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Abstract—The current definitions of emergence have no effects
in the context of artificial life that could convincingly be called
‘constructive’. They are rather descriptive labels or tests. In
order to get towards recipes of generating emergence we need
to know systemic characteristics that help during the design
phase of artificial life systems and worlds. In this paper, we
develop and discuss five hypotheses that are not meant to be
irrevocable but rather thought-provoking. We introduce two
modeling approaches for Langton’s ant to clarify these hy-
potheses. Then we discuss general properties of systems, such
as (ir-)reversibility, dependence on initial states, computation,
discreetness, and undecidable properties of system states.

I. INTRODUCTION

Emergence as a concept in the context of artificial life can be

seen as both a possibly eminent concept or a vague concept of

questionable relevance to the everyday live of an artificial life

researcher. Many positions seem to be viable because a fully

clarifying theory is pending. Does emergence actually exist?

Is there an appropriate definition for it? In case it exists, where

and under which conditions is it observed? Is it relevant for

the field of artificial life or even beneficial for it?

In this paper, we argue that more research needs to be

done before we could dare to give a definition and begin to

understand it. The authors have the impression that emergence

is an extensive concept. Any approach towards a complete

theory of emergence will be inherently interdisciplinary and

a too narrow conception would distort the signification of

emergence. Hence, studies to formalize it are too early at this

stage. First, some rather fundamental questions need to be

answered. For example, a set of examples needs to be found

that can safely be considered emergent without logical errors.

The maximal reward of this patience could be a new theory

with an immense impact.

The intention of this paper is a humble attempt to be a thought-

provoking impulse. The main substance we are able to promise

is that we juxtapose several concepts from other fields that

might be worth investigating in depth. We try to point up that

these concepts are relevant to any useful concept of emergence.

In this article, we argue that the concept of emergence is

intrinsically complex and interdisciplinary. Hence, any com-

plete theory of emergence will be complex and interdisci-

plinary as well. Here, we take the view point of physics

and computation. In a case study, we apply methods of

thermodynamics and statistical mechanics to Langton’s ant–

a system that is commonly considered to be emergent [1].

Based on this example system we discuss the concepts related

to (ir-)reversibility, undecidable properties of system states,

and infinity. Considering these concepts we find potential

thermodynamic and computational approaches to emergence.

We develop and discuss five hypotheses that might prove to

be relevant to emergence:

1) Micro-macro problems in modeling indicate emergence.

2) The seeming ‘emergence’ of reversible systems exclu-

sively relies on untypical (i.e., improbable) initial states.

3) Emergence is based on irreducible computations and

therefore only dissipative systems can be emergent.

4) Discrete systems are not emergent.

5) Emergence (in reversible systems) depends on undecid-

able differences between initial states.

In this paper, we cannot give an extensive discussion of

definitions of emergence but only a concise summary of

definitions that we take as the starting point for this work.

We also leave out any discussion of profound philosophical

aspects and restrict ourselves to physical and computational

issues only.

II. EMERGENCE

Defining emergence in the context of artificial life and multi-

agent systems is a challenging research topic. Possibly, Hol-

land is right in his pessimism stating [2]: ‘It is unlikely that

a topic as complicated as emergence will submit meekly to

a concise definition, and I have no such definition to offer.’

The original idea of emergence was to define a theory that

describes the ‘concept of genuinely new kinds of properties

produced by nature that cannot be reduced’ [3]. Usually,

two levels are introduced in definitions of emergence: a

macroscopic level and a microscopic level. The probably most

relevant definition is ‘weak emergence’ or the definition by the

‘only means is simulation’-argument by [4], [5]:

A macro-state P of S with micro-dynamic D is

weakly emergent iff P can be derived from D and

S’s external conditions but only by simulation. [...]

for P to be weakly emergent, what matters is that

there is a derivation of P from D and S’s external

conditions and any such derivation is a simulation.

The authors consider the definition of emergence based on

the simulation argument as the one that is most robust to

objections. A similar definition is reported in [6]: ‘A true

emergent phenomenon is one for which the optimal means of

prediction is simulation.’ Also the definition by Standish [7]



is related: ‘An emergent phenomenon is simply one that is

described by atomic concepts available in the macrolanguage,

but cannot be so described in the microlanguage.’

