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Abstract—This paper aims at detecting the presence of group
structures in complex artificial societies by solely observing
and analysing the interactions occurring among the artificial
agents. Our approach combines: (1) an unsupervised method
for clustering interactions into two possible classes, namely in-
group and out-group, (2) reinforcement learning for deriving
the existing levels of collaboration within the society, and (3)
an evolutionary algorithm for the detection of group structures
and the assignment of group identities to the agents. Under a
case study of static societies — i.e. the agents do not evolve
their social preferences — where agents interact with each other
by means of the Ultimatum Game, our approach proves to be
successful for small-sized social networks independently on the
underlying social structure of the society; promising results are
also registered for mid-size societies.

Keywords—Group Identity Detection, Evolutionary Computa-
tion, Artificial Societies, Emergence of Complexity.

I. INTRODUCTION

When populations of socially-driven individuals are let
to interact with each other, in absence of any form of cen-
tralised control ruling their comportment, complex dynamics
occur yielding emergent global patterns such as culture and
friendship. Such patterns occur due to the ability of the
individuals to adapt their behaviour based on the experience
gathered from the interaction with the other individuals (i.e.
self-organisation) [1]. Societies are Complex Adaptive Systems
(CAS) [2] which means that they are hard to model. In par-
ticular, the modelling of a society’s Emergence of Complexity
— i.e. the transition from the local perspective (i.e. individuals
and their interactions) to the global perspective (e.g. friendship
social networks) [2] — is far from being trivial. The key
reason that makes the modelling challenging is the recurrent
influence the global structures have on the behaviour of the
individuals [1].

This paper focuses on the automatic detection of
friendship-based group structures as a form of global pat-
tern formation. The approach we take exploits the recursive
structure of the CAS-society (see Figure 1): we aim to infer
existing groups by analysing how the individuals behave when
they interact with each other. We claim that the influence the
group structures have on the individuals can be detected by
observing the different levels of altruism manifested during
the interactions, given that collaboration can be interpreted as
reciprocal altruism [1], and that individuals belonging to the
same group (in-group) tend to collaborate more with each other
than when they interact with individuals belonging to other
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Fig. 1. The canonical representation of a Complex Adaptive System [2].
The emergent global structures are not only the result of the interactions
among the CAS-society (i.e. Emergence of Complexity); they also influence
the behaviours of the society’s individuals.

groups (out-group) [3], [4]. Therefore, the aim of our research
is the definition of a computational framework — hereafter
called Group Modelling (GM) framework — capable of mea-
suring the level of collaboration existing among the individuals
and assign group identities to them. The GM framework we
envision should be capable of operating in real-time, so that it
can provide insight of global-level behaviours and dynamics,
such as group formation and evolution. The GM framework we
propose is composed of three pipelined modules, as depicted
in Figure 2: (1) at first, the continuous flow of interactions
occurring in the society is analysed by an Interaction Classifier
(I), which labels the individuals as being either in-group or
out-group; (2) subsequently, a Collaboration Learning module
(C) interprets the in/out-group labels as rewards which are then
used by a Reinforcement Learning [5] update rule in order to
represent the existing levels of altruism among the agents; (3)
finally, a Group Identity Detection module (G) interprets the
learned collaboration values as a weighted, directed and fully
connected network and aims to identify community structures
within it, thus, leading to the assignment of group identities to
the agents.

As a case study, the GM framework presented in this paper
aims to detect consolidated group identities in complex artifi-
cial societies of believable, human-like agents — manifesting
social preferences such as altruism and reciprocity [6] when
interacting with each other — in the Ultimatum (or Bargain
Social Dilemma) Game [7]. Consolidated groups are groups of
static agents which have reached an equilibrium in the game.

The task of optimal network partitioning into community
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Fig. 2. The schematic representation of the GM framework proposed.

structures is known to be computationally hard (NP-complete)
over the set of all graphs of a given size [8], [9]; the novelty
of this study is the successful application of evolutionary
computation to derive an approximate solution for the problem
in fully connected, directed and weighted networks.

