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Abstract—Empowerment quantifies the choice available to biological systems. One characteristic of sustainabigityot
an agent as the actuation channel capacity. However, not all only a (possibly passive) stability of the biological syste
such choices are sustainable: After some choices, the agenay but also an “active” stance.

not be able to return to its original state, or returning there o tion h h fi t Id be i
may be costly. In this paper we explore whether empowerment ne SL_’ggeS lon . ow suc an_ ac 'Y? s_ance cou e Incor-
can be adapted to obtain a measure of sustainability. As a Porated into a notion of sustainability is brought forward
straightforward modification, the agent’s options is resticted by the concept ofempowermentwvhich has been shown
to actions that are reversible within a given time horizon. W to reflect intuitively attractive states in various sceosyi
furthermore investigate the lengths of return paths and disuss  effective sensorimotor loops as well as natural homeastati
their potential to indicate sustainability.

states [5], [6], [7].

. INTRODUCTION In this paper we use the concept of empowerment as a

The Brundland commission [1] has described sustainabR®INt Of departure towards a quantitative measure of sus-
development as “development that meets the needs amwabnny. Stated mfprmally, empowerment measures how
aspirations of the present without compromising the ahitit ''Chly an agent can influence (i.e. change) its environment
meet those in the future”, and since the last two decades, thé IS actions in such a way that the agent can itself then
concept of sustainabilility has attracted increasingraina  SeNS€ this influence. Thus, one component of empowerment

and interest by the general public, policy makers and oth& the ability of an agent to inject information into its
decision makers. environment modifying it through its actuators, the second

Despite the widely agreed importance of sustainability, &2MmPonent is the ability of the agent to recapture this

comprehensive definition of the concept does not yet exiépformanon, i.e. detect that this modification was sucfidss

Various concepts and indices are in use. A typical apprcmchThiSh_Ca? be formalized in the language Olf infgrmation the%ry
to determine the amount of resources required for the entfé S language, empowerment can also be interpreted as

complement of activities to be assessed for sustainabili§" information-theoretic efficiency measure for the exérn

and to determine whether these resources will be ava"ad?grceptlon-actlon loop of a_n agent. .
for a reasonably long time window into the future. The Ihe€ Presentpaper combines the hypothesis that empower-

“footprinting” approaches aim to quantify this notion byment may serve as a quantity that biological organisms are

converting all resources to a common “currency”, such aléniversally expected to optimize (other quantities havenbe

land surface in terms of global hectares, used in ecologica{99€ested, see Sec. Il) with the natural stability requerem
footprints (see [2] for an example), or tonnes of carbo iscussed earlier. Since this combination introduces some

dioxide, used in carbon footprints subtle adaptation of the empowerment concept introduced

From an Artificial Life perspective it is desirable to usel" e_arlier work,_in this paper we limit ourselves to utilign
models, such as computer models of (possibly evolving) SIMPle special case of the empowerment measure: we
ecosystems, as a basis of advancing understanding of sg§>t4Me a determlnlstlc world ?”d global world Sensors, an
tainability. This requires generic indices or measures ssumption made in the scenarios from [6]. The significance

sustainability that are uniformly applicable to “artifitia °f te twohassumpuons will be discussed in Sec(:j. VI, o
and “real” systems. However, most sustainability indices a USI"9 these assumptions, empowerment reduces to the
specific, e.g. the carbon footprint approach obviouslyiagpl number of different outcomes thean potentiallyresult from

only to aerobic systems that consume carbon-based fueq%‘.e actions taken by the ager_1t under cgnsideration. Note tha
Relatively recently a sustainability index based on Fishdere the agentcan be any object or entity capable of choosing
information has been proposed [3], [4]. and performing actions (including robots, organisms, and