An alternative but fuzzier concept is the ‘not explicitly

defined’-argument. See for example [8]:

In other words, we can speak of emergent individual

behavior if the resulting robot behavior was not

explicitly programmed in any of its functional blocks

and arises from interactions among them [...] and

with the environment.

However, without a formal theory the distinction between

explicitly and implicitly defined behaviors is rather subjective.

A second alternative is the concept of ‘intrinsic emergence’ by

Crutchfield who argues: ‘Emergence is meaningless unless it

is defined within the context of processes themselves’ [9]. The

idea is to overcome the requirement of an external observer

[10], [9]. Such a definition is intriguing but leads to the subtle

issue of novelty as stated in the paper title: ‘Is anything ever

new?’ [9], which is currently a rather informal concept. The

question whether a system’s macroscopic state is really new

or whether it is defined on the micro-level already before

the instantiation stays unanswered. As discussed by Stepney

et al. [11]: How could anything new actually emerge from

something that is already existent? However, Bickhard and

Campbell [12] argue that this question is ill-posed.

Other definitions that rely, for example, on the Aristotelian

‘the sum is more than its parts’-argument seem to have a

shortcoming. For example, we refer to Kubı́k [13]:

Basic emergence then refers to a property of the

system that can be produced by interactions of its

agents (components) with each other and with the

environment and cannot be produced by summing

behaviors of individual agents in the environment.

Such a definition seems to include, for example, almost every

man-made machine. However, it excludes systems such as

termites building clusters of wood chips [14] or ants building

clusters of corpses [15]. In these scenarios a single agent

would produce the same outcome and would have the same

functionality. Therefore, these scenarios should not be defined

to be emergent according to Kubı́k. Still, we will focus mainly

on the ‘only means is simulation’-argument in this paper.

III. A CASE STUDY: LANGTON’S ANT

At first, we present a case study, to which we will refer

mainly throughout the general discussion of irreversibility,

infinity, and undecidable properties of initial states. As our

example we choose Langton’s ant (LA) [1]. There is a lot of

literature that extends Langton’s original ant and that deeply

investigates characteristics of it. See for example [16], [17],

[18]. The actual and only relevance here is that LA might be

considered to be emergent because, for example, for a given

initial configuration we cannot know for sure whether it will

show the typical highway pattern. Hence, the typical approach

would be to simulate the ant and to search for a highway

pattern. For the ant’s world we choose a finite, toroidal grid.

(a) t ≈ 105 (b) t ≈ 106

Fig. 1. Patterns generated by five co-existing Langton’s ants.

Hence, the investigated system is neither infinite nor is it

irreversible as we argue in the following. Whether this is

good or bad news for the potential emergence of LA will be

discussed below.

At first, we discuss which property of this system can be

modeled with methods of statistical mechanics. The ant’s

highway pattern corresponds to a periodic pattern in the

sequence of right and left turns which, in turn, corresponds to

a periodic pattern in the sequence of colors (white or black)

of discovered grid sites. This sequence of colors corresponds

to a certain ratio of white to black sites in both the set of all

visited grid sites and accordingly scaled over time and space

in the fully available grid. Hence, we use the ratio of white

sites to all grid sites as an analogon of the thermodynamic

entropy. The number of white sites is denoted by W (t), the

total number grid sites by N , and the number of black sites in

the grid is hence given by N−W (t). The ratio of white sites is

given by S(t) = W (t)/N . The state of highest entropy would

be indicated by S = 0.5 (ignoring artificial states such as a

half all black, half all white grid), states of lowest entropy are

S = 0 and S = 1. The importance of highways is diminished

in this work because the grid is finite and any highway will be

disrupted when the ant approaches sites that had been visited

before. In addition, we will investigate multiple co-existing

ants on one grid. We argue below that this is a valid approach

in the context of analyzing the ant’s potential for emergence.

Fig. 1 shows typical grid configurations at two time steps for

five ants (randomly positioned) in a 240 × 240 toroidal grid

that was initially 100% white.

