Brock University

Department of Computer Science

Epistasis in Multi-Objective Evolutionary Recurrent Neuro-
Controllers

Mario Ventresca and Beatrice Ombuki-Berman
Technical Report # CS-06-06
November 2006

Brock University

Department of Computer Science
St. Catharines, Ontario

Canada L2S 3A1
www.cosc.brocku.ca

Epistasis in Multi-Objective Evolutionary Recurrent
Neuro-Controllers

Mario Ventresca and Beatrice Ombuki-Berman

Abstract— This paper presents an information-theoretic anal-
ysis of the epistatic effects present in evolving recurrent neural
networks. That is, how do the gene-gene interactions change as
the evolutionary process progresses and what does this reveal
about the problem difficulty. Also, to what end does the envi-
ronment influence epistasis. Our investigation concentrates on
multi-objective evolution, where the major task to be performed
is broken into sub-tasks which are then used as our objectives.
Our results show that the behavior of epistasis during the
evolutionary process is strongly dependant on the environment.
The experimental results are presented for the path finding robot
application using continuous-time and spiking neuro-controllers.

Index Terms— Epistasis, spiking, continuous-time, recurrent
neural network, multi-objective, evolutionary algorithm.

I. INTRODUCTION

ARIOUS neural network models have been successfully

utilized as controllers for autonomous robots. However,
due to their connectivity, neural network weights are inherently
dependant on each other to achieve the desired output. In a
neuro-evolutionary scenario the influence of this dependence
on the problem difficulty is not very clear. Furthermore, the de-
gree to which this dependence changes as evolution progresses
is also not quite understood. This paper provides some insight
into these questions from the standpoint of epistasis.

With respect to evolutionary algorithms, epistasis refers to
the influence of interacting genes on the overall fitness of the
genotype [1]. As such, epistasis plays an important role on
the search difficulty of a problem. Generally, higher degrees
of epistasis imply a harder search. In evolutionary robotics and
embodied cognition, neural networks are encoded into chro-
mosomes so that they may be evolved. Therefore, the weight
dependence will be visible as epistatic interactions within the
chromosomes. So, we may apply epistatic metrics to evaluate
the difficulty of searching for quality neuro-controllers.

A popular choice of neuro-controller is based on
continuous-time [2] or spiking recurrent models [3]. These
models are capable of accounting for temporal effects and
thus do not exhibit purely reaction-based behaviors. That is,
they also take recent actions into account before acting on the
current input signal. We will concentrate on these models in
this paper.

Recently, multi-objective techniques such as Pareto rank-
ing [4] have been utilized in the evolutionary robotics and

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC)

M. Ventresca, Department of Systems Design Engineering, University of
Waterloo, Waterloo, ONT, Canada (email: mventres @pami.uwaterloo.ca)

Dr. B. Ombuki-Berman, Computer Science Department, Brock University,
St. Catharines, ONT, Canada (email: bombuki@brocku.ca)

embodied cognition communities. For example, [5] and [6]
utilize this technique to simultaneously evolve the neuro-
controller and morphology of multi-legged robots. The goal is
to minimize the controller size while maximizing the robots
locomotion distance. This paper differs in that we maintain
a fixed architecture, and instead investigate multiple sub-
objectives of a larger goal. For example, in order for a robot
to quickly traverse through a maze it must be able to move
forward, move quickly and avoid walls.

The remainder of this paper is as follows: Section II briefly
describes the Pareto ranking strategy, Section III will discuss
the information-theoretic measures of epistasis. Section IV
introduces continuous-time and spiking recurrent neural net-
works. Our experimental setup is outlined in Section V and
the results are presented in Section VI. Our conclusions and
directions for future research are given in Section VII.

II. MULTI-OBJECTIVE EVOLUTION

A multi-objective problem is one where the solution is
composed of two or more objectives or goals which may
interact in a constructive or destructive manner. While various
approaches exist to incorporate this notion into evolutionary
algorithms, we will utilize Pareto ranking [4].

The underlying idea behind the Pareto ranking fitness evalu-
ation strategy is to preserve the independence of the individual
objectives. This is accomplished by stratifying the current
population of solutions into ranks whereby lower ranks store
more desirable solutions. In order for a solution to occupy a
lower rank it must be clearly superior (i.e., non-dominated)
to the others in all dimensions of the problem. Solutions that
occupy the same rank are considered indistinguishable from
each other. A definition of the notion of dominance as given
by [7] for any two solutions S; and S5 is:

1) The solution S; is no worse than S5 in all objectives,
mathematically stated as f;(S1) £ f;(S2) V objectives
j=1,2,..M, where f; represents the fitness of the jth
objective.

