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Abstract— The use of chemicals to communicate among
organisms has enabled countless species, from microorgan-
isms, to colonies of insects, to mammals, to survive and
flourish in their respective environments. Ants, arguably
nature’s most successful exploiters of this behavior, have
evolved the use of pheromones to communicate in a wide
range of situations, including mating, colony recognition,
territory marking, and recruitment to new nest sites and
food sources. We examine the evolution of the use of
pheromones to aid in the location of, and migration to, a
target area by groups of digital organisms. In an initial set
of experiments, these organisms evolved efficient patterns of
exploration that obviated the need for pheromones. When
evolved in a more adverse environment, organisms again
evolved effective search strategies, but also evolved the use
of pheromones to enable the task to be completed by group
members more quickly and with fewer movements. We also
show that evolved organisms are more robust and better
able to react to a change in the environment than a hand-
built solution. This work demonstrates the complexities that
exist in the evolution of pheromone-enabled cooperation and
provides insight into the behaviors executed by seemingly
simple organisms in nature.

I. INTRODUCTION

How multiple agents communicate to coordinate and
make effective group-level decisions is a fundamental
question that spans many areas of research. In terms of
evolution, building even simple group behaviors is very
difficult, as there is a cost associated with cooperation,
which individual-level selection would remove over time
unless it produced a benefit that outweighed the cost.
Indeed, when the success of the group is considered
instead of that of an individual, cooperative behaviors
can be a major contributing factor. Stigmergy, the indirect
communication through traces left in the environment, is
a particular method of communication that has evolved
and is used with great success in nature by a variety of
organisms, including many species of microorganism [1],
insects [2], [3], marine organisms [4], and mammals [5].
Highly-developed eusocial insects such as ants produce
pheromones [6], which can trigger certain behaviors in
other members of their species. Ants have been observed
to use pheromone trails to navigate toward food sources
and potential nest sites hundreds of meters away [7].

Different pheromones and pheromone blends can be used
to attract mates, signal warnings, and mark territories,
among several other behaviors. By leaving traces in their
environment, organisms are able to effectively communi-
cate without the need for other complex or long-distance
mechanisms. Also, the completely decentralized nature of
pheromone usage makes this method robust in the face
of changing environments.

The goal of the study described here is to provide
a better understanding of pheromone communication by
focusing on how populations can evolve the use of
pheromone trails to help members of the group find a
target, a task similar to the mass recruitment of ants
to a food source [7]. By allowing organisms to mark
their environment, other organisms in that population
are able to be recruited in less time and with fewer
movements. To carry out this study, we extended the
Avida digital evolution platform [8] to support several
pheromone-related primitives. During initial runs, organ-
isms evolved an effective search strategy that resulted in
their locating the target without the need for pheromones.
Based on these evolved organisms, we hand crafted an
organism that followed a similar search strategy, but also
used pheromones to help others once it had found the
target. Although these manually-constructed organisms
were successful and retained their use of pheromones,
the solution proved to be brittle, and did not translate
well into different environments. When exposed to a more
adverse environment, organisms again evolved effective
search strategies, but also evolved the use of pheromones,
enabling efficient task completion. The main contribution
of this work is to provide insight into the factors that led
to these cooperative behaviors.

The remainder of this paper is organized as follows.
Section II provides a brief overview of pheromone-related
research in several different fields. Section III describes
the Avida digital evolution platform, and Section IV
highlights the additions made to Avida to support this
study. Experimental results and analyses are presented
in Section V, while conclusions are drawn and future
avenues for extending this work are posed in Section VI.



II. RELATED WORK

How groups of organisms develop cooperation and
communication is a very complex problem that has been
studied extensively across many disciplines. Typically, an
individual pays a cost to cooperate with others, who may
reap some benefit as a result. Because the contributing
organism may not directly receive the benefits of its
cooperation, selection based strictly on the success of the
individual would suppress such behaviors. Selection at the
group level, however, can be strong enough to preserve
cooperative traits that benefit a group of organisms,
and evolved cooperation has been observed in numerous
organisms as simple as bacteria [1]. The evolution of
cooperation has been studied in both natural and artificial
organisms. This section highlights some of the work
conducted in these areas.