In the following we derive a macroscopic model for S(t)
similar to the statistical mechanics by Boltzmann and we

demonstrate that the approach of ensemble averages seems

to be infeasible here.

A. Stoßzahlansatz

We have a grid of
√

N ×
√

N grid sites and there are M LAs

on the grid. We want to find a model for the ratio of white

sites

S(t) = W (t)/N. (1)

We extend this by a distinction between sites that have not

yet been visited by any ant (unvisited sites u) and sites that

have already been passed by at least one ant (passed sites p).



In a second distinction we further subdivide these numbers

into unvisited black sites ub, passed black sites pb and for

white sites respectively. Rewriting eq. 1 accordingly yields

S(t)N = uw(t) + pw(t). Introducing ∆(t) = pw(t) − pb(t)
we can write this without using pw and pb explicitly

S(t)N = uw(t) +
1

2
(N − uw(t) − ub(t) + ∆(t)). (2)

Now we focus on finding a good representation of ∆. With b
and w we denote the number of black and white sites respec-

tively that will be visited by an odd number of ants in the next

step (i.e., they will switch their state). Hence, we get

∆(t + 1) = ∆(t) + w(t) − b(t). (3)

Both b and w are composed of both unvisited and passed sites.

We get

w(t) = α(t)pw(t) + β(t)uw(t), (4)

for the ratio α of passed white sites that will be visited by an

odd number of ants, the ratio β of unvisited white sites that

will be visited by an odd number of ants and

b(t) = γ(t)pb + δ(t)ub, (5)

for ratios γ and δ accordingly. We extend eq. 3 and get

∆(t + 1) = ∆(t) − α(t)pw(t) − β(t)uw(t)

+ γ(t)pb(t) + δ(t)ub(t). (6)

Now we have to ignore the microscopic details. There is no

way of treating w and b without considering the trajectories of

the ants. Hence, we approximate the real situation with an ana-

logue of Boltzmann’s Stoßzahlansatz (molecular chaos) [19],

for an easy-to-read introduction see [20]. First, we assume that

the ants have visited already many sites. Hence, we assume

that the ratio α of passed white sites, that will be visited by an

odd number of ants, and the ratio γ of the black counterpart

are equal. That is ∀t : α(t) = γ(t). In addition, we restrict

the model to the special case of ub(0) = 0 here, for an easier

notation. Simplifying eq. 6 yields

∆(t + 1) = ∆(t) − α(t)(pw(t) − pb(t)) − β(t)uw(t)

= (1 − α(t))∆(t) − β(t)uw(t) (7)

Second, we assume that the ants need many steps to reach

all sites and that the sequence of sites, which are visited by

the ants, is uncorrelated concerning their states. Hence, the

number of unvisited sites uw is proportional to the probability

of being unvisited for the site that was initially farthest from

any ant and the trajectory of LAs has similar properties as a

random walk on a lattice. We can model the probability of

being unvisited for any site following [21, eq. 9b]

uw(t)/N = c1 ln(
√

Ne)/ ln(Ne) exp(−t/(ARNe ln(Ne))),
(8)

for a constant c1 = 2 that is used to scale uw(0) = 1,

an effective number of lattice sites Ne, and a constant AR

that depends on the dimension of the grid. The constant for

bounded 2-d lattices is AR = 0.44 according to [22]. By
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Fig. 2. Plots of the ratio of white sites S as measured in the simulation and
by the model with double logarithmic scale (grid size N = 2402 , M gives
number of ants).

investigating the point process of placing M ants (points)

on a
√

N ×
√

N lattice we obtain the expected maximal

distance between an ant and a lattice site. This distance is

used to calculate the number of sites each ant has to explore

by subdividing the toroidal grid into bounded squares. The

fitted function for the probability of being unvisited of that

site that was initially farthest from any ant is given by

Ne(M) =
(

1.41374(
√

M/N)−1
)2

. (9)

Finally, we assume that in the average the probability of a

passed site being visited by an ant is dependent on the ant

density and the density of passed sites in the grid. We neglect

the possibility that more than one ant visits a site at the same

time since the probability that two ants are at the same site is

less than 0.001 for all considered settings. The probability of

a site to get a first visit by the ant depends on the density of

unvisited sites and the ant density. Hence, we get

α(t) = (N − uw(t))M/N2, (10)

β(t) = c2uw(t)M/N2, (11)

with a constant c2 = 1/(2π) that scales the area of passed

sites to the outline of the area of unvisited sites. By combining

eqs. 2, 7, 8, 10, and 11 the macro-model is completed now.