The work presented here builds upon and extends an
earlier study of the authors [10] which focused on the I
module. In this paper we compare the performance of an
evolutionary algorithm (EA) against the performance obtained
by a hierarchical Complete Link clustering algorithm [10] for
correctly inferring the group identities of the agents. Results
obtained on two society sizes (20 and 50 agents), under
different distributions of social relationship statuses (friend,
acquaintance and stranger), showcase that the EA approach is
able to detect the true group structures quickly and efficiently
for small-sized societies independently of the underlying social
structures of the society. Moreover, the key findings demon-
strate the promise of the GA for mid-sized societies.

II. RELATED WORK

There is a number of studies investigating groups of agents
and their behaviours in artificial societies, virtual environ-
ments, and multiplayer games, but also in real life scenarios.
Nowak et al. [11], among others, focus on the evolution of
collaboration by evolving the policies of artificial agents. The
approach, however, neglects the impact of collaboration on
group formation. Similar research was conducted by Hammond
and Axelrod [12], though it was focused on the evolution of
ethnocentrism. Among the studies on collective behaviour, Ler-
man and Galstyan [13] create mathematical models, through
differential equations, of the collective behaviour of simple
multi-agent systems, such as social insects. Their approach
differs from ours in that they aim to build a generic model of an
agent, based on observations, and then devise a mathematical
model of it. Martinez et al. [14] investigated the use of rule-
learning algorithms to predict group behaviours in artificial
societies. Their method is based on historical data and even
though we share a common goal (i.e. modelling of group
dynamics), that study does not aim to model group identities
in real time.

The use of social network in Agent-Based Modelling is not
novel [15]. For instance, Xianyu [16] utilises spatial networks
in order to regulate the interactions among the agents and allow
them to manifest inequity aversion-based social preferences.
Similar approaches to the use of complex network has also
seen, among others, in the work of Liu et al. [17]. Our work
differ from the assumption that our agents are spatially close
to each other and interact with any of the other agents in
the society; moreover, the use we make of the network is to
represent their social relationships, i.e. friendship.

With respect to modelling community structures in real-
life situations, Palla et al. [18] adopt a data-driven approach

for the detection of real-life community structures, by means
of clique percolation, of phone call networks. Similarly, Eagle
et al. [19] rely on phone data to detect community structures
of reciprocal friendship, and cross-validate them against the
self-reports gathered from the participants of their experiment.
That study is possibly the most relevant to this paper since self-
reports gathered in that study could correspond to our notion of
true group structures. However, the data-driven social networks
built in [19] — i.e. based on the phone calls — are undirected
and unweighted; furthermore, their analysis is based on the
frequency and proximity of the interactions, rather than on the
investigation of their qualities, such as collaboration.

EAs have been used for the detection of community struc-
tures, such as in the studies on Pizzuti [20] and Tasgin [21],
and Liu et al. [22], who propose Multi-objective Evolution-
ary Computation for the detection of overlapping community
structures. Nevertheless, their work did not examine directed
weighted networks. Farmer and Fotheringham [9], on the
other hand, aim to identify community structures in such
complex networks. While we are inspired by that study, we
use principles of evolutionary computation (instead of spectral
partitioning) for identifying group structures.

III. INTERACTION PROTOCOL: THE ULTIMATUM GAME

The artificial agents interact with each other exclusively
by means of the Ultimatum, or Bargain Social Dilemma,
Game [7]. We decided to implement this game as our inter-
action protocol due to its popularity in many fields, such as
Behavioural and Social Sciences, Economics and Evolutionary
Computation (see [7], [24]–[26] for a non exhaustive list).
Moreover, we believe that such resource-based interaction
protocol can be easily converted into game-based mechanics,
given our aim to model group structures in collaborative
multiplayer games.

The social dilemma within this game is embedded as
follows: within a population P = {a0, . . . an−1} of n artificial
agents, at each round of interaction t (Episode), an agent
ai ∈ P is randomly selected — through uniform distribution
— to become the provider agent of the bargain game, whilst
the remaining n−1 agents take the role of receiver agents. The
provider has now to bargain, with each n− 1 receiver agents,
an equal endowment e. ai makes an offer 0 ≤ oi,j ≤ e to each
receiver agent aj ∈ P \ {ai}. The receiver agent has now two
options: it can accept the bargain (dj,i = 1), in which case aj
will gain oi,j and ai will gain e − oi,j , or refuse the bargain
(dj,i = 0), in which case both agents will gain zero. We will
hereafter refer to the whole set of n − 1 bargains made by a
single provider agent ai as a one-to-many interaction [10].