2) The solution Sy is strictly better than S5 in at least
one objective, mathematically, 37 € 1,2.., M such that
fi(51) < £;(S2).

If these conditions are satisfied, then it is said that S;
dominates Sy and S7 must occupy a lower rank. Conversely,
if these conditions are not satisfied then S; does not dominate
S5. Those solutions in the lowest rank are said to be non-
dominated.

III. INFORMATION-THEORETIC EPISTASIS METRICS

In order to perform our analysis we utilize the information-
theoretic measures described below (as proposed by Seo et al

[8]). These metrics quantify the significance of a single gene,
epistasis between pairs of genes and for the whole problem.
A more detailed description of the required computations are
presented in Appendix A.

A. Gene Significance

This measure aims to quantify the contribution of of each
of the n genes of S; for ¢ = 1,...,n to the fitness of the
solution f(S). This is interpreted as the amount of information
I(S;; £(S)) that the i*" gene of a solution reveals about the
fitness and is calculated by

. _ 15 1(5)
TIHES)

The denominator H(f(S)) calculates the entropy over the
marginal distribution of possible fitness values of f(S) and
scales &; to a range of [0, 1]. A gene significance value close
to 0 implies that the gene contributes very little to the fitness.
Conversely, a value close to 1 indicates that the fitness is
greatly influenced by the gene.

If a single gene S), has a value near 1 and all others are
all close to 0, then the other genes may be not needed. This
is because the fitness is very dependant on the value of Sj.
It may be possible to use this measure to shorten the solution
representation, although not done so here.

(D

B. Gene Epistasis

While the gene significance is concerned with an individual
gene’s contribution to the overall fitness, the gene epistasis
measure concentrates on pairs of genes. This is interpreted as
the amount of information I(.S;, S;; f(.5)) that any two genes
S; and S; reveal about the fitness of S, where

1(S;,S;: £(S)) = ZI(SiZf(S)‘Sl'“Si—l)
= I(S0: £(S)) + 1(S; £(S)IS0).

Then, the amount of epistasis between the two genes is
calculated by

TS50 i 1(5:, 85 £(8)) # 0
0, otherwise
(2)

This value exists on the range [—1,1]. When ;; > 0 it is
said that the genes S; and S; exhibit a constructive epistatic
relationship, meaning they interact constructively with each
other. On the other hand if ¢ < 0 the genes interact in a
destructive manner. When the gene epistasis is O the two genes
are mutually independent.

{ 1 — LS f(5))HI(55:/(S))
€ij =

C. Problem Epistasis

As a measure of the epistasis of the problem itself, the sum
of the absolute value of all the gene epistasis values is used.
The problem epistasis 7 is then calculated by equation 3.

1 n
U:m22|€ij|- 3)

i=1 j<i
This value is bounded below by 0 and 1 from below and

above, respectively. Values of 7 closer to 1 indicate a highly
epistatic problem.

IV. NEURAL MODELS

Our experiments will concentrate on two recurrent neural
network models, namely continuous-time [9] and spiking [3].
The main difference between the two models lies in the
method in which data is encoded and signals are transmitted
between neurons. Spiking networks use a spike-encoding,
whereas continuous-time models use a rate-encoding scheme
which approximates a spike-encoding [3]. Nevertheless, both
models have been successfully utilized in evolutionary systems
for adaptive behavior tasks [2] and [10].

A. Continuous-time Model

Continuous-time recurrent neural networks (CTRNN) are
composed of dynamical neurons, whereby the rate at which
their activation changes is dependant on a time constant 7 >
0. Furthermore, each neuron acts as a leaky integrator, such
that input increases the neuron’s action potential which slowly
degrades over time. In this manner, a neuron is influenced by
its previous state(s). The state of a neuron is characterized
by both its previous activation and its current output which is
dependant on the type of activation function. Therefore, the
purpose of the time constant 7; is to determine the rate of
change of the neuron’s state. This process is summarized as

1 N

vi= | v + ;wijg(yj +0;) + I; “)
where v; represents the activation potential for the i*" neuron.
The activation function o(-) takes each ;" incoming signal
and its bias 6; as input. Additionally, real-valued external
input I; can be provided to the neuron as well. For this work
we utilize the common logistic function (5) as each neuron’s
activation.

