthetic data set of
animated human bodies, using the online service Mixamo1.
In Mixamo, it is possible to select one between a number of
default character models (or upload a new one), and apply
one of the many available animations. After, we used the 3D
animation software Blender2 to render the animations and to
obtain one mesh per frame. Finally, the meshes were converted
to point clouds by randomly sampling points from the faces of
the mesh. For instructions on how to use our data set, refer to
our Github page3. The training data set consists of 5 models,
each having 12 animations applied on them, for a total of 60
sequences. Each sequence ranges in length from 30 to 250
frames, for a total of 10 590 individual frames, giving 10 522
pairs of consecutive frames. Furthermore, data augmentation
was applied on the data, by flipping, scaling, rotating, shuffling
and subsampling the frames.

B. Training and hardware

The training of the network was split in two phases. In the
first phase, only the first module of the interpolation network,
namely the point matching layer, was trained; whereas in the
second phase, the flow refinement module was trained, after
freezing the weights from the point matching layer. The End
Point Error (EPE), defined as the average L2 distance between
the estimated and ground truth scene flow, was selected as
the loss function for both learning phases. Out of the 10 522
pairs of consecutive frames forming the dataset, 8152 pairs

1https://www.mixamo.com
2http://www.blender.org
3https://github.com/jelmr/pc temporal interpolation

(a) Ground truth (b) Estimated (c) Error

Fig. 2: Visualization of the ground truth scene flow (left),
along with the estimated scene flow (middle), and relative error
(right).

were used as training set, 500 for validation, and 1870 were
reserved for the test set.

The architecture was implemented in Python using the
Tensorflow framework, and is publicly available on Github3.
It contains modules for training, evaluation and inference. All
experiments were carried out on a machine equipped with an
Intel i7-7800X CPU running at 3.50 GHz, 16GB RAM, and
an NVIDIA GeForce RTX 2080 Ti.

C. Test conditions

In order to test our scene flow estimation algorithm, 8
additional sequences, obtained from 2 models with 8 unique
animations applied to them, were used. Namely, the anima-
tions Dancing, HipHop, LookingAround and WaveDance were
applied to the model shae, whereas the animations fight, roar,
samba and yelling were applied to the model malcolm. The test
sequences at full frame rate, 48 frames per second (fps), with
relative ground truth scene flows, were used as references for
the performance assessment. The sequences were reduced to a
lower frame rate (8 fps) to perform the temporal interpolation.

We compare the results of our temporal interpolation algo-
rithm to the state of the art in point cloud scene flow estima-
tion, namely Flownet3D [7]. The network has been retrained
using the same training data set used in our architecture. When
reporting their results, we apply their scene flow estimation
algorithm on the downsampled point clouds, since Flownet3D
cannot process large point clouds in reasonable time. Their
estimated scene flow is then fed to our upsampling and neigh-
bor snapping algorithm, to obtain the final result. Moreover,
in order to assess whether temporal interpolation would be
beneficial in improving the visual quality of the scene, we
assess our method against the low frame rate sequence, which
was used as input in both interpolation algorithms.

D. Objective quality evaluation

In order to evaluate the performance of our scene flow
estimation algorithm, several objective metrics were used.
In particular, the average EPE was computed between the
estimated and the ground truth scene flow (see Figure 2).



TABLE I: Objective metrics, computed on the original point
cloud size, with respect to the ground truth.

Low fps Flownet3D Ours

EPE 1.295 2.183 1.533
Accuracy (0.5 cm) 0.350 0.194 0.323
Accuracy (1.0 cm) 0.546 0.400 0.522
Accuracy (2.0 cm) 0.806 0.637 0.753
po2point_xyz_PSNR 56.18 53.01 58.35
po2point_rgb_PSNR 74.93 72.14 73.75
po2plane_PSNR 94.19 88.95 104.75
VIF (projection) 0.710 0.653 0.809

Furthermore, the accuracy was computed as the portion of
points for which the EPE is less than a certain threshold, in
our case fixed to 0.5, 1.0 and 2.0 cm. Accuracy ranges from
0.0 to 1.0, with a higher score being better. Moreover, several
point cloud objective metrics were taken from the literature.
In particular, the PSNR of the spatial component (xyz) and
the color component (RGB) of the point-to-point distortion
metric (po2point xyz PSNR and po2point rgb PSNR), and
the PSNR of the point-to-plane distortion metric were com-
puted between the original and interpolated point cloud frames,
whereas the VIF metric was used to compute the projected
distortion between original and interpolated frames [8].