IV. True GROUP STRUCTURES AND AGENT BEHAVIOUR

The central behavioural feature we aim to investigate in
our research is the capability of each artificial agent in the
society to manifest social preferences [6], here intended as the
ability to be differently altruistic based on which other agents
it interacts with.

In this study we consider three social relationship types:
two agents can either be Strangers (S), Acquaintances (A) or
Friends (F). All relationship types are reciprocal, meaning that
e.g. if agent ai considers agent aj as a friend, the same is being
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(a) Transitive Friendship Networks (b) Scale-free Friendship Networks

Fig. 3. An example two social networks SN = SNF + SNA considered in our study, for a population of 20 agents. In both cases, SNA was built with
pA = 0.5. The group identities are represented by the colours of the vertices. Figure 3(a) depicts four groups built upon transitive friendship networks (SNF ),
Figure 3(b) depicts four groups built upon scale-free friendship networks. The group identities were built my means of the Clauset Newman Moore algorithm [23],
on SNF only.

perceived by aj towards ai. The whole set of 1
2 [n(n− 1)]

reciprocal relationship values can be interpreted as a fully
connected, weighted, discrete social network SN = (P,R),
in which vertex i ∈ P represents agent ai, and the weighted
edge wi,j = {0, 1, 2} ∈ R represents, respectively, the S,
A or F relationship type existing between agents ai and aj .
An alternative way to imagine SN is as the sum of two
mutually exclusive friendship and acquaintanceship networks,
SN = SNF + SNA.

In this paper we considered two methods of generating
SNF and one method for generating SNA. With respect to
the former, the first method instantiates transitive networks
(i.e. if wi,j = 2, wi,k = 2 ⇒ wj,k = 2) by firstly defining the
number of groups structures in the artificial society, according
to normal distribution N(μn, σn), and then by assigning group
identities to each agents uniformly; the second method builds
scale-free friendship networks by starting from two friend
agents and iteratively adding one node and one friendship link,
in accordance to Barabási and Albert [27], for n− 2 loops.

The generation of SNA, instead, is done stochastically as
follows: each non-friend agent couple has a probability pA of
being an acquaintance and 1− pA of being a stranger.

Figures 3(a) and 3(b) depict, respectively, an example
of transitive and scale-free friendship networks, and relative
group identities. We define the True group structures of the
society as the community structures, obtained by means of
the Clauset Newman Moore algorithm [23], on SNF only,
whilst SNA will have the function to introduce noise in the
observations of the social preferences.

The three relationship types and the group structures in-
fluence the altruistic behaviour of the agents when interacting
with each other, causing the agents to manifest social pref-
erences [6]. Although in this study we assume consolidated
groups and therefore no agent adaptation, we still aim to study
believable agents with social preferences simulating human-
like behaviours. The social preferences are driven by the
findings of Marzo et al. [28]: (1) each agent maintain a social
perception si,j ∈ [0, 1] of each other agent aj ∈ P ; ai will
consider aj a stranger if 0 ≤ si,j ≤ 1/3, acquaintance if
1/3 < si,j ≤ 2/3, friend if 2/3 < si,j ≤ 1; (2) the offers are

generated as follows:

oi,j = 1/2 e (si,j + r) (1)

where 1/2 indicates that the provider agent always aims to
maximise its own gain, and r is uniformly sampled within the
[−0.1, 0.1] interval; (3) the offer decision making policy is the
following:

di,j =

{
1 if oj,i ≤ si,j
0 else

(2)

V. GROUP MODELLING FRAMEWORK

The GM framework proposed (see Figure 2) is composed
of three connected modules, described in details in their
respective subsections, which are executed sequentially at the
end of each Episode t. First, an Interaction Classifier module
(I, Subsection V-A), analyses the flow of interactions and
for each provider-receiver agent pair decides whether they
belong to the same group (in-group) or not (out-group) [3].
Second, a Collaboration Learning module (C, Subsection V-B)
interprets I’s in/out-group labels as rewards in order to learn
up-to-date collaboration values of each agent pairs in the
society via Reinforcement Learning-inspired update rules [5].
Third, a Group Identity Detection module (G, Subsection V-C),
processes the learned collaboration values computed by C via
artificial evolution [29] to partition the society into group
structures and assign group identities to each agent.