1
ofz) = 1+e®

It has been shown by Funahashi and Nakamura [11] that
CTRNNSs are universal approximators of any real-valued func-
tion.

&)

B. Spiking Model

Spiking recurrent neural networks (SRNN) attempt to utilize
a more biologically realistic data encoding and signal trans-
mission approach [3]. It has been argued that these types of
networks are better suited for applications where the timing of
signals is important [12]. It has been mathematically shown by
Maass [13] that networks of spiking neurons have considerably

more computing processing power than similarly sized non-
spiking networks. However, this does not imply that non-
spiking models are obsolete.

Since their inception many variations on spiking neuron
models have been proposed but we have focus on the Spike
Response Model [14]. According to this model, a neuron is
solely represented by its membrane potential v; at time ¢.
When the membrane potential reaches the neurons threshold
level 6, the neuron will fire, represented as tzf . The set of all
firing times of the i*" is defined as its spike train, represented
as

Fi={t{:1< f <n} = {tlu(t) = 0}. (6)

The actual spike is a function of the synaptic delay A,
synaptic time constant 75, and the membrane time constant
Tm. Here we model each spike according to equation (7),
where adjusting the respective constants causes the shape of
the function to change.

s=4A s=A .
5(8):{67'7n ~(1_€ Ts)’ if s ZA (7)
0, otherwise

A plot of this function is shown in Figure 1 for A = 1,
7, = 10 and 7, = 4.

0.14

Action Potential

0.02r

Millizeconds

Fig. 1: The behavior of an action potential.

After emitting a spike, the neuron enters the absolute
refractory period, which lasts for €} time units. During this
time it is impossible for the neuron to evoke a spike. After
this period, the neuron enters a state of relative refractoriness
during which it becomes increasingly likely that it can fire.
A common method to model this behavior is presented in
equation (8).

m&={_%m’ﬁs>9 ®)
otherwise

where s = (t — tf) represents the difference between the

current and spike times, respectively, while 7, is a membrane

time constant. Figure 2 shows a plot of the refractory periods.

Refractory Value

03

04f

1 1
1] 5 10 15 20 25

Milliseconds

Fig. 2: The absolute and relative refractory periods.

By combining equations (7) and (8) we can describe the
dynamics of the i*" neuron having several incoming connec-
tions. Each of the incoming signals is given a weight w; € .
Thus, the membrane potential can be described as

vi(t) = ZUJ;ZQ(SJ)‘FZ’]L(&))
J f f

So, if v; > 6 the neuron will evoke a spike and the neuron
will enter the refractory stages. In this paper, we allow each
kth synapse to have its own time constant, 75, as well as
its own delay Aj. Similarly, each n‘® neuron can have its
own membrane time constant 7,,, , although all neurons have
a fixed firing threshold 6 = 0.7 (empirically decided).

V. EXPERIMENTAL SETUP

In order to run any experiments we must address the
genetic representation and search operator for the neural
network models. Additionally, the application being utilized
is described as is the method for gathering the probabilities
used for calculating epistasis.

A. Genetic Encoding

The continuous-time recurrent neural networks were directly
encoded into a set of three matrices representing connection
weights w;; € [—5,5] between neurons ¢ and j, the time
constants 7; € [1,50] and biases 6 € [—1, 1]. Similarly, spiking
networks were encoded into three matrices which represent the
connection weights w;; € [—5, 5], axonal delay A € [1,5] and
the synaptic and membrane potentials 75, 7., € [1,10] such
that for each i'" neuron, 7, > 7s,,Vj.

B. Evolutionary Operator

In order to adapt the CTRNN and SRNN representations we
utilize a mutation-only evolutionary algorithm. The operator
we implemented adds a small random value to each variable
in the network with a small probability that is inversely
proportional to the total number of the respective variable,

V. For example, V' can be the matrix of action potentials in
SRNN, where |V| is the number of non-input neurons. This
operator is summarized in equation (10), where random is a
uniform random number on [0, 1], v; € V and ¢ is the current
generation.

t—1 .
ot = {z%l +U(—0.5,0.5), if random < 1/|V| (10)

, otherwise

This operator is applied to each of the matrices for each
network at every generation of the algorithm. On average only
1 value per matrix will have the mutation operator applied to
it, which is a result of the inverse proportionality.

