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Abstract—Visual adaptation is the process that allows animals
to be able to see over a wide range of light levels. This is
achieved partially by lateral inhibition in the retina which
compensates for low/high light levels. Neural controllers which
cause robots to turn away from or towards light tend to work
in a limited range of light conditions. In real environments, the
light conditions can vary greatly reducing the effectiveness of
the robot. Our solution for a simple Braitenberg vehicle is to add
a single inhibitory neuron which laterally inhibits the output
to the robot motors. This solution has additionally reduced the
computational complexity of our simple neuron allowing for a
greater number of neurons to be simulated with a fixed set of
resources.

I. INTRODUCTION

EXPERIMENTS with robots (1) (2), in which interaction
with a real environment takes place, usually involve

many preliminary studies to determine the optimum calibra-
tion of the sensors for the extremes of the experimental con-
ditions (3). In a previous experiment we investigated using
different models of a simplified integrate and fire neuron
in a Braitenberg vehicle. The experiment used excitatory,
ipsilateral connections which resulted in negative phototaxis
(4). We discovered that our model was not performing over
the entire light intensity range due to neurons becoming
saturated at high light levels and firing at their maximum
rate. This could have been overcome by normalizing the input
data which would have had to have been done prior to each
experiment.

Real biological systems such as the retina are known to
be able to adapt to different light conditions, allowing a
person to be able to see in vastly different light conditions,
with limited apparent impact on visual acuity. Such systems
tend to include lateral inhibitory neurons that dampen output
levels and enhance the contrast between neighboring areas
of the visual field.

In this paper we investigate the effect of using neurons
to laterally inhibit the input data, this allows our robot to
orientate itself to darkness in a range of light conditions,
thus improving on the results of previous experiments (5). To
investigate the effect of lateral inhibition, these experiments
were repeated with an extra neuron in a position similar to
those found in the retina of an eye, see Fig. 1 and Fig. 2.

Fig. 1. Simplified cross section of a retina showing horizontal inhibitory
cells

II. BACKGROUND

A. What is known about biological lateral inhibition and
adaption of the mammalian eye?

The structure of biological retina has been clearly de-
scribed (6) with light sensitive rod and cone cells being
connected to bipolar cells. These then connect to ganglion
cells which form part of the optic nerve, see Fig. 1. Lat-
eral inhibitory cells, called amacrine cells, have also been
identified; these have an important role in edge detection (7)
and it has been shown that lateral inhibition is important
in allowing the retina to operate over a wide range of light
intensities (8).

Lateral inhibition enhances the effects of point light
sources by inhibiting the output of neighboring neurons.

Other mechanisms which also allow the mammalian eye
to adapt to wide ranges of light intensity include chemical
changes in the neurons of the retina and physical changes in
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(a) Schematic of the robot

(b) Layout of neurons

Fig. 2. A schematic of the robot. (a) indicates the position of the two light
sensors and motors (b) shows the location of the photoreceptors, lateral
inhibitory neuron and the two inter-neurons which attach to the motors.
Excitatory connections are indicated by an arrow and inhibitory connections
are indicated by a block. Both light sensors excite the single inhibitory
neuron which is attached to the two excitatory inter-neurons. Note the inter-
neurons are excitatory which causes the vehicle to perform negative photo-
taxis.

Fig. 3. Diagram showing two of our simplified spiking neurons

the shape/structure of the eye (iris closure) (6). Collectively
the mechanisms provide the human eye with a contrast ratio
of 1,000,000:1 (6).

B. Sensor normalization techniques

Sensor normalization is a standard precursor to practical
robot experiments. It involves pre-determining the maximum
and minimum values that a sensor will detect in the robots
environment. These are then used to produce a standard range
of sensor outputs, typically 0.0 representing the minimum
normalised reading to 1.0 representing the maximum nor-
malised sensor reading (9).

If min = minimum sensor value, max = maximum sensor
value, i = current sensor reading and in= normalised sensor
reading then :

in =
i−min

max−min
(1)

This strategy of predetermining the range of sensor read-
ings works well when the environment is known and un-
changing, but is less successful when either the environment
is unknown or the minimum and maximum sensor values
vary over time, such as light levels during a day. Mammalian
eyes successfully adapt to varying light ranges throughout the
day and it is hoped that using lateral inhibition may improve
the range of conditions in which a robot may function
effectively without the need to predetermine the minimum
and maximum sensor readings.

Previous experiments (4) with simulated negatively photo-
taxic robots have had limited success due to over-excitation
of neurons by the sensors’ values. It is hoped that using
lateral inhibition will allow the robots to consistently perform
orientation tasks across a wider range of light intensities.