Approaching the issue of sustainability quite naturall opulations all can be treated as agents). The assumption

suggests some measure of stability of a system. Howev Ig?hind this is that being able to ach_ieve many different out_—
this is not sufficient. There are simple examples, such ascQ@mes can generally be expected to increase chances of being

damped oscillator or planetoids devoid of organic life vhic ad:je tohmeet one’s neehds itr: the futt)ll”e' 'Lhe presen;]t_ work now
realize stability. However, this is not felt sufficient toptare ~24dS the assumption that being able to do many things at one

the essence of sustainability that one would expect frofii"€ 1S not a sufficient condition for sustainability — one
may have a large selection of options at a particular time,
Jan T. Kim is with the School of Computing Sciences, Unigref East  but, once taken, many of these options may prove fatal for
Anglia, Norwich NR4 7TJ, United Kingdom (emajl. ki m@ea. ac. uk),  fyrther survival. We therefore propose a generic approach t
and Daniel Polani is with the Department of Computer Scierdai- itabl dif . d btai
versity of Hertfordshire, Hatfield AL10 9AB, United Kingdortemail: suitably modify empowerment in order to obtain a measure

d. pol ani @erts. ac. uk). of sustainability, and we discuss the new notions on thesbasi



of some simple scenarios. approach. It consists of attempting to maintain a dynamics
(but not, as in homeostasis a fixed state) such as to keep the
o o _ _ future predictable. This approach can be further genemhliz
Sustainability is a characteristic of the relationship bernformation-theoreticalIy as to maximise predictive infea-
tween anenvironmentand anagent In the typical case, tjon [18], the amount of information that an agent has about
the environment is an ecosystem and the agent is & humgR fyture based on its knowledge of the past. Here, the agent
population. Generally, the environment is characterised &ijes to maximise itsnformationabout the future given the
being a complex system of some form, such as as a complgxst and this entails, in addition, maintaining an inforieat
dynamical system, or a complex structure such as a mazg,q thus a rich and varied past. The classical notion of
An agent influences its environment by meansaofions homeostasis forms a highly special case of this where a
butllt gannot fully contro_l the environment (i.e. it cannoigieady-state past reduces uncertainty about a future ichwhi
arbitrarily select the environment's state). Furtherm@® the steady state continues. Predictive information has bee
agent hassensorsthrough which it receives input from the proposed as a possible principle guiding the behaviour of
environment. Once executed, an action may have an effeghyanisms [19], which is related to excess entropy and other
on subsequent sensory input. If sensory input in turn has §¥ormation-theoretic measures [20], [21].
impact actions, a sensorimotor loop is formed. _ Concepts originating from constructing learning systems
~ Generally, the sensors do not provide the agent with fullng concepts originating from modelling biological syssem
information of t_he environment's state, as sensors may R&n currently be seen to converge on information theory.
unable to perceive some features of the environment and mlis convergence makes information theory an interesting
be subject to noise. As in [6], we assume that the sensoriggngidate for working towards a unified framework for
capture the complete world information without distortionnyestigating adaptive biological systems. The finding tima
In particular, since sustainability is often consideredain organism needs to acquire information to achieve a sufficien
globalistic fashion involving major parts of a system, hergaye| of fitness [22], [23], [24] further supports this idea.
we did not limit ourselves to consider only effects f”tereqb\ccording to Linsker's infomax argument [25], faced with
by the “subjective” sensorics of an agent, but are intetestne difficulty to a priori assess relevance of information for
in the global effect of an agent’s actions. _any specific task, systems with a given sensorimotor loop
Complex systems and phenomena, such as those outlingdy respond by maximising total information throughput
above, are frequently investigated using mathematical agnerically. More precisely, the throughput of informatio
computational models. This requires approaches that &gyt s relevant to the decision-making process of an oggani
sufficiently generic to support inferences from the modeI[szz]’ [26] is maximised. Extending this to an evolutionary
in particular to a general class of systems that includes ﬁﬂ)"erspective, it can be hypothesised that, on evolutionary
biological systems which are the ultimate object of redearcg.g|es, the sensors and actuators of an organism are adapted

Artificial Life and related fields respond to this challengeys 1o maximise the relevant information processed by an
by working towards a framework of principles that emb'%rganism, and to discard the rest.

understanding of complex adaptive phenomena in biological
systems from an overarching and unifying perspective. Ill. EMPOWERMENT