C. Path-finding Robot

The path-finding robot is a common evolutionary-robotics
benchmark application [15]. Given a map such as that in
Figure 3, the goal is to design a robot capable of quickly
navigating around it while maintaining a safe distance from
the walls. The starting point of the robot is indicated by
the gray circle. We have utilized the Wright State University
Khepera Simulator [16], which is a Java-based program, as
our simulating environment.

O

Fig. 3: The environment for Khepera to navigate.

The robot receives input from 8 infrared sensors distributed
around it, which sense the distance to objects. Each sensor
reading is a value between 0 and 1, where smaller vales
indicate that an object is close. Movement is accomplished by
the rotation of its two wheels. The wheel speeds are integer
values between 0 and 10 units, although they are scaled during
fitness evaluation.

Input to the CTRNN neuro-controller will simply be the 8
raw sensor readings. The output neuron activation potential
will then be the rotation speed of the left and right wheels,
respectively. However, the SRNN cannot use the raw sensor
readings. Instead, these readings must be transformed into a
series of spikes. We have allowed each of the input neurons

to emit a spike for every tenth of sensor input greater than
a value of 0.4. Due to the non-negativity of spike times, the
SRNN-controlled robot cannot move its wheels backwards.

In order to accomplish the task we use the objectives given
below, as described in [15] (although, in that work these
objectives are combined into a single value). For each of the
objectives O; the wheel rotation speed range is [-0.5, 0.5] and
0 < O; < 1. First, to encourage fast movement through the
maze, the absolute value of the left (L) and right (R) wheel
speeds are summed together, Oy = |L| 4 |R|. Higher values
of this objective are desirable.

Forward motion is abetted by transforming the wheel speeds
to the range [0,1] by adding 0.5 to each speed and then
taking the absolute value of their difference. This value will
be denoted as Av. We then subtract the square root of Awv
from 1 in order to transform it to a maximization problem.
So, this objective is computed by Oy = (1 — v/Av).

The final objective is to ensure that the robot does not hit
any walls. This is accomplished by calculating O3 = (1 — j),
where j is the smallest sensor reading, which indicates the
distance to the closest object.

D. Probability Model

In order to calculate the three epistasis metrics described in
Section III the probability model must be defined.

Since connection weights for both neural models are real-
valued and the metrics expect discrete variables we must
perform a discretization of the weights and output. This is
accomplished by dividing the respective variable ranges into
10 equal intervals. For example, the weight interval [-5,5] is
divided into {[-3,-4),[-4,-3)...,[4,5]}. Therefore, each weight
variable takes on one of these ten possible states. Similarly,
each of the three objectives of a solution is divided into 10
equally sized partitions, {[0,.1),...,[.9,1]}.

The probabilities themselves are based on the current
population of solutions. At each generation we estimate the
p(Si, £(S)), p(S;,S;) and p(S;,S;, f(S)) joint distributions
and the p(S;) and p(f(S)) marginal distributions from the
current population of individuals. Then, we can compute the
epistasis measures as outlined in Section III.

VI. EXPERIMENTAL RESULTS

We present the experimental results as averages over 10
runs of 30 controllers per neuro-controller and each run lasted
for 40 epochs. The selection strategy used was a 2-way
tournament selection with a selection pressure of 0.75, as
described in [17].

During each fitness evaluation the Khepera robot was given
600 steps. The fitness is then evaluated as an average per step,
with respect to each objective value. Almost every experiment
was successful at evolving a neuro-controller to achieve the
task at hand (1 unsuccessful CTRNN, O SNN). Each of the
objectives outlined in Section V will be referred to as: Fast
(refers to wheel speeds), Forward (forward movement), Avoid
(obstacle avoidance).

A. CTRNN Results

This section will describe the experimental results for the
evolution of a CTRNN. Figure 4 shows the evolution of each
of the three objectives, where convergence occurs after about
15 generations. Since each objective shows an increase, it
implies that they are very dependant on one another to achieve
neuro-controller with high fitness. The obstacle avoidance
and forward motion objectives show a strong similarity in
behavior, that is, the robot is very good at accomplishing these
objectives.

