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Abstract—We show that the diversity-multiplexing
tradeoff of a half-duplex single-relay channel with identi-
cally distributed Rayleigh fading channel gains meets the
2 by 1 MISO bound. We generalize the result to the case
when there are N non-interfering relays and show that
the diversity-multiplexing tradeoff is equal to the N + 1
by 1 MISO bound.

I. INTRODUCTION

Cooperation between nodes can provide both diversity
and degree of freedom gain in wireless fading chan-
nels [15], [16], [1]. The diversity-multiplexing tradeoff
(DMT) was a metric introduced by Zheng and Tse [3]
to evaluate simultaneously the diversity and degrees of
freedom gain in general fading channels. Significant
effort has been spent in the past few years in computing
the DMT of cooperative relay networks. The simplest
such network has one relay and a direct link between the
source and the destination (Fig. 2, with the channel gains
modeled as quasi-static identically distributed Rayleigh
faded and known only to the respective receive node. A
simple upper bound to performance is the DMT of the2
by 1 MISO channel obtained when the source and relay
can fully cooperate to transmit to the destination:

d(r) = 2(1− r) 0 ≤ r ≤ 1

It is quite easy to see that this upper bound can
be achieved if the relay can operate on a full-duplex
mode, i.e. transmit and receive at the same time. But
most radios can only operate on a half-duplex mode.
Somewhat surprisingly, the DMT for the half-duplex
single-relay network is still an open problem despite
substantial effort.

Figure 1 shows the DMT performance of several
schemes and how they compare to the MISO bound. We
see that none of the schemes achieves the bound for the
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Fig. 1. Diversity multiplexing tradeoff of several schemesfor the
half-duplex relay channel

entire range of multiplexing gains. The dynamic-decode-
and-forward [4] and partial decode-and-forward [13],
[17] schemes achieves the MISO DMT for multiplexing
gainsr ≤ 0.5 but there is a gap forr > 0.5. Is this gap
fundamental or is there a better scheme?

In this paper, we show that indeed there is a scheme
that achieves the MISO DMT forall multiplexing gainsr
up to 1. The problem with decode-and-forward schemes
is that for r > 0.5, it takes too long for the relay to
decode the whole message and there is not enough time
for it to forward information. The problem with partial-
decode-and-forward scheme is that the source does not
know how to split the overall message without knowing
the instantaneous channel gains of the various channels.
In contrast, the scheme that we propose, which we call
quantize-and-map, does not decode or partially decode
the message. Instead, the relay extracts the significant
bits of the received signal above noise level by quanti-
zation and re-encodes them to forward to the relay. The
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destination then combines the received signal from the
relay and the direct signal from the source to solve for
the information bits. Because there is no need to decode
any message, there is also no need for any dynamic
adaptation of the listening period for the relay. In fact,
it turns out that it suffices for the relay to always listen
half of the time and talk half of the time regardless of
the channel state.

The quantize-and-map scheme is based on a recent
deterministic approach to approximate the capacity of
Gaussian relay networks [7], [8], [9], [10]. Inspired by
the optimal scheme that was found for the deterministic
relay networks [7], [8], the quantize-and-map scheme
was shown in [9], [10] to achieve within a constant
gap of the capacity of arbitrary Gaussian relay networks,
where the constant gap does not depend on the channel
parameters. A key observation is that since the scheme
does not require any channel information at the nodes, it
can also be utilized in a fading scenario in which there is
no channel state information available at the transmitter.
Now since at high SNR and high rates the approximation
gap is negligible, as a corollary one can show that for
any listen-transmit schedule, this scheme achieves the
diversity-multiplexing tradeoff of the cut-set bound on
the capacity. The desired result is obtained when this
fact is combined with the observation that the DMT of
the cutset bound of the half duplex network matches
that of the MISO bound when the relay listens half of
the time and talks the other half. This result can also be
generalized to more than1 relay when these relays have
no link between themselves.

II. SYSTEM MODEL

Consider a network as shown in Figure 2 with a source
S, a destinationD, and one relay nodeR.
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Fig. 2. The relay channel.

All the channel linkshsd, hsr, hrd are assumed to be
flat-fading, i.i.d complex normalCN (0, 1) distribution. It

is assumed that although random, once realized, channel
gains remain unchanged for the duration of the codeword
and change independently from one codeword to another
i.e., quasi-static fading. Noise at all of the receivers is
additive i.i.dCN (0, 1) independent of any other form of
randomness in the system. All nodes have single antenna
and have equal average power constraint specified by av-
erage Signal to Noise Ratio (SNR), denoted byρ. Relay
nodeR is assumed to be in half-duplex operation and
for simplicity it is assumed that transmission of source
and relay are synchronous at symbol level. Furthermore,
channel state information (CSI) is only available at the
receivers. So, relay has CSI abouthsr, destination has
CSI abouthsd, hrd and no CSI at all at the source.