Evolving Cooperation. Several conditions have been
observed that indicate whether or not group selection
will favor cooperation [9]. Nowak summarized the mech-
anisms involved in the evolution of cooperation—kin
selection, direct reciprocity, indirect reciprocity, network
reciprocity, and group selection—and defined the con-
ditions under which natural selection favors them [10].
Wilson has argued that individual and kin selection can
even be dissolutive to group behavior in certain cases,
and that group selection is the dominant force driving
evolution towards more advanced cooperation [11].

Pheromone Evolution. An area of particular interest is
the evolution of pheromone diversity [12]. This problem
is important in sex pheromones, where cross-attraction
between species can have strong negative effects. The
evolution of the biomechanics required to produce and
sense pheromone molecules has also been examined [13]–
[17], as has the use of pheromones to regulate recruit-
ment [18]. Typically, the majority of colony members
choose the most profitable among multiple food sources.
This can be seen as a natural byproduct of the use of
pheromones—lesser-used trails will not be as heavily re-
enforced and will consequently be chosen less frequently.
Based on observed behaviors, several models have been
developed to capture recruitment behavior in the presence
of multiple targets [19].

Pheromone Use in Evolutionary Computation. The
evolution of pheromone use has been studied in evolution-
ary computation (EC) environments since the early 1990s.
These works tend to focus on harnessing pheromones
to be used as navigational cues in robotics and other
multi-agent systems [20]. Ant-colony optimization [21]
has been applied successfully to several computational
tasks such as network routing [22] and the traveling
salesman problem [22]. In the AntFarm project [23], an
early study of EC-based pheromones, a genetic algorithm
was designed to closely model the real-life capabilities of
ants. Homogeneous groups of organisms were rewarded

based on the amount of food brought from a source to
the nest. In addition to the ability to sense and produce
pheromones, organisms were given a virtual compass to
aid in navigation. Experiments showed an increase in the
amount of food brought back to the nest over time.

More recently, Panait and Luke [24] used genetic
programming to evolve both foraging behavior and effec-
tive pheromone levels for foraging. Their task involved
organisms finding a food source and returning to the
nest carrying some of that food. The approach used two
different pheromones—one for marking the path to the
food source and another for marking the path to the nest.
Evolved organisms used an exploration strategy where
they moved toward regions with more food pheromones
and also where less nest pheromone was present. Further
studies found that the ability to mark cells with the
maximum amount of pheromone possible at that location
resulted in significantly more food delivered to the nest
than with fixed increments in pheromone.

In related work, Sauter et al. [25] used genetic algo-
rithms to tune agents’ use of, and attractions to, four
different pheromones used to control robotic vehicles in
military scenarios. Floreano et al. [26] evolved software
controllers for robots to use light to signal the presence
of a food source or a poison source. That work ex-
plored strategies evolved in different selection regimes
and levels of population diversity. It was found that
cooperative communication occurred primarily when a
population consisted of closely-related organisms (in their
case, identical) and when selection occurs at the group
level. This finding supports our use of demes in Avida,
where homogeneous subpopulations compete against one
another in performing group tasks.

III. THE AVIDA DIGITAL EVOLUTION PLATFORM

Avida is a software platform used to study the evolution
of self-replicating computer programs in a fixed-size
environment [8]. These computer programs, or “digital
organisms,” compete for CPU cycles by completing tasks,
further discussed below, in an environment configured by
the user. Avida has been successfully used to explore
fundamental evolutionary processes [27], the emergence
of adaptive behaviors [28], and the evolution of group-
based cooperation and communication [29]. Avida and
other EC tools have been increasingly used to solve
complex problems in engineering [30].

As depicted in Figure 1, each Avida organism, or
Avidian, exists independently of other organisms in its
environment and is placed within its own cell in that
environment. An organism’s behavior is defined by a
circular set of assembly-like instructions (its “genome”),
which execute sequentially on virtual hardware allocated
to that organism. In the study described here, the virtual
hardware comprises a CPU, three 32-bit registers, and



two stacks that store up to ten 32-bit numbers. The CPU
has four heads, which serve as pointers to locations in
the genome. These heads are used to determine which of
an organism’s instructions to execute, enable jumps and
loops in the execution of an organism’s genome, and aid
in self-replication. Input- and output buffers also exist in
the virtual hardware, and values written to and read from
these buffers are commonly used to determine if certain
tasks have been completed.