In Fig. 2 we compare simulation results with the model. For

M < 500 the true value of S is underestimated but for M ≥
500 the model gives a very good prediction.

B. Ensemble average

Despite these good predictions the Stoßzahlansatz model has

shortcomings as discussed below. For example, we see that

S(t) → 0.5 as t → ∞ due to eq. 8 which does not correspond

to the microscopic behavior as shown below (e.g., see Fig. 4).



Therefore, we try to derive an alternative approach. In the fol-

lowing, we demonstrate the difficulty of deriving an ensemble

average for the difference between the number of white and

the number of black sites ∆′(t) = uw(t)+pw(t)−pb(t). With

χ(r, t) we denote the color of the site at r and time step t,
whereas 1 represents a black site and -1 a white site. With

m(r, t) we denote the number of ants that will visit the site

at r. Hence, the dynamics of χ is given by

χ(r, t + 1) = (−1)m(r,t)χ(r, t), (12)

(note, −10 = 1, for me even: −1me = 1, and for mo odd:

−1mo = −1) and we get

∆′(t) =
∑

r

χ(r, t)

=
∑

r

(−1)m(r,t−1)χ(r, t − 1)

=
∑

r

(−1)m(r,t−1)+m(r,t−2)+···+m(r,0)χ(r, 0). (13)

Taking now the ensemble average yields

〈∆′(t)〉 =
∑

r

(−1)〈m(r,t−1)+m(r,t−2)+···+m(r,0)〉χ(r, 0).

(14)

Hence, the problem reduces to evaluating 〈m(r, t − 1) +
m(r, t − 2) + · · · + m(r, 0)〉. Now we have to address the

trajectories of the ants. Say the position of ant k in the grid

at time t is given by Ak(t). Then we get

m(r, t) =

M
∑

k=1

δ(Ak(t), r), (15)

for a 2-d variant of Kronecker’s delta (gives 1, if the two

parameters are equal; otherwise 0). At this point, we have a

problem because we do not want to evaluate the complete

ant trajectories Ak(t). This would be a microscopic model.

In case of continuous systems, the usual way out is to find a

differential equation for the trajectories Ak(t) that could be

integrated over a small time interval (e.g., see [23], [24]). In

case of a discrete system one would have to find a difference

equation. However, it seems that there is no way of finding

an integrable, closed-form representation of the ant’s behavior

that would, for example, correctly describe periodic micro-

behaviors (cf. Fig. 4). Therefore, this approach seems to fail.

IV. FUNDAMENTAL PROBLEMS

IN MICRO-MACRO MODELING

The case study with LA is an example for the fundamental

problems in deriving macroscopic models based on micro-

scopic behavior. Systems, that consist of highly correlated

micro-entities, are difficult to model macroscopically because

microscopic details (e.g., correlations) cannot be ignored or,

if ignored, the model gives wrong predictions. This complex

of problems is described by the concept of the micro-macro

problem as discussed in [24]:

The micro-macro link or also called micro-macro

problem is a technical term in sociology [25],

[26]. This term is based on the concept of micro-

interactions (interactions between individual hu-

mans, for example, actions that are aimed to change

the actions of others) and macro-structures (struc-

tural rules defined, for example, by the human soci-

ety). The micro-macro link describes the mutual in-

fluence of the macro-structure to micro-interactions

and vice versa. The action of an individual might be

influenced or caused by the individual’s perception

of the macro-structure. This behavior influences, in

turn, the macro-structure leading to a closed loop.

Due to this loop structure it is difficult to distinguish

whether the cause of a considered action is found

on the micro- or the macro-level as indicated by the

term ‘micro-macro problem’.

This rather fuzzy defined problem of separating the micro-

level from the macro-level becomes concrete in the derivation

of macro-models of multi-agent systems (as discussed below)

and in compiling global-to-local programs [27], [28].