A. Interaction Classifier

In this study we use the one-to-many Agent Preference
probabilistic classifier [10]: given the whole set of n−1 offers
formulated by provider agent ai:

Oi = {oi,0, . . . oi,i−1, oi,i+1, . . . oi,n−1} (3)

I firstly performs a min-max normalisation of all the offers:

ôi,j =
oi,j −min{Oi}

max{Oi} −min{Oi} (4)

then, it interprets ôi,j as the probability that aj is in-group
with ai; given a uniform-distribution sampled random number
r ∈ [0, 1], I’s output labels are obtained as follows:
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I(i, j) =
{

in-group if r ≤ ôi,j
out-group otherwise

(5)

B. Collaboration Learning

Given the CAS perspective of the problem, we assume
that the interactions occurring in the society have the Markov
property — i.e. the agents perform actions based on their cur-
rent internal state, which represents their social relationships
perceptions and group identities. As a consequence, the whole
society has the Markov property. With respect to the canonical
Reinforcement Learning terminology, hence, C aims to learn
the collaboration-function values, Ci,j , of the whole society.

At the end of the t-th flow of interactions, C performs
collaboration learning by means of the constant-α Monte Carlo
update rule for non-stationary environments [5], [10]:

Ci,j(t) = Ci,j(t− 1) + α [Ri,j(t)− Ci,j(t− 1)] (6)

where 0 < α < 1 is a constant step-size parameter regulating
the learning rate, and Ri,j(t) is the immediate reward of
the interaction between ai and aj after the t-th episode,
where Ri,j(t) = 1 if I(i, j) = in-group and Ri,j(t) = 0 if
I(i, j) = out-group.

C. Group Identity Detection

Collaboration matrix C is finally processed by G in order
to partition the agents into group structures and assign group
identities. C can be viewed as a fully-connected, directed,
weighted and continuous network, and the partitioning task can
be interpreted as the detection of community structures. How-
ever, the task of optimal network partitioning into community
structures is computationally hard, known to be NP-complete
over the set of all graphs of a given size [8], [9]. Given
the complexity, we decide to derive an approximate solution
for this problem by means of evolutionary computation [29].
Evolutionary algorithms have already been used to detect
community structures in networks [20], [21]; though, to the
best of our knowledge, there has not been any attempt to use
them on fully connected, directed and weighted and continuous
networks, which C represents a good instance.

The fitness function of our EA is a modularity measure,
introduced by Leich and Newman for weighted networks [8]
and then successfully extended to directed weighted networks
by Farmer and Fotheringham [9]:

f(x) =
1

w

∑
i,j

(
Ci,j −

win
i wout

j

w

)
δ(ci, cj) (7)

where w =
∑

i,j Ci,j is the total sum of collaboration values

of the matrix/network, win
i is the in-degree of vertex i/agent

ai, w
out
j is the out-degree of vertex j/agent aj , ci is the label

of the community/group identity to which vertex i/agent ai
is assigned, and δ(ci, cj) is the Kronecker delta symbol, for
which δ(ci, cj) = 1 if ci = cj and δ(ci, cj) = 0 otherwise.

The EA we implemented considers a population of m
genotypes; each genotype xi has n chromosomes: each chro-
mosome k of xi, x

k
i , represents the group identity ck of agent

ak. The possible values of the chromosomes are taken from an
alphabet G, which holds the labels of possible group structures.
The set of different c ∈ G symbols in xi, Ĝi ⊆ G, represents
the group structures detected by xi.

At the beginning of each experimental setup, G is ini-
tialised as G = {0, 1} and the genotypes are initialised with
chromosomes values sampled uniformly within G. In other
words, our GM framework initially assumes the existence of
two group structures within society P .