In the beginning of a run, the population is seeded with
an ancestral organism. Typically, this organism’s genome
contains only the instructions necessary to replicate. All
other behaviors exhibited by that organism’s descendants
must be evolved. Avidians are self-replicating, and off-
spring are typically placed in a random neighboring cell.
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Fig. 1. The structure of an Avidian (top), and a population containing
multiple genomes (bottom) [31].

Avidians are able to move about their environment [32].
Each organism is born facing a particular neighbor cell.
The rotate-left and rotate-right instructions
allow an organism to change its facing to the next cell
to the left or right, respectively. The rotate-label
instruction allows an organism to change its facing to a di-
rection indicated by subsequent no-operation instructions.
Organisms move into the cell currently faced through
the use of the move instruction. If another organism is
currently in the faced cell, the positions of two organisms
will be swapped.

In Avida’s energy model [28], an organism’s metabolic
rate is determined by its current energy level. An organ-
ism with a higher metabolic rate will probabilistically
execute more instructions than an organism with a lower
metabolic rate. A side effect is that proportionately more
energy is used per instruction. The unit of time in Avida
is the update. By default, organisms are configured to
execute 30 instructions per update on average; however,
this amount depends on the organism’s metabolic rate.

Organisms can gain energy through the successful
completion of tasks, which are defined by the user in
terms of an organism’s observable behaviors (its phe-
notype). For example, a task might be to perform a
mathematical or logical operation [27], mitigate an at-
tack [33], or communicate with a neighboring cell to solve
a distributed problem [29]. The Avida task mechanism
creates selective pressures in the population, as successful
organisms are able to replicate more quickly and spread
throughout the population. Tasks may also involve the
use of resources. By executing instructions, organisms are
able to sense, consume, and produce resources. Resource
levels in the environment can fluctuate over time through
inflow, outflow, diffusion, or consumption.

Population

replication

Deme

Deme

Fig. 2. An Avida population divided into sixteen demes. Demes
are isolated subpopulations, each capable of replication. When a deme
replicates, it replaces a randomly-selected target deme [31].

Group-level selection links the survival of an individual
to the survival of its group [34]. It therefore becomes
beneficial to the individual to contribute to the success
of its group. In Avida, the population of organisms can
be divided into independent subpopulations, or demes,
as shown in Figure 2. New organisms are born into
the deme of their parent, and migration from deme to
deme is not permitted. In this study, each deme has a
germline [31], a shared source of genetic material. This
results in a subpopulation of organisms with a common
ancestral genome. Groups of highly-related individuals
have been shown to be more successful in evolving coop-
erative strategies while also preventing the emergence of
cheaters, organisms that take advantage of the benefits of
cooperation but that do not contribute to it [26]. A deme’s
organisms can cooperate to satisfy predicates, which
allow the deme to replicate. As shown in Figure 2, when
a deme replicates, another deme is randomly selected,
and its organisms are replaced with organisms created
from the deme’s germline. It is during this process that
mutations occur in the replicating deme’s germline. Each
mutation inserts, deletes, or modifies an instruction at a
random point in the genome.

IV. METHODS

We extended Avida in two main ways to sup-
port this study. First, we defined several movement-



and pheromone-related instructions. Second, we created
deme-level predicates that allow subpopulations of or-
ganisms to be replicated once certain behaviors have
been exhibited. Here, we briefly overview these Avida
extensions. Detailed information about the instructions,
configuration variables, logging, and visualization tools
can be found in an accompanying technical report [35].