One cause of the micro-macro problem might be, as argued

in [29], that novelty is generated in a creative step or creative

leap in emergent systems. This corresponds to the general

problem of deriving macro-models based on micro-models.

For example, based on the micro-model ‘Langevin equation’

(a stochastic differential equation describing, for example,

Brownian motion) the macro-model ‘Fokker–Planck equation’

(a deterministic partial differential equation describing the

evolution of a probability density) can be derived; however, in

a critical step of the derivation a high number of collisions per

time is assumed to be able to usefully average over them [23],

[24]. If the mean free path is long, another macro-model, the

Boltzmann equation, is used which describes the probability

density over space, time, and velocity of a particle in a medium

(kinetic theory). However, in its general form it includes

the so-called collision term which describes the effects of

particle-particle collisions. Ludwig Boltzmann (1844–1906)

determined this term applying his famous Stoßzahlansatz (as

discussed in the previous section). He only considers collisions

of pairs of particles that are assumed to be uncorrelated prior

to the collision. This is, however, not generalizable because

particles often are correlated prior to the collision. The macro-

model used for higher densities (short mean free path) is the

Navier–Stokes equation (fluid mechanics). Interestingly the

transition from the Boltzmann equation to the Navier–Stokes

equation with increasing density is deducible only for special

cases. Even the approach of Lattice Boltzmann methods, that

is an altogether different approach, shows similar problems for

high Mach numbers, that is, particles with high velocities and

few collisions per time [30], [31]. The persistence of these

problems independent of the modeling method and depending

on the particle densities (i.e., number of correlations) indicates

a generality of the micro-macro problem.
These problems persist, if models, such as the Langevin or the

Fokker–Planck equation, are applied to emergent systems of

autonomous agents. Always, a creative step is necessary in the

derivation of the macro-model because micro-behavior relies
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Fig. 3. Reversibility: At t = 117, 937 the directions (i.e., velocity vectors)
of all ants are inverted which corresponds to the inversion of time. The
subsequent behavior is an inverted replay of the former behavior.

on macro-structures [24]. It is an open question whether this

creative step is necessary due to our ignorance or because this

novelty was actually generated by the emergent system (cf.

[10], [9]). We call this issue the micro-macro problem which

is the challenge of including the correlations of the particles

into the macro-model. We claim that the micro-macro problem

is a symptom of emergence and should, hence, be included in

a theory of emergence.

V. REVERSIBILITY

In this section, we want to resume the discussion of the relation

between micro- and macro-models of multi-agent systems.

There is a qualitative difference between micro-models and

macro-models. For example, the micro-model of gas kinetics

(Newtonian mechanics) is time-reversible while the thermo-

dynamic macro-model (Boltzmann equation) is irreversible.

Still, Boltzmann claimed to have derived the second law of

thermodynamics (macro-model) based on the micro-model

via statistical mechanics (Stoßzahlansatz). Today it is widely

acknowledged that Boltzmann gave only a proof for the ideal

gas limit. How is it possible to derive irreversible macro-

rules based on reversible micro-rules? This is discussed in an

easy-to-read paper by [20] based on the example of the Kac

ring model [32]. The ‘solution’ is to assume that the particles

are uncorrelated. This way, the history of the system is fully

ignored. The Boltzmann entropy increases monotonically over

time (cf. section III-A). Thus, it is irreversible. The derivation

of an irreversible model based on a reversible model was

only possible by ignoring the correlations between particles

(assumption of statistical independence). This asymmetry was

criticized by Loschmidt’s reversibility paradox [33].

Now we want to discuss whether reversibility is relevant

for emergent systems. Note that Standish [7] considers ir-

reversibility itself an emergent property. It turns out that

systems, that are considered to be emergent, show differences

concerning reversibility. LA is obviously (although unproven)

time-reversible [34]. This is easily shown by running it, for

example, until a highway has formed. By inverting the ant’s

current direction it will completely remove the highway and

return into its initial state. If we keep it running ‘back in time’

it will start another highway which we could remove again by

inverting the direction again. Note that this holds also for a

group of coexisting LAs, if their order of execution is kept (see

Fig. 3). Thus, in case of LA we have a full time-symmetry

and there is no favored direction of time.