E. Subjective quality evaluation

In order to better assess the performance of the algorithms
with respect to the ground truth, we performed a small user
study with 8 participants. Four categories were evaluated:
ground truth (original point cloud sequences at 48 fps), Low
fps (no interpolation at 8 fps), Flownet3D, and Ours, both
interpolating from 8 to 48 fps. Participants were shown
video sequences depicting pre-rendered dynamic point cloud
sequences, and were asked to rate the quality of the motion
of the video between 1 (terrible) and 7 (excellent). They were
instructed to focus on the quality of the motion, rather than
the visual quality of the model.

The Mean Opinion Score (MOS) was computed for each
sequence by averaging all the scores given by the subjects,
along with the Confidence Intervals (CIs) at 95% level. To
understand whether the performance of the algorithms with
respect to one another would bear statistical significance,
we additionally performed a one-sided Welch’s t-test at 5%
significance level, with the following hypotheses:

H0 :MOSA ≤MOSB

H1 :MOSA > MOSB ,

in which A and B are the algorithms under comparison.
The test was performed separately for each sequence. If the
null hypothesis were to be rejected, then it could be concluded
that algorithm A performed better than algorithm B for the
given sequence, at a 5% significance level.

F. Results

Table I summarises the results of the objective performance
assessment. It can be seen that for the metrics based on
scene flow error, i.e. EPE and Accuracy, Low fps is the

Fig. 3: MOS with relative CIs for each sequence. The asterisk
indicates statistical difference at 0.05 significance level.

clear winner, followed by the results from Ours. Regarding
point cloud metrics, values obtained with the point-to-point
metrics are very close, with ours being slightly ahead on the
spatial component, and Low fps again being ahead on the
color component. However, Ours has the best performance
when considering both the point-to-plane metric and the VIF
projection metric, which has been reported by Torlig et al. [8]
to have the strongest correlation with subjective user ratings
on point clouds of human bodies.

Results of the user evaluation for each test sequence are
shown in Figure 3. Results clearly show that state-of-the-
art algorithms for scene flow estimation, such as Flownet3D,
perform sub-optimally when given the task of interpolating
digital humans. The lackluster performance can be attributed
to the fact that the algorithm was designed for rigid mo-
tions, and adapts poorly to scene flow estimation for human
movement, even when trained with human motion sequences.
Our proposed algorithm is shown to outperform it for all the
sequences. Results also show that our method is considered
either equal or better than the Low fps solution. In particular,
the Low fps solution is never considered better than our
proposed method in a statistically significant way, whereas
our solution is rated as significantly better for 37.5% of the
contents, according to the Welch’s t-test applied on the scores.
Moreover, our solution is considered statistically equivalent
with respect to the ground truth for 25% of the contents.

V. DISCUSSION

In this section, the results presented in the previous section
are discussed and analysed. Specifically, in section V-A we
examine the correlation between objective metrics and user
perception. In section V-B, we debate on the use of transfer
learning for temporal interpolation on point cloud data. Finally,



TABLE II: Performance metrics computed between objective metrics and user scores, for each regression model. Best
performance for each model is highlighted in bold.

Linear Cubic

PLCC SRCC RMSE OR PLCC SRCC RMSE OR

EPE 0.439 0.347 1.131 0.625 0.547 0.471 1.053 0.750
Accuracy (0.5 cm) 0.382 0.413 1.163 0.750 0.387 0.413 1.160 0.792
Accuracy (1.0 cm) 0.358 0.342 1.175 0.667 0.483 0.409 1.102 0.792
Accuracy (2.0 cm) 0.403 0.325 1.152 0.583 0.594 0.547 1.012 0.708
po2point_xyz_PSNR 0.576 0.627 1.029 0.750 0.632 0.682 0.975 0.667
po2point_rgb_PSNR 0.373 0.412 1.168 0.792 0.537 0.492 1.061 0.583
po2plane_PSNR 0.636 0.660 0.972 0.750 0.645 0.666 0.962 0.708
VIF (projection) 0.575 0.620 1.030 0.583 0.641 0.612 0.966 0.667

in section V-C we clarify and discuss limitations and future
steps.

A. User perception and objective metrics

Results of the performance evaluation through objective
metrics are not in agreement with the data collected through
our user study. While the user study shows that the QoE of the
users can be improved by performing temporal interpolation,
results from the objective metrics would discourage such
an attempt, as the non-interpolated sequence often comes
as the top performing one. In fact, it might be considered
surprising that the Low fps approach (which simply repeats
the last frame) would achieve the highest score for scene
flow metrics. However, the phenomenon can be explained
when considering the actual meaning of scene flow error
metrics: calculate the average of some notion of error over
all points. In digital human motion, the largest movements
will likely be circumscribed to a subset of points (e.g., the
points forming hands or feet), whereas the majority of the
points are unlikely to present large motion (e.g., the torso).
Thus, the Low fps method, which sets the scene flow to 0,
will have a good performance on a large number of points,
which can dominate over the small amount of points with
large error. Results can then be justified considering that
non-rigid motion might lead to a large number of points
presenting small displacements, which skews the performance
of the metrics to favour conservative movement estimation.
Moreover, as temporal interpolation involves geometry more
significantly than color, it is justifiable that color metrics
such as po2point_rgb_PSNR would prefer the Low fps
approach.