C. Our event driven integrate and fire model

Our model uses a simple neuron with many axons and
no dendrites. In biological neurons, the soma would have
only one axon which would subsequently branch, this is
functionally the same as having a soma with many (one or
more) axons as in Fig. 3 shows 2 neurons each with two
axons.

Simulated spiking neurons typically model the membrane
at many points on the neuron in small time steps. This
allows for very localised effects to be reproduced. For a
non-branching axon, the nature of the spike progression is
largely deterministic i.e. once a spike has started in a region,
an impulse will propagate along the axon to the synaptic
boutons. The amount of time between a spike being initiated
in the postsynaptic membrane and neurotransmitter being
released by the same neuron from its presynaptic membrane
should be related to only the length of the axons for a
particular neuron. Once a spike has been initiated, it is
possible to determine the point in time when the synaptic
boutons should release neurotransmitter; this is designated
as a neurotransmitter release event. The time-consuming
calculations associated with modelling many points on the
neuron membrane can therefore be restricted to modelling
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the postsynaptic membrane of each synapse and subsequent
simulation of neurotransmitter release at the presynaptic
boutons.

The action of the postsynaptic membrane can be further
simplified by assuming that the refractory period of the
membrane is fairly constant and that a spike is produced
if the internal potential rises above a given threshold. Hence,
when a neurotransmitter is detected by the receptors, a set
amount of inward movement of ions is produced which will
change the internal potential by a known amount which may
or may not be above threshold. If it is above threshold, an
impulse is simulated which by the above argument will cause
a neurotransmitter release event to occur in the future. If the
postsynaptic membrane has spiked, another spike will not
occur for a period of time known as the refractory period.
Excitation of the postsynaptic receptors will not cause a
new spike to occur, but may change the potential across the
membrane. At the end of the refractory period, a new spike
may occur if the potential across the postsynaptic membrane
is above threshold.

The above simplifications result in an event-driven model
where processing only occurs when an event is due which is
similar to work by Rochel (10). The main two events which
need to be modelled for a neuron are :

1) The release of neurotransmitter by the presynaptic
membrane; which immediately causes receptors on a
connecting postsynaptic neuron to be activated and ion
transport through the membrane which may result in
the initiation of a spike.

2) The end of a refractory period for a postsynaptic
membrane; which may result in a new spike and
refractory period.

When either event is raised, the potential inside the soma
must be recalculated, this is because time will have passed
and the potential will have decayed.

III. RESEARCH QUESTIONS

These are the research questions identified:

A. Does a lateral inhibitory neuron produce response across
a wider range of light intensities?

This question is motivated by previous experiments that
had not achieved signicant rotation towards dark areas, in a
negative phototaxic robot (4)

B. Do we need a membrane reset when a spike fires with
lateral inhibition?

Integrate and fire neurons typically reset the membrane
voltage to a preset resting potential. In both (5) and (4)
the neurons were not reset. We therefore applied the same
strategy along with the standard reset model to compare
performance.

C. Can a simple linear decay model for leakiness produce
rotation?

The aim of our initial studies (5) and (4) had been to iden-
tify a simple spiking model with the simplest calculations

which will produce appropriate behaviour for phototaxis. It
is hypothesized that lateral inhibition will reduce the over-
saturation of neurons which use a linear model of voltage
leakiness across the neuron membrane.

IV. METHODOLOGY

Fig. 4. The robot on the linear light gradient. The robot is placed
orthogonally to the gradient and is ’pinned’ in position so that it can only
rotate around the centre (cross on the diagram).

The experiment to test the effect of using a lateral in-
hibitory neuron was carried out on a simulated robot. A
schematic of the robot is shown in Fig. 2(b).

Simulated receptor neurons were attached to light sen-
sors. These sensory neurons then connected to inter-neurons
which subsequently attached to the motors with excitatory
ipsilateral connections (left receptor connects to left motor).
The sensory neurons both fed into an additional inhibitory
neuron attached to the inter neurons which reduced their
output. At the start of each experiment the robot was placed
perpendicular to a linear light gradient, see Fig. 4.
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Fig. 5. A graph of the amount of rotation achieved in the previous
experiment without any lateral inhibition. It can be clearly seen that once
the light intensity reaches 20% of maximum, any subsequent increase in
light intensity results in rapidly falling rotation. In particular, once the light
intensity is 40% of maximum, the robot fails to rotate. The reason for this
is that both photoreceptors are saturated. Note that the robot is never placed
right at the edge of the environment as any rotation could then cause a
physically impossible configuration.