T e

Fast

——— Fanward 4

10x Chjective Value
(2]

0 1 1 1 L
1] 5 10 15 20 25 a0 35 40

Generation

Fig. 4: Average fitness for each objective.

The average amount of gene significance with respect to
each objective over the evolutionary run is presented in Figure
5. During the initial generations we observe a relatively
large value which indicates that the fitness of the neuro-
controllers are very dependant on a subset of genes. Since
the initial weights are randomly initialized, this corresponds
to the entire population of controllers having a similar fitness.
As new behaviors are evolved this value will decrease since
the responsibility control is spread over the entire architecture.
Additionally, the permutation problem [18] also influences the
results, since the epistasis metrics do not take it into account.

Figure 6 plots the results of the average gene epistasis mea-
sure over the entire run. During the initial three generations
moving fast and obstacle avoidance show a decrease in value,
whereas moving forward is the main goal. Once it can move
forward (opposed to a circular motion), then turning left and
avoiding the wall is the next required behavior, followed by
turning to the right.

With respect to each objective, the overall gene epistasis
exhibits a destructive relationship which tends towards zero
epistasis. The initial generations show a destructive interaction
to a degree of about -0.30. Thus, the weights are having a
detrimental effect on each other and should make the problem
harder. Continuing with the evolution, this value tends towards
zero indicating that the genes become nearly independent on
each other, as expected.

The amount of constructive (gene epistasis values > 0.5)
and destructive (values < —0.5) are shown in Figures 7 and

07 T T T T T T T
0e- _— Fast 1
v __ ——— Forward

05 ;

o

o

=

5 ooat

f‘é

=]

@

w 031

T

it}

4s}

o
8]
T

=
T

L
1] 5 10 15 20 25 30 35 40
Generation

Fig. 5: Average amount of gene significance.

=)
[
T

Gene Epistasis

L=

5]

i3]
T

Fast
——— Farward B

0.35 1

=
w
T

04 : 1 1 I 1 1 1 1
1] 5 10 15 20 25 30 35 40

Generation

Fig. 6: Average number of constructive epistatic effects.

8, respectively. We show that there are very few constructive
interactions, the maximum of 4 occurs at generation six. The
number of destructive interactions reaches a maximum of
nearly 500, however by the end of the run is near one. This
implies that most gene interactions do not contribute in a very
constructive of destructive manner. Thus, this should not be a
very difficult problem.

Figure 9 confirms that according to the problem epistasis
measure, this problem should not be very difficult since the
amount of epistasis is less than 0.1. Therefore, evolving the
CTRNN for this application was not very difficult.

B. SRNN Results

The evolution of each of the three objectives is shown in
Figure 10. Each of the values exhibits a similar convergence
curve, indicating that each objective is complementary. That
is, they seem to be very dependant on each other to achieve
a high fitness.

Figure 11 shows the average gene significance results over
the evolutionary runs. The curves are nearly identical, which

445

[¥]

Connections

' Fast
[——— Forward

!
5 10 15 20 25 30 <) 40
Generation

Fig. 7: The average amount of constructive gene pairs.

600

500

Connections
(48] =
= =
[=

Pt
=
(=]

100

Fast
——— Forward 7
Awoid

e e e

5 10 15 20 25 0 35 40
Generation

Fig. 8: The average amount of destructive gene pairs.

)

02
o
@

.
o
@

i)
fem]
=

Fast

——— Forward 7
- Avid

o
o
7]

=
fe]
E

Problem Epistasis
—
=
(53]

0.03F

002r

i] 5 10 15 20 25 30 35 40
Generation

Fig. 9: Amount of problem epistasis.

indicates that the contribution of each gene to each of the

.
T

a
T

10x Ohbjective Value

o
oo
T

Fast

i ——— Forward
.......... Avold
o4t g
D 2 : 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Generation

Fig. 10: Average of each objective value per generation.

objective values is nearly the same. Additionally, while the
average gene significance value has converged by generation
15, the objective values do not converge until approximately
the 20" generation which shows that fitness can be improved
without changing he amount of epistatic interaction.

0.35 T T T T T T T

03t E
Fast

——— Forwiard

Gene Significance

1
i] 5 10 15 20 25 30 35 40
Generation

Fig. 11: Average gene significance per generation.