To better understand the performance of the objective
metrics in predicting the user perception of temporal inter-
polation for point clouds, several performance indexes were
computed on the data. In particular, Pearson Linear Correlation
Coefficient (PLCC), Spearman Rank Correlation Coefficient
(SRCC), Root Mean Square Error (RMSE) and Outlier Ra-
tio (OR) were chosen to account for linearity, monotonic-
ity, accuracy and consistency, respectively, following ITU-
T Recommendations P.1401 [21]. Linear and cubic fitting
was applied on the results of the objective metrics before
computing the indexes. Ground data results were excluded
from the computation.

Results from the performance indexes are summarised in
Table II. It can be observed that all metrics seem to correlate
poorly with the results of the user study. In particular, scene
flow error metrics, such as EPE and Accuracy, present very
low correlation indexes, for both regression models. Metric
po2point_rgb_PSNR also seems ill-suited to predict the
visual quality of temporally interpolated point clouds. Among
the point cloud geometry metrics, po2plane_PSNR appears
to be the one that better correlates with the results of the user
study, although the values obtained (PLCC of 0.645 and SRCC
of 0.666 for cubic regression) are far from optimal.

Figure 4 depicts the PLCC and SRCC indexes computed
between pairs of objective metrics, for linear and cubic fitting.
As could be expected, scene flow error metrics are closely
correlated. However, their correlation with point cloud metrics
is not as high. In fact, for the two best-performing metrics in
terms of correlation with user scores, the performance indexes
indicate a level of disagreement with scene flow error metrics.

B. Reusability of network architecture

In the context of deep learning, transfer learning (i.e.,
reusing a model developed for one task as a starting point
for completion of another task [22]) is often used to exploit
well-know trained networks to achieve good performance.
Many tasks lend themselves well to transfer learning. In the
context of point clouds, for instance, many classification and
segmentation solutions share the same core architecture, and
vary only in the last couple layers. Examples of such solutions
are PointNet [15] and DGCNN [17].

However, reusing such architectures to perform temporal
interpolation led, in our experience, to poor results. This could
be due to the fact that classification and segmentation are tasks
that demand high level inference: the network will need to
aggregate the local information of individual points into higher
level features, which can then be used to classify or segment
the point cloud. In the case of temporal interpolation with non-
rigid motion, however, the local features play an important
role, as different sets of points will exhibit different motion
behaviour. This could explain why architectures that focus on
inference of high level features do not show good performance
when tackling the problem of temporal interpolation of human
motion. Even the Flownet3D [7] architecture, which has
been designed for scene flow estimation, does not perform
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(b) PLCC, Cubic fitting.
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(c) SRCC, Linear fitting.
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(d) SRCC, Cubic fitting.

Fig. 4: Correlation coefficients computed between the objective metrics, for each regression model.

well on our data set of human bodies. We suspect this is
because Flownet3D has been designed and evaluated for scene
composed of multiple objects with rigid motion. Such data
sets would require to separate the objects using segmentation,
and then to estimate the motion of each object. Thus, when
applying Flownet3D to non-rigid motion, the network will
attempt to move the entire human body in one direction,
leading to poor performance.

C. Future work

One of the main issues we faced in training a neural network
architecture for temporal interpolation is the limited availabil-
ity of public dynamic point cloud data sets representing human
characters. In order to train a convolutional neural network,
large amounts of data are needed. To solve the issue, we
created our own synthetic data set, which allowed us to train
and evaluate our architecture. However, the point clouds in

our synthetic data set inevitably have different properties than
real-world captured point clouds may have. For example, in
our data set, each point in a frame has a unique one-to-one
mapping to another point in other frames (that is, each point
has exactly one semantically corresponding point in other
frames). In real-world data sets, this will generally not be
the case. Moreover in our data set, points will never change
color, as they will only be translated spatially, whereas in real-
world data sets colors are likely to change, for example due
to variable lighting conditions.

The performance of neural networks depends on the type
of data that is used in the training process. In our particular
case, using a synthetic data set might lead the network to
exploit the simplification brought by the properties of the data
set, and thus not to learn how to interpolate real-acquired
point clouds. Larger data sets of digital humans, acquired in
a variety of settings, including different types of motions and



variable lightning conditions, are thus needed to improve the
performance of temporal interpolation architectures.

It is worth mentioning that scene flow error metrics, which
were used to train our network, exhibit very low correlation
with respect to the data gathered from the user study. In
fact, the metrics seem to be overly conservative, as can be
demonstrated by the Low fps solution being preferred for this
type of metric. In order to counteract the effect of the metric,
the training of our network was split in two separate phases
(point matching and flow refinement), as training it in one
step was preventing the point matching layer from learning
properly.