III. D IVERSITY-MULTIPLEXING TRADEOFF OF THE

HALF-DUPLEX RELAY CHANNEL

In this section we characterize the diversity-
multiplexing tradeoff of the half-duplex relay channel,
described in section II. First we describe the quantize-
map relaying scheme that we proposed earlier in [9] and
[10]. As we showed in these references, this relaying
scheme achieves a rate within a constant gap to the cut-
set upper bound of the capacity of the relay channel
for all channel gains, where the constant is independent
of the channelSNRs. Furthermore, since this relaying
scheme does not require any channel information at the
source and the relay, it can also be performed in our
scenario (i.e. no CSI at the transmitter). Now, since
at high SNR and high rates the approximation gap is
negligible, as a corollary we will show that this scheme
achieves the diversity-multiplexing tradeoff of the cut-set
bound on the capacity for any listen-transmit scheduling
at the relay. Finally we illustrate that a fixed scheduling
that relay listens only half the time and transmits the rest
is enough to achieve the diversity-multiplexing tradeoff
of the 2 × 1 MISO channel, hence we find the optimal
DMT of the half-duplex relay channel.

A. Description of the relaying scheme

We have a single sourceS with a sequence of
messageswk ∈ {1, 2, . . . , 2KTR}, k = 1, 2, . . . to be
transmitted. At both the relay and the source we create
random Gaussian codebooks. Source randomly maps
each message to one of its Gaussian codewords and
sends it inKT transmission times (symbols) giving
an overall transmission rate of R. Due to half-duplex
nature of the relay, it has to do listen-transmit cycles.
Relay operates over blocks of timeT symbols and since
total length of codeword at source isKT we haveK



blocks in each codeword. Relay listens to the firstT t

(0 ≤ t ≤ 1) time symbols of each block. LetX1(k)
S

denote the sequence of theseT t symbols transmitted
at the source in blockk. Also let Y(k)

R and Y
1(k)
D be

the received signal at relay and destination respectively
during this time. Then the relay it quantizes its received

signal in the firsttT time symbols toŶ
(k)
R which is then

randomly mapped into a Gaussian codewordX
(k)
R using

a random mapping functionfR(Ŷ
(k)
R ) and sends it in

the nextT (1 − t) time symbols. LetY2(k)
D denote the

sequence of symbols received by destination during this
time. Given the knowledge of all the encoding functions
at the relay and signals received overK blocks, the
decoder D, attempts to decode the message sent by the
source.

B. DMT of the relaying scheme

For any fixed listen-transmit scheduling strategy (i.e.
fixed t), the cut-set upper bound on the capacity of the
half-duplex Gaussian relay channel,Chd, is given by (1)
on the top of next page [11] .

Now, as we showed in [10], for any fixed listen-
transmit scheduling, the quantize-map relaying scheme
described in Section III-A, uniformly achieves a rate
within a constant gap to the capacity. Therefore by
Theorem 4.7 in [10], for all channel gains we have,

Chd(hsr, hsd, hrd, ρ, t)− κ ≤ Rquantize-map(hsr, hsd, hrd, ρ, t)
(3)

whereκ ≤ 15 is a constant that does not depend on the
channel gains andSNR.

Now since this relaying scheme does not require any
channel information at the source and the relay, it can
also be performed in our scenario in which there is no
channel state information available at the transmitter.
Furthermore, as at highSNR and high data rates the
approximation gap is negligible, as a corollary we will
now show that for any fixed listen-transmit scheduling,
this scheme achieves the diversity-multiplexing tradeoff
of the cut-set bound.

Theorem 3.1:For any fixed scheduling t, the
quantize-map relaying scheme achieves the diversity-
multiplexing tradeoff ofChd, whereChd is defined by
(1).

Proof: Assume a targeted communication rateR.
By (3), we know that the destination will be able to
decode the information sent by the source as long as

Chd(hsr, hsd, hrd, ρ, t)− κ > R (4)

Therefore for any schedulingt, we have

Poutage(ρ) ≤ P
{

Chd − κ < R
}

(5)

where the probability is calculated over the randomness
of channel gain realizations. Now by definition, for any
schedulingt, the achievable diversity of quantize-map
scheme is

dQM (r) = − lim
ρ→∞

log (Poutage(ρ))

log ρ
(6)

(5)
≥ − lim

ρ→∞

log
(

P
{

Chd − κ < r log ρ
})

log ρ
(7)

∗
≈ − lim

ρ→∞

log
(

P
{

Chd < r log ρ
})

log ρ
(8)

where∗ is true sinceκ is a constant and does not scale
with ρ. Therefore for anyt, the quantize-map relaying
strategy achieves the diversity-multiplexing tradeoff of
Chd(t).