The results for the gene epistasis measure are presented in
Figure 12. During the initial 6 generations the amount of gene
epistasis is negative and relatively small. This indicates that
weights of the network are working against each other, and
therefore having a detrimental effect on the neuro-controller’s
fitness. The amount of gene epistasis increases until approxi-
mately generation 11, which is the same generation the gene
significance values converged. At this point the epistasis de-
creases for two generations then continues to slowly increase.

Similar convergence behavior can be seen between Figures
12 and 13. The average number of constructive epistatic effects
(values > 0.5) is plotted for each generation. Additionally,
the number of destructive effects (values < —0.5) and the
amount of problem epistasis as shown in Figures 14 and 15,

=
w

=
[
L]
T
Y

-
[
T

i)
m
T

(=)
T

o
T

Gene Epistasis
—
=

nosk Fast |
——— Farward
0.1k : R 7
oisf s f 1
et
0z = 1 1 1 L 1 1 1
0 5 10 15 20 25 30 35 40

Generation

Fig. 12: Average gene epistasis per generation.

respectively, exhibits similar behavior.

12000

10000 - !

e

8000 - W

G000 -

Connections

4000 - Fast

i ——— Forward
A

2000

i L L L I L L L
] 5 10 15 20 25 30 35 40

Generation

Fig. 13: Average number of constructive epistatic effects.

When comparing the above results to the behavior of
the simulated Khepera robot we can see the environmental
influence on epistasis. The initial stages correspond to the
robot’s ability to learn how to turn left in order to avoid
a wall. This takes about 6 or 7 generations to evolve. The
respective values increase since up to this point unfit "random”
solutions permeate through the population. The following five
generations represent the time it takes to learn the ability to
avoid a wall by turning right. Together, these two tasks make
up the major contributing factor to the fitness of the robot
(since they allow for a longer life by not colliding with a
wall).

The remainder of the evolution concentrates on fine-tuning
the robot’s behavior, and convergence to that set of behaviors.
As a result, the mount of epistasis decreases. This behavior is
summarized in Figure 16.

?DDD T T T T T T
oo 1 Fast |
tf i ——— Faorward
£ e Ayvnid
sooof g ¥
w
§ 4000
bt
w
=
5 3000
[

2000

1000

L
1] 5 10 15 20 25 30 35 40
Generation

Fig. 14: Average number of destructive epistatic effects.

0.3 T T T T T T T

028+ Fast B
——— Forward

fety Avoid 1

Problem Epistasis

01 1 1 1 1
1] 3} 10 15 20 25 30 35 40

Generation

Fig. 15: Average amount of problem epistasis per generation.

C. Summary

We examined two neural models for the path-finding robot
application. The continuous-time models exhibited lower prob-
lem epistasis than the spiking counterpart. These results were
expected since the SRNN took more generations to converge
to a successful controller. However, the CTRNN controller
contained a large amount of destructive interactions which is
a result of its architecture. For example, a negative output
neuron potential still causes the wheels to rotate.

The SRNN differed from the CTRNN in that it’s neurons
were much more dependant on each other, as is evident from
the large number of constructive and destructive weight pairs.
Additionally, the gene epistasis was also much higher. The
reasoning behind this lies in the method in which SRNN
operate. That is, the wheels of Khepera will turn only in the
presence of spikes. Therefore, the network must coordinate
itself such that given some input, the correct number of spikes
are outputted to achieve the desired behavior. As described
above, the CTRNN model will always have some action
potential at the output neurons.

Fig. 16: Behavior of Khepera robot.

In both cases, we find that the problems are relatively easy
to solve as indicated by the relatively low epistatic measures
for each objective during the evolutionary process. However,
the problem epistasis for CTRNN-based neuro-controllers was
lower than for SRNN-based controllers.

VII. CONCLUSIONS AND FUTURE WORK

This paper has utilized information theoretic measures of
epistatic interactions to investigate the influence of neuro-
controller weights on the problem difficulty. Additionally, we
have explored how these values change during the evolutionary
process. We have provided an experimental insight to aid
in elucidating the theoretical aspects of epistatic interactions
in evolutionary neuro-controllers, specifically those utilizing
CTRNN or SRNN models. While we cannot make conclusions
over all possible applications, we have shown that environmen-
tal influences (that may not be observed from fitness plots) can
be observed through epistasis.