At the end of Episode t, once C has been updated, the
EA is reinitialised by following these five steps: (1) the EA
recalculates the fitness values of its genotypes, and sorts the
population by descending fitness, since the updates of C
performed by the C module might have generated changes
in the genotype ranking of the EA; (2) only the genotypes
with the highest possible fitness, {x0, . . . xj} remain in the
population, the remaining m−(j+1) genotypes are discarded;
(3) the EA calculates the average number of group struc-
tures detected by the individuals who survived the previous
step, μĜ = (

∑j
i=0 Ĝi)/(j + 1) (4) the EA initialises G

as G =
{
0, . . . μĜ/2

}
; (5) the EA fills the population by

generating m − (j + 1) genotypes which chromosomes are
uniformly sampled within G =

{
0, . . . μĜ/2

}
. The fitness

of the m − (j − 1) genotypes is calculated and the whole
population of m genotypes is sorted by decreasing fitness.

At this point, the evolutionary process starts. Each evolu-
tionary generation is organised as follows: (1) the first half
of the population survives the evolution, the second half
is replaced by m/2 offsprings; (2) each new offspring xh

is generated by means of uniform crossover and mutation:
first, two genotypes, xi and xj , are chosen, among those
who survived the previous step, according to rank selection;
uniform crossover is then applied: each chromosome xk

h,
k = 0 . . . n− 1, is uniformly chosen between either xk

i or xk
j

with probability 0.5; mutation is finally applied iteratively: as
long as a uniformly sampled random value r ∈ [0, 1], is less
than a mutation probability pmut, a random chromosome of
xh is uniformly chosen and its value is replaced by one of
the symbols of G uniformly chosen; (3) the EA calculates the
fitness values of its new m/2 offsprings and sorts the whole
population of m genotypes in a descending order.

At the end of each evolutionary generation, the average
fitness value of the first half of the genotypes is calculated.
If the average is not improving for l consecutive generations
(local limit), G is updated by inserting a new symbol; if the
average is not improving for g consecutive generations (global
limit), the EA stops and the genotype with the highest scored
fitness is the one chosen by G module to represent the group
structures and identities of the artificial society.

VI. EXPERIMENTAL SETUP AND RESULTS

As previously mentioned, the work proposed in this paper
extends our earlier work on the detection of consolidated group
identities [10] by considering evolutionary computation as a
more efficient way to implement the Group Identity Detection
component. In that study the group identities where detected
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Fig. 4. The six true group structures for n = 50, pA = 0 and transitive
friendship networks for which the EA framework obtained the smallest nme
error of 0.1, by detecting the whole red group of agents as being part of the
grey group of agents.

via an agglomerative Complete-Link (CL) algorithm with
the elbow-rule as stopping criterion [10]. We will therefore
consider the performance obtained by the previous best GM
configuration as a baseline performance for this paper. The two
approaches share the Agent Preference interaction classifier
(see (5)) and the constant-α Monte Carlo update rule (see (6)).
In all the experimental setups presented here, we used the
following parameters for the GM frameworks: α = 0.1 for
C; genotype population size of m = 40, local and global
limit l = 10 and g = 50 generations respectively, mutation
probability pmut = 0.8 for EA’s G component.

The performance evaluation of the GM frameworks was
calculated as the normalised mismatch error nme(T, I), be-
tween the True (T , see Section IV) and the inferred (I , see
Subsection V-C) group identities, calculated as follows:

nme(T, I) =
n− h(T, I)

n

where h(T, I) is the maximum assignment score obtained
by means of Kuhn’s Hungarian algorithm [30]. We have
considered two artificial society sizes, of n = 20 and n =
50 agents, with SNA built according to two probabilities:
pA = 0.5 and pA = 0. Finally, the following sample means and
sample standard deviations of the number of group structures,
generated by the Scale-free method for SNF throughout the
whole set of experiments conducted, were used to generate the
number of transitive groups: N(μ20 = 4.43, σ20 = 0.70) and
N(μ50 = 7.44, σ50 = 1.10);

The results presented in this paper are based on the
average performance obtained by the repeated execution of the
same experimental setup for 10 independent runs. The graphs
also illustrate the best performance obtained, by EA and CL
depending on the experimental setup, across the 10 execution
runs.