A. New Instructions

Pheromone Instructions. A pheromone resource was
created to support pheromone-related instructions. Ini-
tially, each cell contains zero pheromone. Organisms can
sense the amount of pheromone at a cell as well as
increase that value by “dropping” pheromone. Each or-
ganism has a boolean variable that represents its dropping
status. When this status is true, the organism will drop
pheromone with any movement instruction. The organism
sets its pheromone-dropping status to true by executing
the phero-on instruction. Dropping during subsequent
movements can be turned off using the phero-off
instruction. The amount dropped by an organism and
its distribution are configured per run. The mode used
for all runs in this work was to drop half of the
pheromone into the source cell and half into the desti-
nation cell during each movement, effectively creating a
pheromone trail between the two cells. An organism can
sense the amount of pheromone in its own cell and the
cell it is facing by invoking the sense-pheromone
and sense-pheromone-faced instructions, respec-
tively. Conditional instructions if-pheromone and
if-not-pheromone execute the next instruction if the
current cell does or does not contain pheromone.

Movement Instructions. Organisms are able to move
throughout the environment using movement instructions.
An organism moves into the cell faced by executing the
move instruction; see Figure 3(a). As illustrated in Figure
3(b), the exploit instruction moves the organism into
the neighboring cell with the highest pheromone level.
When no pheromone is present, the organism simply
moves forward. The explore instruction rotates the
organism to a random facing and moves it into the faced
neighbor cell, ignoring pheromone levels or neighboring
target cells. The movetarget instruction, illustrated in
Figure 3(c), moves the organism to a neighboring target
cell. As with exploit, if no neighboring cell is part of
a target, the organism is simply moved one cell forward.

Target Instructions. Analogous to sense-
pheromone and sense-pheromone-faced,
the sense-target and sense-target-faced
instructions sense the presence of a target in the
current or faced cell, respectively. The if-target
and if-not-target instructions execute the next
instruction if the current cell is a target cell or is not a
target cell, respectively.

(a) move (b) exploit

(c) movetarget

Fig. 3. Different Avida movement behaviors. The organism’s current
position and facing are indicated with a triangle. Its new position and
facing are indicated with a chevron. A 4-cell target exists in the upper
right portion of the environment, and pheromone levels of neighboring
cells are indicated in a cell’s upper left corner. (a) move simply
moves the organism to the cell it is facing. (b) exploit moves the
organism into the neighbor cell with the highest pheromone level. (c)
movetarget moves the organism towards a neighbor marked as a
target cell, ignoring the pheromone levels of neighboring cells.

B. Replication Predicates

Replication predicates are conditions that, when sat-
isfied by a deme, allow that entire deme to replicate.
Replicated demes continue to occupy the original deme
and also start populating another randomly-selected deme.
Acting as a group-level selection mechanism, faster-
replicating demes are able to spread their genetic code to
cover more of the global environment. It is during deme
replication that mutations occur in the germline.

As the goal of this work is to investigate the evolution
of the ability of a population to cooperatively find a target,
a predicate was created that is satisfied when a prescribed
number of unique organisms reaches any of the cells that
make up an active target. A deme is replicated once it
has satisfied this predicate. This behavior is reminiscent
of quorum sensing in microbial communities: once a
group has congregated or formed a quorum, the organisms
change their behavior to work towards a new task [1].

V. EXPERIMENTS AND RESULTS

Several runs, each comprising 10 instances of Avida,
were performed to investigate the conditions necessary
for groups of organisms to evolve the cooperative use
of pheromones in locating a target. Since each instance
started with a different random seed, each followed its
own evolutionary pathway. The main parameter values



TABLE I
PARAMETER VALUES USED DURING RUNS

Parameter Value
Number of Demes 100

Organisms per Deme 10 or 20
Orgs required to target 8 or 16

Grid Size 40x40 or 20x20
Target Size 2x2 or 1x1

Germline Copy Mutation Rate 0.0075
Germline Insertion Mutation Rate 0.05
Germline Deletion Mutation Rate 0.05

Pheromone at Target 10 or 1000
Pheromone Dropped Per Move 10
Pheromone Evaporation Rate 0

used in these runs are shown in Table I. The environment
was divided into 100 independent demes, each consisting
of a toroidal grid of cells. At the beginning of a deme’s
existence, an organism is created from the germline and
is inserted into a random cell. Organisms are injected
periodically until the population reaches a configured
size. Demes were allowed to replicate when a specified
number of unique organisms had reached the target cell,
or when the age of the deme reached 500 updates. To
promote movement, individual organisms were rewarded
with 10 units of energy for each of their first 5 moves.
Targets comprising one or more cells were defined and
persisted for the duration of the run. Because organisms
were injected with random facings into random cells in a
toroidal environment, no recurring path could be exploited
between an organism’s injection cell and the target.