Mechanisms for learning, such as the autotelic principle An agent receives information from its environment
[8] or learning progress [9], are applicable to relativelythrough its sensors. This can be formalised as a communica-
specific modelling frameworks. The reinforcement learningion channel which connects the environment as a sender to
framework is more general, and it can accommodate sellie agent as a receiver. Likewise, the actions carried out by
motivated learning mechanisms [10]. These mechanismas agent can be formalised as messages that are sent through
have been developed mainly to build artificial learninga channel, called the actuation channel, to the environagent
systems, such as robots, while modelling or analysis @f receiver. Together, sensory and actuation channel epgres
biological systems was not in the focus of interest. Themfo the sensorimotor loop.
most concepts of artificial learning systems do not have any Empowermenguantifies the throughput through the senso-
immediately obvious biological relevance or interpretati rimotor loop as the capacity of the actuation channel which
Specifically, the reward function which is central to reinis available to an agent given a state of the environment.
forcement learning, has to be specified to capture biolbgiche amount of throughput is rigorously quantified in terms
fitness in order to use reinforcement learning as a componeit Shannon information [27], i.e. empowerment can be
of a model of biological adaptation by evolution or indivadu expressed in bits. Furthermore it can be applied to a large
learning. spectrum of systems, regardless of specific material compo-

The concepts of homeostasis [11], [12] and of autopoiesients (such as carbon), or other criteria that are difficult t
[13] have been introduced specifically to describe and fogeneralise. The full formal definition, with applications t
malise biological phenomena. Due to their elegant and deepeasuring short-term occupation of favourable niches and
ramifications are still under investigation [14], [15]. Thelong-term adaptation of sensorimotor equipment, are given
homeokinesis principle [16], [17] is a generalisation adgd in [5], [6], [7]. In its general form, empowerment applies to
principles which also lends itself to an elegant computetio deterministic as well as probabilistic systems and it canese

Il. BACKGROUND



as a universal utility which produces plausible and ingeiti (which is quantified byn in (2)). However, it does not
behaviours in a wide range of disparate scenarios. consider the options available to the agent at statafter
Since here we do not use the most general definition @utting the environment into that state by carrying out
empowerment and it would require the introduction of soma corresponding sequence of actions. Absorbing states (at
significant technical apparatus which would unnecessarilyhich &(n,s’) = 0, the agent is “trapped”) count towards
burden the discussion, we refer the interested reader ieab@mpowerment just as much as states which themselves pro-
references. For the present paper, we limit ourselves to thiele a wide spectrum of accessible states. As an example,
following brief explanation: define the mutual informationconsider a robot which can travel a distan¢ewith one
between two random variables andY is defined as battery charge. Starting fully charged from the charging
station, the robot's empowerment depends on the number of
I(X;Y) = H(Y)-H(Y|X) == HY)+H(X)-H(X,Y) positions at a distance up tb However, in order to operate
. L @) sustainably, the robot must not move further thidg away
where the entropy of a rando.m variable is given by from the charging station. While the robot is empowered to
H(X) = —3_, p(x)logy p(x), with the sum running over ., e hevond this sustainable range, it can take such amactio
all realizationse of X (similarly for H(Y") and for the joint only once, as this inescapably consigns the robot to stgndi
entropy H (X, Y)). with a depleted battery. This simple case exemplifies that

. Then t_he core idea of _empowerment s that_ IEhere are situations in which a resource can be used in a
is quantified as the maximum mutual information

. enewable and in a nonrenewable mode.
I(Ag, A1,..., An_1;S,) between a sequence of actions 01‘r

lenathn (ioint distributi f ) Ny arti We now formalise this notion by requiring that the en-
engthn (oint distribution ofn successive actions), s arting,ironment state at the start must be recoverable from the
at time 0 (modeled as a sequence of random variabl

A A A d th wate (i th%?hal target state within a finite amount of expenditure to the
(I 06 ll’i'i’ Snﬂ)t ?_n € sensolrl sta e_élln %thgpt‘?“ Bgent (such as a finite window of time or number of steps).
global state)S,, at time n over all possible distributions For discrete, deterministic systems we define a statm

p (‘ILO];' o al’r—lz (:f;lctlotns. Lis th . fbe n-step reversibly accessibfeom a states if s’ is n-step
d'ffn ormat)r: S"t?he Mm-S ::‘p er?posfv(?lrmenk '? tﬁ amount of, - essible froms and s is n-step accessible from = ¢'.

ierence that the agent captentiallymake to the environ- Consequently, the definition slistainable empowermefar
ment by performing: actions. In the case of a discrete state,

d > e i : i qiscrete, deterministic systems is:
eterministic environment where the environment’s globa

state is fully sensed by the agent, empowerment evaluates@ust(m 5)
to the logarithm of the number of states which the agen
can reach withinn actions (-step accessiblestates). To
see this (also consult [6]), consider Eq. (1), and inst&@tiaThe ability to return to the start stateis consistent with