A more traditional example (similar to Maxwell’s demon) is

a box with gas that is divided into two halves. Say all the

gas is in one half of the box – a state of low entropy. Say

we remove the barrier in the middle. After some time, the

gas will be equally distributed in the box – a state of high

entropy. However, in this configuration the particles are highly

correlated. We will refer to this state of equally distributed but

correlated particles by Loschmidt configuration which has a

special property: If we invert the velocities of all gas particles

they will approach the earlier state of being all in one half of

the box again (low entropy) because the system is reversible.

The important question is: What can we learn from that in

terms of emergence? In case of a reversible system the initial

state is of importance and we have to ponder which states

are typical. Hence, we should investigate whether a certain

initial state or a class of initial states occurs with a reasonable

probability in the ‘natural’ context of the system (citing

Boltzmann [35]: ‘Aside from a vanishingly small number

of special initial states, the most probable states will also

occur the most frequently (at least for a very large number

of molecules).’). If you choose to start with a Loschmidt

configuration it should not be surprising to see an entropy

decrease and some kind of pattern formation. For example, one

could start with the configuration at time t = 117, 937 of the

experiment shown in Fig. 3. Then the ‘emergent’ phenomenon

would be the removal of all black sites (before new black

sites are created in a new cycle). Therefore, the emergence of

highway formations (or similarly the generation of low entropy

states based on Loschmidt configurations) by LA could be

considered an artifact of choosing a fully homogeneous initial

state which is arbitrarily improbable compared to the number

of possible states 2N .

VI. IRREVERSIBILITY

Now we want to turn to irreversible systems that show emer-

gent behavior. An example from our lab is the BEECLUST

algorithm that allows a swarm to aggregate at a maximum

of a gradient field although individual agents do not perform

a greedy gradient ascent [36]. Controlled by this algorithm

two agents will stop when they approach each other, measure

the local value of the gradient, and wait for some time

proportional to this measurement. Possibly others will join and

aggregate in a cluster. For a sufficiently steep gradient the two

measurements of two initial agents in such a cluster will be

different, thus also their waiting times, and one robot will leave

before the other. This behavior causes the irreversibility of the

system. Inverting time would mean that the robot, that left later

before, would stop without approaching another robot now.

This uncaused stopping is an eminent problem of causality.

Why should a robot stop without a significant change in its

sensor input?



Theorizing about this peculiarity can actually help in under-

standing emergent systems. In a frictionless system of natural

gas or billiard balls, there is no such problem of uncaused

stopping with inverted time because collisions have immediate

and mutual effects. The autonomous robots controlled by

BEECLUST, however, have an ‘autonomy of ignoring’ such

effects. The staying robot stays unaffected when the other one

leaves. This behavior causes an asymmetry in the robot-robot-

interactions and in causality. In contrast to the billiard balls the

robots have an inner state that can change without a change

in the sensor input. This is the actual cause triggering the

leave of the second robot. There is a counter implemented by

a variable that is reduced in each cycle until it reaches zero

which triggers the end of the waiting phase. The problem with

inverted time is that this counter would need to change from

zero to one spontaneously.

The above mentioned ‘autonomy of ignoring’ is in fact a

process of forgetting information which has special physical

properties. In a standard electronic circuit the process of

resetting a variable is at least connected to a thermal process,

that is, thermodynamics. Therefore, it is important to clarify

that the BEECLUST scenario relies on irreversible processes

such as diffusion of heat. Hence, we claim that Landauer’s

principle [37] might be important in this context, in contrast

to the following statement: ‘However, for many so-called

self-organizing systems the physical reality is quite detached,

i.e., conservation or other thermodynamic laws are not (and

need not be) part of the model dynamics, so Landauer’s

principles [37] [...] are irrelevant in the general scenario’ [38].

We want to object to this statement as the thermodynamic

characteristics that would be ignored by this detachment might

be a prominent feature to the theory of emergence.

The distinction between reversible and irreversible computa-

tion [39] might be relevant for emergence. Logically reversible

computations are defined by a transition function that maps

old computational states to new ones by a one-to-one function.