Evolution of Effective Search Strategies. In our
initial set of runs, the deme replication predicate required
8 of the 10 injected organisms to locate a 2x2-cell target
in a 40x40 deme. A common strategy evolved that did
not include the use of pheromones, but was nonetheless
highly successful at completing the task by efficiently
searching the environment. An example of these search
patterns is shown in Figure 4. This strategy consisted of
a number of moves in one direction, a rotation, a number
of additional moves, and then a rotation back to the
original heading. The main axis of movement was almost
always along a diagonal. The periodic “kink” in the
pattern allows the organism to break from the current row,
column, or diagonal and explore new areas, eventually
finding a path leading to the target. Because these evolved
organisms were so successful at searching for the target,
there was little pressure for them to use pheromones to
help each other complete the task. Successful strategies
emerged after 10,000-20,000 updates, allowing demes to
replicate more frequently than the 500-update age limit.

Testing a Hand-Built Organism. To determine
whether pheromone use would improve upon the per-

Fig. 4. Typical search pattern for an evolved organism. The star
indicates the organism’s injection cell, the square represents its current
position, and lighter lines indicate movements that wrap around the
torus.

(a) (b)

Fig. 5. Genomes of hand-built organisms. The upper portion searches
the environment for target cells, continuing along a “kinked” diagonal
path until it reaches a target cell or a pheromone trail laid by another
organism. In the latter case, it follows the pheromone trail to the target.
In the lower portion, after the target has been reached, the organism
turns on pheromone dropping, rotates to face a perpendicular diagonal,
and moves forward repeatedly. In algorithm (a), the search consists of
alternating exploit and movetarget instructions, while search in
algorithm (b) consists entirely of exploit instructions.

formance seen in these runs, an organism was created
by hand that followed the evolved search strategy, but
also used pheromones to mark a trail to the target. The
genome of this organism is shown in Figure 5(a). This
organism has two states, each of which is contained in a
loop. If it has not yet found the target, it will continue to
make 6 movements along the diagonal with an occasional
kink consisting of 4 movements, return to the diagonal,



Fig. 6. Movements and pheromone dropping of the second hand-built
organism. Stars indicate organisms’ injection cells, squares represent the
current position of organisms, thin colored lines represent movements
without pheromone dropping, and bold gray lines represent movements
with pheromone dropping. Individual cells are marked with circles if
they have zero pheromone or squares if they have pheromone.

and repeat this process until it reaches a target cell. If
the organism encounters a pheromone trail, exploit
will pull the organism towards the strongest source. Once
the organism reaches a target cell, it proceeds to the
lower section of its genome, which turns on pheromone
dropping, rotates the organism to face the diagonal per-
pendicular to the search direction, and continually moves
the organism forward, wrapping around the torus. The
goal of this behavior was to create a straight pheromone
trail that leads directly to the target.

Runs seeded with this hand-built organism were suc-
cessful at finding the target, and the use of pheromones
persisted in the population. However, many organisms had
difficulty following the pheromone due to the presence of
parallel pheromone trails.

Improved Hand-Built Organism. To address these
deficiencies, a second hand-built organism was con-
structed. This organism, shown in Figure 5(b), em-
phasizes exploit-based movements. Target cells were
artificially marked with pheromone. This genome was
successful at performing the task, maintained the use
of pheromone in its genome, and did not encounter
problems with moving through or breaking away from
a pheromone trail. Figures 6 and 7 show an example of
the movements and pheromone levels, respectively, of one
deme containing organisms with this genome.

Solutions Evolved from Scratch. Several runs were
conducted to test whether evolution would remove or
improve upon the pheromone use in the updated hand-
built organism. For comparison, additional runs were
performed in identical environments that started from
scratch (i.e., a genome containing only nop-C instruc-
tions, which have no effect on the organism or environ-

Fig. 7. Distribution of dropped pheromone levels by hand-built
organisms. Darker cells indicate higher levels of pheromone. The target
cell is located in the center of the left side, indicated with a red circle.