X as the action sequence ahtas the final sensed state.the apjlity to meet one’s needs in the future, which is a
Since Y is the complete world state which, in addition,central concept of sustainability. If at statethe needs are
follows deterministically from the action sequendg the met, the ability to recoves whenever the need arises is
entropy H (Y | X') vanishes. Thus, the empowerment value igequired for sustainability. Note that empowerment itself
the maximally achievable value faff (Y). Note now that has peen introduced as hypothesis to identify useful and
any probability distribution on this set of-step accessible gesirable sensorimotor niches — together with recoveitgbil
states can be realized/(Y) is therefore maximized by \e now extend the hypothesis by requiring the reaching of
attaining an equidistribution on these states, and ev&uakhe empowering states to be reversible. Thus, this notion

Eog2(|{s’ : s’ is n-step reversely accessible fras|). (3)

to the logarithm of the number of these states. of sustainability is not satisfied just with recoverableesa
Thus, for discrete deterministic systems thestep em- pyt with states that also provide a rich spectrum of options,
powerment at state reduces to and, by virtue of recoverability, for a prolonged time. This

implements the combination of the stability criterium with
the universal utility aspect desired for sustainability

wheres, s’ € S denote states within the set of environment From a classical communication channel perspective, em-
statesS (with an incomplete sensor the original agent-centripowerment measures the capacity of the actuation channel
definition of empowerment would be determined by thewailable to an agent at a given state, regardless of whether
number of reachable states which the agent’s sensors aae agent can return the communication device (i.e. the
actually distinguish — in the globalistic view of sustaiflab channel) to its start state and thus regain the initial chlnn
ity adopted here, we however make the assumption that tbapacity. The standard notion memoryless channel imiglicit
outcomes of the actions in the world are captured fully andssumes this by stipulating that messages sent through the
without distortion).

¢(n, s) = log,(|{s’ : s’ is n-step accessible from}|), (2)

1There may be situations where the having a large set of ibbers
IV. SUSTAINABLE EMPOWERMENT accessible states is still not advantageous for a giventaiyee; such
. cases can often still be modeled using an incomplete ndregkensor that
Empowerment measures the width of the spectrum @ odes” evolutionary knowledge about the features of egeto an agent.

states that the agent can reach within a given time windowthe present paper, however, we will not further consitier ¢onstellation.



Fig. 1. A two-dimensional lattice in which levels form a r&glepicted by
the third dimension. Levels are additionally indicated lajoar, with black
depicting a level o and white depicting a level aof.

channel do not alter the channel's state. In general, t
property cannot be taken for granted. While communicati
devices, such as telegraphs, are deliberately designed
sustainable use, other implements, such as signal flares,
empower their users to send a signal only once. The r|
versibility condition introduced here focuses empowertne
to the channel capacity that can be used sustainably.

V. TEST SCENARIO

We use two-dimensional, orthogonal lattices with periodi
boundaries as a test bed to demonstrate cases where
powerment that are inconsistent with sustainability, aoe h
this is addressed by sustainable empowerment. Each |att™®
Slte: has a re_al-valueléyel The age,nt moves around on the ig. 2. Sets of7-step accessible positions (left) ardstep reversibly
lattice by taking steps in the four directions north, weate accessible positions (right) on a lattice world with a ridgée threshold
and south. A step ipossibleonly if the difference between is 0.1. Lattice levels are shown in grey shades, as in Fig. 1. Theiret
the level of the new site and that of the current site dodlPc e 2uerts poston, Pccessif an eversblesmi postons
not exceed théhreshold i.e. the agent can climb up only if plain (bottom) of the ridge landscape.
the step is not too steep. Climbing down is always possible.