Note that in contrast to natural systems, reversible computation

models are very unreliable. Consider for example the billiard-

ball model [40]. Arbitrarily small perturbations would quickly

generate chaotic deviations. In contrast, nature evolved robust

computational, emergent systems as, for example, the trail

system of ants that is based on the irreversible process of

evaporating pheromones. Hence, the question arises whether

thermodynamic features such as the irreducibility of diffusion

processes are the sine qua non of emergence.

VII. INFINITY

From a computational point of view, there is an essential

difference between multi-agent systems defined in discrete or

continuous worlds. For example, the set of emergent patterns

for a discrete world is recursively enumerable, that is, we could

in principle define an algorithm that generates and outputs all

patterns ordered by their size without leaving anything out.

In case of continuous worlds, this is not possible because

the set of real numbers is uncountable, that is, there is no

ordering that would not miss infinitely many patterns between

two neighboring patterns (for an entertaining introduction

see [41]).

In the following, we argue that emergence can only exist in

continuous worlds, however, let us assume for now that it

could exist in discrete worlds. We focus on the ‘not explicitly

programmed’-argument for a moment. Therefore, one property

of emergent systems would be that there is no rule in the

system that describes the potentially emergent phenomenon

directly. However, for every discrete system and for all of

its finite or recurrent patterns (e.g., the ant’s highway) we

can derive automatically a trivial macro-system that has a

1-time-step rule that immediately produces the behavior of

this pattern. This is done by summarizing the computations

of several time steps and several relevant discrete states (e.g.,

states of grid sites) in macro-rules. For example, in case of

the glider pattern (recurrent, size 3 × 3, and a period of four

steps) in the Game of Life (GOL) we have to summarize 3×3-

packages of the grid as one macro-site and rules summarize

four steps in one macro-step. Accordingly the number of

possible macro-states increases to 29 instead of just two micro-

states (dead or alive). In case of LA, this could be done in an

extreme by summarizing the initial about 10,000 steps, that

are needed before the ant starts the highway on a all-white

grid, in one giant macro-step. Thus, neither for the macro-

glider nor for the macro-ant-highway one could argue that

the behavior is not explicitly programmed. Counter-arguments

could be that these macro-systems would explicitly incorporate

the complexity that was formerly intrinsic to the system. In

addition, the rule system would be very complicated and

it would be a pre-computation of the simulation. Still, this

algorithm exists and could be used to find ‘emergent’ patterns

automatically. Standish argues: ‘An emergent phenomenon is

simply one that is described by atomic concepts available in

the macrolanguage, but cannot be so described in the mi-

crolanguage’ [7]. Is the micro-to-macro-language distinction

still relevant, if we can compute the macro-language?

The ‘only means is simulation’-argument is also a weak

corrective here because it is difficult to argue why a strictly

finite (and in reference to a particular pattern even constant)

number of pre-calculations should already count as simulating;

or differently put, which calculations qualify as being simu-

lations and which are regular calculations as they would be

necessary to calculate, for example, (non-chaotic) planetary

motion. We try to find a distinction between mathematical

calculations and simulation through a definition of mathemat-

ics by Mach [42]: ‘Mathematics is the method of replacing

new numerical operations by beforehand carried out, that is,

not to be reiterated operations as far as possible and in the

most economical way.’1 We claim that our above mentioned

method, hence, qualifies as a mathematical calculation instead

of a simulation. Even the definition of weak emergence via

explanatory incompressibility [43] does not clearly disqualify

this reasoning because at the least the dynamics of the system

would be compressed by macro-rules. Finally, the Turing

1Translation by the authors.
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Fig. 4. Finiteness: As the grid size is limited, the behavior of the ants has
to be cyclic (M = 2 ants).

Universality of GOL is not an argument because our approach

is limited to finite patterns.