A. Detection of Group Identities in Transitive Friendship Net-
works

Figure 5 depicts the average and best performance of the
EA and CL algorithms when transitive SNF networks are used
for both 20 and 50 agents and under two different probabilities
of acquaintanceship (pA) between non-friend agents. The first,
straightforward finding, is that CL manages to reach zero
misclassification error in all 40 total runs, hence independently
on n and pA. A near-optimal performance is matched by EA

Fig. 6. Scale-free true group structures for n = 50 and pA = 0 for which
the EA framework obtained the smallest nme error of 0.16.

for the n = 20 case (nme = 0 in 19 out of 20 runs) but not
for n = 50, for which the average nme error settles at about
0.26 across the two pA settings (nme is 0.254 for pA = 0.5
and 0.268 for pA = 0 — see Figure 5(b) and Figure 5(d)).

We argue that the evolutionary approach of EA is sound
and that the relatively poorer performance for n = 50, indepen-
dently on the values of pA, is mostly due to suboptimal settings
for the evolutionary computation parameters. To support this
claim, Figure 4 depicts the true group structures obtained
from transitive friendship networks, and the relative group
identities, for the experimental setup in which EA obtained
the best performance, which is depicted in Figure 5(d). In
this society structure the EA considered the true red group
(i.e. agents a6, a18, a24, a27 and a34) as belonging to the grey
group, hence yielding an error of nme = 0.10. Two possible
reasons would have led to this suboptimal solution: either
matrix C is not well representing the ongoing collaboration
values among the society, or matrix C is correct but G does not
thoroughly search for the best partitioning. The fitness value
of the true group structures calculated on the learned C matrix
gives a Modularity Measure of 0.314, whilst the inferred group
structures give a Modularity Measure of 0.299. Moreover, the
fitness value calculated for the true group structures was the
highest we managed to obtain. Such findings support that the
C matrix is accurate. In addition, Figure 8 depicts the average
landscape of the highest fitness values recorded at the end of
the evolutionary process for each Episode for n = 50 under
the two different settings for pA, across the 10 experimental
runs. The EA reaches an average highest fitness of 0.26 for
pA = 0, and we know empirically — at least for unweighted
directed networks [8] — that a Modularity Measure of 0.3
indicates good partitioning into community structures. In sum-
mary, indications suggest that the evolutionary process would
have reached the global optima, providing a more thorough
investigation of the parameter space.

B. Detection of Group Identities in Scale-free Friendship
Networks

Following the same experimental protocol as before, graphs
in Figure 7 depict the average and best performance of the EA
and CL algorithms when friendship networks with a scale-
free property are used. Not surprisingly, the CL fails to detect
the true group structures, which suggests that the algorithm is
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(d) n = 50, pA = 0

Fig. 5. Best and average performance across 10 runs of the two G modules (EA and CL) in case of transitive friendship networks.

not robust across different friendship network structures. This
is due to the very nature of the clustering algorithm, which
hierarchically builds concentric groups, unlike the nature of the
community structures, which define group identities by con-
sidering within community and between communities vertex
degrees. On the other hand, the EA manages to reach very low
misclassification errors. Since the Modularity Measure used as
the EA’s fitness function is the extension of the one used to
build the true group structures, and since the C matrix proved
to well represent the existing collaboration values among the
agents, we argue that the evolutionary process is beneficial for
the accurate inference of the true group identities.

Nonetheless, EA reaches nme = 0 only three times out
of 20 for n = 20 and never for n = 50. We argue that
the consideration made in Subsection VI-A still holds: we
are confident that better settings for the evolutionary process
parameters would lead to lower misclassification error. In addi-
tion, insights for the performance of the EA can be found when
analysing the Modularity Measure (7) with respect to group
structures inferred by the EA. The network (SN = SNF ) of
the best performing EA depicted in Figure 6 corresponds to an
obtained misclassification error of 0.16 (see Figure 5(d)). The
colour of the agents represent the true group identities, whilst
the spatial organisation depicts the inferred group identities.
Hence, agents a18 and a49 are identified as belonging to the
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Fig. 8. Highest fitness values obtained for n = 50 within transitive friendship
networks and across the two pA values considered.