The simulation prevented forward motion of the robot, but
allowed rotation so that the robot would spin on the spot (for
example an insect being tested for pheromone orientation in a
wind tunnel). The simulation was run for 10 seconds and the
total angle of rotation was recorded. The robot was placed
at incremental distances from the left side of the gradient,
providing 99 data samples. Each experiment was repeated 10
times, resulting in a total of 990 results.

The experiment was first carried out with neurons which
reset the membrane voltage and then with neurons which did
not reset the membrane voltage.
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(a) Neuron with a membrane reset function
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(b) Neuron without a membrane reset function

Fig. 6. Both of these graphs illustrate performance for the neural network
that contains a lateral inhibitory neuron. The top diagram is for the model
that does include a reset for the membrane potential, the bottom diagram
does not included a reset for the membrane potential. The graphs showing
the amount of rotation achieved for different light intensities showing a small
and consistent amounts of rotation across the entire range of light intensities.
Each graph plots the average results for each light intensity with a feint line
showing a rolling average which is bounded by two solid dark lines showing
the rolling average for one standard deviation. A dotted polynomial trendline
has also been fitted to the average values.

V. RESULTS

Our earlier result in which the model has no lateral
inhibition is shown in Fig. 5 This shows the amount of
rotation achieved when the light intensity is increased. It
can be clearly seen that once the light intensity reaches
20% of maximum, any subsequent increase in light intensity
results in rapidly falling rotation. In particular, once the light
intensity is 40% of maximum, the robot fails to rotate. The
reason for this is that both photoreceptors are saturated.
Note that the robot is never placed right at the edge of the
environment as any rotation could then cause a physically
impossible configuration. This is believed to be caused by
the neurons saturating. The new results with lateral inhibition
are given in Fig. 6. Each graph plots the average results for
each light intensity with a feint line showing a rolling average
which is bounded by two solid dark lines showing the rolling
average for one standard deviation. A dotted polynomial
trendline has also been fitted to the average values. Fig.
6(a) is the first experiment where a membrane reset function
has been used and Fig. 6(b) gives the results for the second
experiment where the membrane voltage is not membrane
reset after a spike is initiated in the neuron.

These show that :

1) Rotation occurs across all light intensities compared
to the lower 20% of the light intensities in previous

results shown in Fig. 5.
2) The accumulated angle of rotation is fairly uniform

across all light intensities.
3) The variance of the results is small and uniform across

the entire range of intensities.
4) The absence of a reset function produces greater accu-

mulated angles of rotation.

VI. DISCUSSION

A. Does an inhibitory neuron produce rotation across a
wider range of light intensities?

Our results show that lateral inhibition produces rotation
across all light intensities. This can be achieved with our
simplified spiking neuron by the addition of one extra in-
hibitory neuron. The magnitude of rotation is reduced, but the
consistency of rotation for all light intensities allows scaling
of the motor outputs to produce appropriate levels of rotation.

B. Other advantages of lateral inhibition.

1) Do we need a membrane reset when a spike fires with
lateral inhibition?
The graphs show that a membrane reset function low-
ered the accumulated angle of rotation, this is due to
the absence of repeat firings that were found in the ”no
membrane reset” experiments. This would suggest that
a membrane reset function is not essential for negative
photo-taxis. An additional observation is that the graph
for no membrane reset was smoother.

2) Can a simple linear decay model for leakiness produce
rotation ?
In previous experiments, neurons with exponential
voltage leakiness tended to saturate less quickly than
neurons with linear decay and therefore resulted in
rotation over a wider range of light intensities. In
the experiments with lateral inhibition, the simulated
robot rotated across the entire range of light intensities.
Lateral inhibition has had the added benefit of prevent-
ing neurons from saturating thus eliminating the need
for a more computationally expensive self-regulating
exponential voltage decay function.

C. Summary

Taken over all, the lateral inhibition has been shown to be
useful, in particular:

1) Lateral inhibition allowed the robot to operate across
the entire range of light intensities.

2) Lateral inhibition removed the need for a membrane
reset function in the simplified integrate and fire neuron

3) Lateral inhibition removed the need for computation-
ally expensive exponential decay function.

The neuron can be simplified to having a linear voltage decay
model with no membrane reset function when the neural
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network includes lateral inhibition. This is the computation-
ally simplest integrate and fire spiking model that we have
produced which produces phototaxic responses over a wide
range of light intensities.

VII. FUTURE WORK

The findings from this study will now be used in a
robot experiment in an environment which contains a light
gradient representing food. The neural network will increase
in complexity to allow for positive phototaxis when the robot
is ’searching for food’.

Once this has been achieved, we aim to investigate us-
ing a regulatory genetic network which will evolve similar
neural networks to the one used in this and the subsequent
experiments using techniques developed by Wróbel (11).
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