Reconsidering our model from section III-A, issues connected

to (in-)finite systems are Zermelo’s paradox [44] and Poincaré

recurrence theorem [45]. Zermelo criticized that Boltzmann’s

entropy actually cannot decrease forever even in continuous

worlds. In LA (on a discrete, finite torus) this can be imitated

as shown in Fig. 4. On a finite grid all sequences of grid

configurations have to be cyclic. The obtained cycle of length

138,466 (Fig. 4(a)) is far from the theoretical maximum of

2240 (ignoring the combinatorics of ant positions). The typical

rejection to Zermelo’s paradox is that the recurrence time

(in continuous worlds) is practically close to infinity (citing

Boltzmann: ‘it has many trillions of digits’ [46]). This is

surely not true for discrete (especially, for finite and discrete)

systems. Hence, all investigated patterns in the dynamics of

discrete systems are cyclic and, even worse, the cycle times

are often practically relevant (as shown in Fig. 4). Therefore,

the concept of emergence in discrete worlds is questionable.

VIII. UNDECIDABLE PROPERTIES

There is a peculiarity about reversible systems concerning

undecidable properties of system states. Imagine we have

generated a Loschmidt configuration in the above mentioned

box of gas and an additional configuration that is fully random

(basically, all velocity vectors point to equally distributed

directions and are of random lengths). How could one tell

the difference? The only way seems to be by means of

simulation. Hence, it could be argued that the correlated

particles constitute an emergent property following the ‘only

means is simulation’-argument. Note that in agreement with

thermodynamics a randomly chosen initial state will with high

probability result in dynamics that increases entropy during a

reasonable sized time interval while Loschmidt configurations

are infrequent. Again the question arises: Does the emergent

system generate the unlikely Loschmidt configurations itself

or are they used to initialize the system (i.e., they originate

from outside of the system)?

Note that deciding whether an initial state results in emergent

behavior (i.e., testing for Loschmidt configurations) might be

undecidable in general. This concept can be extended in the

following way. To prove that emergence is an undecidable

property of initial states, a good approach would be to try

to prove semi-decidability. One approach could be to show

the semi-decidability of emergent systems, that is, a test that

answers ‘yes’ for systems, that are emergent, and that gives

no answer for non-emergent systems. The anti-approach to

emergence would be to show that only the non-emergence is

semi-decidable, that is a test that answers ‘no’ for systems

that are not emergent and that gives no answer for emergent

systems. For example, for finite patterns a successful auto-

mated construction of a 1-time-step rule would prove the non-

emergence of this pattern but that would be needed for all

patterns.

We elaborate on this in a little gedankenexperiment. We take

a standard example of an undecidable problem: the Post

Correspondence Problem (PCP) [47]. An easy conversion

(even though a little absurd) to the multi-agent domain could

be to make the word pairs embodied objects floating in a

medium and showing Brownian motion. We would need an

infinite number of them and an infinitely large pool. This

example’s absurdity is relativized by its similarity to artificial

and natural processes, such as the non-biological physical

organisms reported in [48] or the DNA replication. Say

we chose initial states that represent instances of PCP and

we call finished pattern formations (i.e., solutions to PCP)

emergent due to their perfection (at least in accordance with

the ‘not explicitly programmed’-argument). Then it would

provably be undecidable whether a given initial state will

result in emergent behavior. This shows in addition to the

above mentioned Loschmidt configurations that the concept

of emergence is related to undecidable properties of system

states (see also [49]).

IX. CONCLUSION

We have reported two modeling techniques for LA. The

Stoßzahlansatz fails because the grid sites are correlated. Its

predicted monotonic entropy increase is incorrect because the

system is cyclic. The ensemble approach would require a cor-

rect, closed-form approximation of the ant’s behavior within

small time scales which is unknown. Hence, there is a micro-

macro modeling problem that might indicate emergence. We

have argued that in reversible systems the selection of an

initial state is relevant for emergence. In another hypothesis we

stated that irreducible computations might be a sine qua non of

emergence. For discrete systems we argued that the recursive



enumeration of ‘emergent’ patterns might allow automatic

computations of macro-languages. Finally, we proposed the

hypothesis that emergence and undecidable properties of sys-

tem states might be related and that emergence might depend

on undecidable differences of initial states. Future work is

to consider each hypothesis, to elaborate on sophisticated

definitions of characteristics of emergence, and to develop

constructive recipes to design emergent systems.
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