Fig. 8. Mean duration in updates (± SD) required for organisms in a
deme to reach the target. Organisms either evolved from scratch or from
the updated hand-built organism. The first set of data is for organisms
that did not have access to the pheromone resource or instructions.

ment). The environment for these runs was a 20x20 torus
containing a 1x1 target, making the task slightly more
difficult, and allowing runs to be completed more quickly.
As seen in earlier runs, demes began exhibiting successful
strategies within 10,000-20,000 updates.

To compare the effectiveness of the solutions evolved
over 50,000 updates, the resulting dominant organisms
were used to seed 100 demes with 20 organisms each,
and the number of updates and total number of moves
required for 16 unique organisms to reach the target were
recorded. In these tests, mutations and replication were
turned off, so demes either accomplished the task or died.

Figures 8 and 9 show the mean number of updates and
organism movements required, respectively, for the task to
be satisfied. We observe that each run produced organisms



Fig. 9. Mean total movements (± SD) required for organisms in a
deme to reach the target. Organisms either evolved from scratch or from
the updated hand-built organism. The first set of data is for organisms
that did not have access to the pheromone resource or instructions.

that were able to complete the task in shorter average
number of updates and with fewer total movements when
using pheromones than runs in which organisms did not
have access to the pheromone resource. Moreover, organ-
isms that evolved from scratch were able to complete the
task in a shorter time and with fewer movements, on aver-
age, than those that evolved from the hand-built solution.
Common among these successful organisms was the use
of pheromones around the target area rather than a single
trail leading to the target. Effectively, pheromone levels
built up around the target and radiated outward, as shown
in Figure 10. This behavior has the effect of enlarging the
target, so that once an organism senses pheromone, it can
simply follow it into the target. The dominant organisms
all displayed patterns of movements that contained several
movements in one direction followed by a rotation, almost
always using explore. Because of the random rotation
included in explore, the trajectories of these organisms
were not as predictable as those seen previously, but they
were, nonetheless, successful at reaching the target cell.
It is possible that organisms abandoned the 6-diagonal,
4-kink movements of the hand-built organism, because it
was evolved for a 2x2 target, while the target in these runs
was 1x1. We note that the more random search pattern is
likely to be more robust to differing environments.

In a small number of runs, organisms turned on
pheromone dropping once they encountered a cell with
pheromone as opposed to seeing the target. This behavior
enables paths to be re-enforced more quickly, but it also
has the downside of potentially re-enforcing inefficient
trails. It is suspected that this response emerged as a result
of the target being painted with pheromone.

Fig. 10. Distribution of pheromone resource around a 1x1 target cell,
located in the left center, after 8 updates. The cell with the highest
amount of pheromone is the target.

VI. CONCLUSIONS AND FUTURE WORK

This work explored the evolution of pheromone-based
communication in groups of digital organisms. Given the
task of getting members of a population to a target, initial
populations developed an efficient search strategy that
greatly mitigated the benefits of pheromones. Organisms
in an environment with a more elusive target, however,
evolved a collaborative strategy that effectively shrank
the search space by dropping pheromones in a pattern
that radiated outwards from the target. Group members
were able to follow these patterns into the target. These
evolved solutions proved to be more robust than hand-
built solutions.

This research can be extended in several ways. First,
pheromone evaporation in runs has thus far been limited
to small rates, typically 0%, and 10%, which yielded
similar strategies. Runs with higher evaporation rates
might lead to more liberal use of pheromones, as mistakes
will more quickly disappear from the environment. This
flexibility could result in the emergence of exploratory
patterns, aid in deciding among multiple targets, or
promote a division of labor or pro-active and re-active
foraging [36]. Second, in the natural world, organisms
use pheromones to navigate both to and from a target.
Such behavior would not be possible with the exploit
instruction, which always follows the pheromone gradient
upwards. Additional capabilities, such as the ability to
know whether or not the organism is currently carrying
“food,” could promote these behaviors. Alternately, the
evolution of a memory, landmark recognition, and other
forms of navigation may be critical to this task.



FURTHER INFORMATION

Additional materials related to digital evolution and Avida are
available at http://devolab.msu.edu, and information
regarding the evolution adaptive and cooperative behaviors can
be found at http://www.cse.msu.edu/thinktank.
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