Furthermore, we examined multi-objective fitness evaluation
of the controllers. We have shown that it is possible to achieve
a desired behavior through Pareto ranking fitness evaluation,
where the behavior is decomposed into smaller sub-goals.
In this paper, we show that the path-finding behavior can
be decomposed into fast movement, obstacle avoidance and
forward movement.

Future work is mainly concerned with understanding
epistatic interactions and their influence on problem difficulty
from a theoretical and practical standpoint. Additionally, the
manner in which we utilized multi-objectivity to achieve
the path-finding goal can be further developed. Specifically,
further examinations of evolutionary properties such as evolv-
ability will be studied.

APPENDIX
A. Information-Theory Computations

Here we outline the calculations required to perform the
epistasis metrics described in Section III. According to [19],
entropy H(Y) measures the amount of uncertainty about
variable Y and is calculated by

H(Y) == p(y)loglp(y))-

yey

The average amount of uncertainty of X reduced by know-
ing the value of Y is known as the mutual information between
X and Y.

1Y) = 303 ploaiog | 2|

s et p(z)p(y)

Similarly, the conditional mutual information calculates
the average amount of uncertainty of X that is reduced by
knowing the value of Y. However, in this situation we take
into account that the value of variable Z is given.

1X:Y12) = 32 30 3 pla,y, 2)log [My)p”}

zeX yeY zeZ P(Tf,)P(yaz)

REFERENCES

[11 G. Rawlins, Foundations of Genetic Algorithms. Morgan Kaufmann,
1991.

[2] R. Beer and J. C. Gallagher, “Evolving Dynamic Neural Networks for
Adaptive Behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91-122, 1992.

[3] W. Maass, “Computing with Spiking Neurons,” in The Handbook of
Brain Theory and Neural Networks, 2nd Edition, pp. 1080-1083, MIT
Press, Cambridge, Mass., 2001.

[4] D. Goldberg, Genetic Algorithms in Search, Optimiztion and Machine
Learning. Addison-Wesley, 1989.

[5] J. Teo and H. Abbass, “Multi-Objectivity and Complexity in Embodied
Cognition,” IEEE Transactions on Evolutionary Computation, vol. 9,
no. 4, pp. 337-360, 2005.

[6] J. Teo and H. Abbass, “Embodied Legged Organisms: A Pareto Evolu-
tionary Multi-Objective Approach,” Evolutionary Computation, vol. 12,
no. 3, pp. 355-394, 2004.

[7]1 K. Deb, Muiti-Objective Optimization using Evolutionary Algorithms.
Wiley, 2001.

[8] D. Seo, Y. Kim, and B. Moon, “New Entropy-Based Measures of Gene
Significance and Epistasis,” in Genetic and Evolutionary Computation
Conference GECCO, pp. 1345-1356, 2003.

[9] R. Beer, “On the Dynamics of Small Continuous-time Recurrent Neural

Networks,” Adaptive Behavior, vol. 3, no. 4, pp. 469-509, 1995.

D. Floreano, Y. Epars, J. Zufferey, and C. Mattiussi, “Evolution of

Spiking Neural Circuits in Autonomous Mobile Robots,” International

Journal of Intelligent Systems, vol. 21, no. 9, pp. 1005-1024, 2006.

K. Funahashi and Y. Nakamura, “Evolution of Spiking Neural Circuits

in Autonomous Mobile Robots,” Neural Networks, vol. 6, pp. 801-806,

1993.

W. Maass and C. Bishop, Pulsed Neural Networks. MIT Press, 1999.

W. Maass, “Lower Bounds for the Computational Power of Networks of

Spiking Neurons,” Neural Computation, vol. 8, no. 1, pp. 1-40, 1996.

W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, 2002.

S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-

gence and Technology of Self-Organizing Machines. MIT Press, 2000.

S. Perretta and G. J., “A General Purpose Java Mobile Robot Simulator

for Artificial Intelligence Research and Education,” in Proceedings of

the Thirteenth Midwest Artificial Intelligence and Cognitive Science

Conference, 2002.

M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1998.

P. J. B. Hancock, “Genetic Algorithms and Permutation Problems:

a Comparison of Recombination Operators for Neural Net Structure

Specification,”

A. Coolean, R. Kuhn, and P. Sollich, Theory of Neural Information

Processing Systems. Oxford University Press, 2005.

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]
(18]

[19]