The system is deterministic, possible steps always result i

moving the agent as specified. An example lattice is shown While the number of accessible positions is maximal

in Fig. 1. The levels are not subject to any change, then the ridge, the number of positions that preserve, or
only property of the system that changes over time is thgustain, this spectrum of options is actually much lower.

position of the agent. Therefore, the position of the agenthus, the high empowerment of the agent on the ridge is
denoted byp or p’ as appropriate, fully specifies the stateinconsistent with the idea of sustainability. The agent is

which is denoted bys and s’ in equations (2) and (3). empowered to step downwards from the ridge, but doing
n-step accessibility is computed using Dijkstra’s algarith so is an irreversible, and thus not sustainable, action. The
(described e.g. in [28]) and related techniques. right column of Fig. 1 shows reversible accessibility and

Fig. 2 shows accessibility and reversible accessibility focontrasts it to unconditional accessibility depicted ia téft
the agent at different positions. The number of accessibt®lumn. Fig. 3 further reveals that while empowerment is
positions, and thus empowerment, is maximal if the agent imaximal both on the ridge and in the shallow low region,
on the ridge, as there it has the option to descend in bosustainable empowerment reflects the fact that from many
directions. On the slopes of the ridge, the agent can ontyf the positions that “empower” the agent on the ridge by
move laterally along the ledge or descend, as the differenbeing reachable, no return to the ridge is possible. Fig. 4
to the level of the next ledge upwards exceeds the threshofgtovides displays the same data as scatter plots, revealing
In the shallow, low regions of the landscape, the agent cdhat at the ridge, empowerment is maximal while sustainable
climb up the slope to some extent, thus at a greater distanempowerment is more thahbits below the maximum.
from the slope it is less constrained and consequently morelt is interesting to notice a structural similarity betwebe
empowered. scenario discussed here and an evolutionary effect that has
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Fig. 3. Empowerment (top) and sustainable empowermentofodtfor the  Fig. 4. Level vs. empowerment (top) and level vs. sustamabipowerment
ridge landscape (see Fig. 1). (bottom) for the ridge landscape (see Fig. 1). The ridge i\l 1, the
flanking ledges have level$.78, 0.48 and 0.24.

been dubbed “survival of the flattest” [29], which describes

that in the presence of mutational noise and multiple peaks @ath length. The mean path length may provide an alternative
afitness landscape, “flatter” peaks, i.e. those extendiragac Way to quantify sustainability that may be applicable where
larger contiguous areas, confer an advantage as the prdie relatively rigid and specific concept of reversibiligyriot.
ability of mutations to create non-viable individuals, wihi ~ We explore this using &0 x 50 lattice with random
figuratively have fallen down the precipice that surrours t levels drawn from a uniform distribution ovéd, 1]. Fig. 5
peak, is minimised. While empowerment would consider thehows the levels, and also empowerment and sustainable em-
number of genetically different offspring that an indivalu powerment for each position. Empowerment and sustainable

of high fitness can produce, sustainable empowerment alégpowerment were computed as previously presented and in
takes the viability of the offspring into account. addition, the length of the return path was determined for al

reversibly accessible positions, and the mean of theséheng
was recorded.

The condition ofn-step reversibility captures whether the The scatter plots shown in Fig. 6 show more clearly that
agent is able to return to its starting position, but it does nthe correlation of sustainable empowerment to the mean
reflect the information cost of returning. The path length igeturn path length is substantially closer than that of em-
a proxy for this information cost, e.g. from a reinforcemenpowerment to mean return path length.
learning angle [30], the number of positions visited aldmg t
return path could be interpreted as the number of lookups VII. DiscussionN
in the policy table. Each such lookup results in a (possibly We have introduced an approach to quantifying sustain-
probabilistic) action choice or, from an information thgor ability which applies to systems comprised of an agent and
perspective, an amount of uncertainty regarding the chosan environment. According to this approach, sustaingbilit
action that is eliminated. of a state results from the ability of the agent to restore

Therefore, the length of the return path reflects the infothe system to that state. This explicit link to the ability of
mation cost of sustaining the position to which the agerdn agent enables a distinction of sustainability from qther
returns. As an indicator of sustainability, the mean lengfth more general properties such as robustness or plain stabili
the return path is not independent from sustainable empowhis is a difference to the approach taken by Pawlowski and
erment as defined above, but there is no trivial function&lath [3], who defer linking sustainability to the “explait
relationship between sustainable empowerment and mesystem” (i.e. the agent).

VI. RETURN PATH LENGTHS
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In particular, Cabezas and Fath have suggested that sus-
tainability is a property of a dynamic state of a system
[31]. The approach presented here which dissects the system
into an agent and an environment enables a more specific
attribution of changes in sustainability, or of conflicting
assessments or estimates of sustainability. Such changes
could either be due to differences in agents (here only.w.r.t
actuators, but in principle also w.r.t. sensors) or to défe
environmental states.