More generally, the performance of neural network ap-
proaches will be affected by the choice of the loss function
used to train it. Considering that none of the objective metrics
considered in this study presented strong correlation with
users’ perception, it becomes apparent that existing metrics
might not suitable to approximate the QoE of temporally in-
terpolated human motion. Thus, adopting them in the training
process of neural network approaches might lead to visually
unpleasant results. New metrics need to be designed to better
predict the visual quality of dynamic digital humans, in order
to lead to better performing temporal interpolation networks.

VI. CONCLUSIONS

In this paper, we report the design of an architecture capable
of performing temporal interpolation on dynamic point clouds
representing digital humans. By transmitting point clouds in
a lower frame rate and successively upsampling their frame
rate using such an architecture on the receiving side, the
bandwidth requirements of streaming dynamic point clouds
can be reduced. Results of our performance evaluation show
that temporal interpolation seems to be a promising solution to
improve the QoE of digital humans. Further steps need to be
implemented in order to improve the performance of existing
algorithms, in order to achieve an acceptable QoE. We also
show that objective metrics fail at capturing how users perceive
temporal interpolation for digital humans. This is a particularly
critical issue, since objective metrics are needed in order
to train and evaluate interpolation architectures; the wrong
choice of metric can thus lead to very unpleasant results. New,
improved metrics are needed to successfully estimate the QoE
of the interpolated sequences.

ACKNOWLEDGMENT

The work presented in this paper is based on the master the-
sis of Jelmer Mulder, which can be found in full at the follow-
ing link: https://github.com/jelmr/pc temporal interpolation.
This paper was partly funded by the European Commission as
part of the H2020 program, under the grant agreement 762111,
“VRTogether” (http://vrtogether.eu/).

REFERENCES

[1] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokua, S. Lasserre, Z. Li, J. Llach, K. Mammou,
R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis,
and V. Zakharchenko, “Emerging MPEG Standards for Point Cloud

Compression,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 1, pp. 133–148, March 2019.

[2] R. Mekuria, K. Blom, and P. Cesar, “Design, Implementation, and
Evaluation of a Point Cloud Codec for Tele-Immersive Video,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 27,
no. 4, pp. 828–842, April 2017.

[3] A. Banitalebi-Dehkordi, M. T. Pourazad, and P. Nasiopoulos, “The Effect
of Frame Rate on 3D Video Quality and Bitrate,” 3D Research, vol. 6,
no. 1, p. 1, Dec 2014.

[4] H. Men, H. Lin, V. Hosu, D. Maurer, A. Bruhn, and D. Saupe, “Technical
Report on Visual Quality Assessment for Frame Interpolation,” arXiv
preprint arXiv:1901.05362, 2019.

[5] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Net-
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2015, pp.
922–928.

[6] T. Le and Y. Duan, “PointGrid: A Deep Network for 3D Shape
Understanding,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[7] X. Liu, C. R. Qi, and L. J. Guibas, “FlowNet3D: Learning Scene Flow
in 3D Point Clouds,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[8] E. M. Torlig, E. Alexiou, T. A. Fonseca, R. L. de Queiroz, and
T. Ebrahimi, “A novel methodology for quality assessment of voxelized
point clouds,” in Applications of Digital Image Processing XLI, vol.
10752. International Society for Optics and Photonics, 2018, p.
107520I.

[9] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 670–679.

[10] ——, “Video frame interpolation via adaptive separable convolution,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 261–270.

[11] S. Niklaus and F. Liu, “Context-aware synthesis for video frame inter-
polation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1701–1710.

[12] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super SloMo: High Quality Estimation of Multiple Inter-
mediate Frames for Video Interpolation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
9000–9008.

[13] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
Convolutional Neural Networks for 3D Shape Recognition,” in 2015
IEEE International Conference on Computer Vision (ICCV), Dec 2015,
pp. 945–953.

[14] R. Klokov and V. Lempitsky, “Escape From Cells: Deep Kd-Networks
for the Recognition of 3D Point Cloud Models,” in The IEEE Interna-
tional Conference on Computer Vision (ICCV), Oct 2017.

[15] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[16] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 5099–5108.

[17] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic Graph CNN for Learning on Point Clouds,” arXiv
preprint arXiv:1801.07829, 2018.

[18] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Con-
volution On X-Transformed Points,” in Advances in Neural Information
Processing Systems, 2018, pp. 828–838.

[19] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3061–3070.

[20] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard, “Rigid scene flow
for 3D LiDAR scans,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 1765–1770.

[21] ITU-T P.1401, “Methods, metrics and procedures for statistical eval-
uation, qualification and comparison of objective quality prediction
models,” International Telecommunication Union, July 2012.

[22] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.