blue group, a20 as belonging to the purple group, a23 and a37
as belonging to the orange group, and finally a0, a19 and a34 as
belonging to the cyan group. The fitness value of the true and
the inferred group structures is 0.127 and 0.129, respectively,
suggesting that the EA manages to find a better solution for a
community structure, given the C matrix. In other words, the
causes for the EA’s misclassification error are more likely to
be found in the previous modules of the learning framework,
i.e. I and C.
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Fig. 7. Best and average performance across 10 runs of the two G modules (EA and CL) in case of scale-free friendship networks.

VII. DISCUSSION AND FUTURE WORK

The promising results presented in Section VI allow us
to state that the GM framework, with a G module based
on evolutionary computation is well robust across friendship
network types for small societies (i.e. n = 20 agents), though
it needs further investigation, both under the form of fine
parameter tuning, and by considering further modifications of
the evolutionary algorithm for increasing and maintain genetic
diversity, such as fitness sharing and island models.

As previously hinted, the fact that the performance of EA is
dependent on the probabilities of acquaintanceship, pA, opens
for the further investigation of whether the GM framework is
capable of predicting properties of future group dynamics (e.g.
the migration of agent from one group to another) as Figure 6
might seem to suggest. The peculiar property of G to update
its alphabet of groups G based on the results obtained in the
previous Episode suggests that the framework would be robust
with changes in the emergent structures of the society, though
further investigation of the most appropriate learning rules (i.e.
those defining the C module) would be required.

Our evolutionary approach aims also to contribute to the
more general research field of network analysis. The Modu-
larity Measure used as fitness function (7) allows for the use
of EAs for the detection of community structures in directed,
weighted and continuous networks. An additional step of our

research would require a comparison of performances between
our algorithm and e.g. to those of Pizzuti [20], Tasgin [21],
and Liu et al. [22]; we will also compare the performance of
our evolutionary approach against some other heuristics, such
as Spectral Partitioning [9].

The framework makes use of an one-to-many Interaction
Classifier, I, which is focused solely to the different altru-
ism levels of the provider agent. Therefore, we argue that
our framework can be easily extended to a vast plethora
of resource-exchange-based scenarios, such as the Dictator
Game [4], the Favour Game [31], and possibly also to
non-game theory games such as collaborative multiplayer
games [32]. Moreover, its ability to detect group structures
in real-time allows for the application of the GM framework
within the Experience-Driven Procedural Content Genera-
tion framework [33] for the creation of adaptive multiplayer
games [32].

Future work will pursue three concurrent paths: first, we
will investigate the ability of our framework to detect the
formation and evolution of group structures within dynamic
societies; second, we will extend the field of application of our
framework to interaction scenarios alternative to the Ultimatum
Game, such as the Favour Game [31]; third, we will implement
a multiplayer game which mechanics of interactions among the
players will require some form of resource exchange/giving,
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similarly to the Favour Game [31] and the Response Game [4].

In fact, we believe that collaborative games would en-
hance gaming experience features — e.g. agency, proximity
and contextualisation of the interactions within an existing
environment — this would not only increase the level of
simulations of real-life scenarios [34], we believe it would also
facilitate a proper emergence of group structures, as opposed
to a more artificial instantiation of them observed in relevant
game theory literature [4]. Moreover, the real-time capabilities
of the GM framework could be combined with Experience-
Driven Procedural Content Generation mechanisms [33] in
order to, for instance, investigate the effects that the changes
in the environment have on group dynamics.

VIII. CONCLUSIONS

This paper presented an evolutionary computation approach
for the detection of consolidated group structures, built on
existing networks of reciprocal friendship, in complex artificial
societies of agents interacting with each other by means of the
Ultimatum, or Bargain Social Dilemma, Game. The framework
proposed is capable of detecting the true group structures by
solely observing the different levels of altruism a provider
agent manifests depending on which other agent it interacts
with. The evolutionary algorithm designed is able to success-
fully detect community structures in fully connected, directed
and weighted networks. Such characteristics collectively can
be found among the most complex network structures in the
field of network analysis.
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