For simplicity and clarity, we have assumed the agent
to operate deterministically within the lattice world. K i
important, however, to note that empowerment applies im-
mediately also to probabilistic systems, e.g. where theltres
of actions is subject to stochastic variation outside of the
agent’s control.

Achieving a probabilistic formulation of the determinis-
tic reversibility criterion of n-step reversible accessibility
proves, however, more subtle, as there are different ways
of carrying out this generalization. A natural candidatéois
measure the minimal expected time to return to the stad.stat
This can be formulated as a problem of finding an optimal
policy for moving from the target state to the start state.
Reinforcement learning [30] provides various approaches t
compute this minimal return time. How to use such the min-
imal return time as a sustainability empowerment analog to
the time window size specification of (regular) empowerment
(“n-step empowerment”) is currently the subject of research.



A significant simplification of our lattice example systemsensorimotor apparatus may find different states in the en-
is the use of a static environment. Therefore, an agent thatonment sustainable, firstly by the different repertaafe
tries to maximise sustainable empowerment can simply stagtions, secondly (not considered in detail in this papgr) b
at a position with maximal sustainable empowerment once diistinguishing different features of their environmenbtigh
has found such a place. We therefore work on extending otlreir sensors.
test system to include dynamically changing environments Finally, it would also be interesting to study how sus-
in which empowerment and sustainable empowerment atginability is related to evolution and evolvability. Aftial
subject to change over time, in order to further charaaerig ife type computer model based on evolutionary algorithms
behaviours that result from maximising sustainable empowvyould be very suitable for this purpose. Models in which

erment and to compare them with behaviours resulting frogienomes encode policies relatively directly, such as thg-cl

optimising (raw) empowerment or other utility functions.

sic strategic bugs model [34] would be useful to investigate

The requirement oh-step reversibility ensures that multi- evolutionary dynamics of agent-centric and environment-
ple cycles of activity are possible. This captures the priype centric sustainability, and models with suitable fitnesulta
of acting without diminishing the spectrum of actions avail scapes may help to further elucidate the relationship betwe

able in the future. Multiple iterations of cyclic trajecies
may also be considered as an instance of cycling (e.g. of
nutrients), which has been discussed as a characteristic of
sustainability [32]. Models with dynamic environments lwil

likely capture more of this aspect than the test scenariot!
presented here. 2]

It should be emphasized that the role of the return period?!
n is comparable to the choice efin regular empowerment.
There is no established procedure for selecting a “goodis
value forn, but there are indications that there might be
optimal choices between values fer that are too small
(small empowerment everywhere, no noticing of loss of
options) and too large (large empowerment everywhere, so —
in a limited system — all sustainable states become similarl o]
accessible and sustainable empowerment does not provic[ie
anymore a sufficient distinction between the differentestat

Structuring the system into an agent and its environment
leads to an agent-centric and an environment-centric persp [7]
tive on sustainability. The agent-centric perspectivehiat t
taken in the original definition of empowerment and focuses
on the agent’s impact on the environment which the agent cajs]
sense. From this perspective, the reversibility criteitotihat
the agent must bring the environment into a state where the
agent’s sensor state is identical to the initial sensoest&ith  [9]
imperfect sensors (e.g. a sensor that maps multiple states o
the environment to the same sensor state), the agentaentri
reversibilitiy criterion is less specific than its enviroant- [10]
centric counterpart.

It would be very interesting to determine how much
information the agent requires in order to reliably achievgi]
sustainability. Measurements, such as global temperatutg€l
records, provide imperfect and incomplete of environrrient.f)13
reality, but nonetheless, certain features of such measure
ments may be linked to changes in sustainability in priredpl [14]
ways. For example, some abrupt climate shifts have recenmé
been reported to be preceded a critical slowing down of
fluctuations [33]. Finding out how much information of this
kind is required to provide a sufficient basis for rational
policies for climatic sustainability would be highly deslile.  [1¢)

It is interesting to notice that the empowerment picture
of sustainability makes a difference between agents viia the
sensorimotor equipment. In particular, agents with difigr

sustainability and the “survival of the flattest”.
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