Next, we will show that witht = 0.5, the diversity-
multiplexing tradeoff of Chd matches the diversity-
multiplexing tradeoff of the2 × 1 MISO channel, and
hence we complete the proof of our main Theorem.

First we give some intuition on why this is true.

C2

hsd

C1

hsd

h s
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S D

Fig. 3. Two scheduling modes of the system: relay listenst fraction
of the time and relay transmits(1− t)fraction of the time

First note that in equation (2), the first term
corresponds to the information flowing through cut
{S}, {R,D} (see Figure 3) and the second term cor-
responds to the information flowing through the cut
{S,R}, {D}. Now, the value of the first cut{S}, {R,D}
corresponds to the capacity of a SIMO system with
1 transmit antenna and2 receive antennas where one



Chd(hsr, hsd, hrd, ρ, t) = max
p(x1

S
,x2

S
,xR)

min{tI(X1
S;YR, Y

1
D|XR) + (1− t)I(X2

S;Y
2
D|XR), tI(X

1
S;Y

1
D) + (1− t)I(X2

S, XR;Y
2
D)}(1)

≤ min{t
`

log(1 + ρ(|hsr|
2 + |hsd|

2))
´

+ (1− t)
`

log(1 + ρ|hsd|
2´

, (1− t)
`

log(1 + ρ(|hrd|+ |hsd|)
2)

´

+t
`

log(1 + ρ|hsd|
2´

} (2)

receive antenna (corresponding to relay) is listening only
t amount of time. Similarly, the value of the second cut
i.e., {S,R}, {D} corresponds to the capacity of a MISO
system with2 transmit antennas and1 receive antenna,
where one transmit antenna (corresponding to relay) is
transmitting only1 − t amount of time. Since we are
limited by the minimum of these two values optimal
strategy is to try to make them equal. Also since DMT
of 1× 2 SIMO is same as that of2× 1 MISO, a natural
choice is to sett = 0.5.

Once we sett = 0.5, DMT of cut-set bound is just
DMT of a 2 × 1 MISO system with1 transmit antenna
being used only half the time, but this system isstrictly
better than a system with2 transmit1 receive antennas
and where each of the two transmit antennas are used
only half the time in an alternate fashion i.e., parallel
channel with rater on each channel. It is well known
and easy to compute that DMT of this parallel channel
is 2(1− r). Also we have obvious upper bound of DMT
of MISO system which is again2(1− r). Thus the cut-
set bound achieves the optimal DMT fort = 0.5. The
formal proof of this is given in Appendix A.

IV. EXTENSION TO MULTIPLE-RELAY NETWORK

In this section we extend our result to general
multiple-relay networks. The listen-transmit scheduling
model that we use to study this problem is the same
as [11]. In this model the network has finite modes
of operation. Each mode of operation (or state of the
network), denoted bym ∈ {1, 2, . . . ,M}, is defined as
a valid partitioning of the nodes of the network into two
sets of ”sender” nodes and ”receiver” nodes such that
there is no active link that arrives at a sender node1.
For each nodei, the transmit and the receive signal at
modem are respectively shown byxmi andymi . Also tm
defines the portion of the time that network will operate
in statem, as the network use goes to infinity. As shown
in [11], the cut-set upper bound on the capacity of the
Gaussian relay network with half-duplex constraint,Chd,
is given by (9) on the top of next page.

1Active link is defined as a link which is departing from the set
of sender nodes

Now we describe the quantize-map relaying scheme
that we proposed in [9], [10] for general half-duplex
relay networks.

A. Description of the relaying scheme

We have a single sourceS with a sequence of mes-
sageswk ∈ {1, 2, . . . , 2KTR}, k = 1, 2, . . . to be trans-
mitted. At all nodes we create a random Gaussian code-
book. Source randomly maps each message to one of
its Gaussian codewords and sends it inKT transmission
times (symbols) giving an overall transmission rate of R.
Relays operate over blocks of lengthT symbols. Starting
from the beginning of the block each relayi spends
a total of tmT symbols in statem, m = 1, . . . ,M .
In each state, if it is assigned to listen, it receives a
sequenceY(k,m)

i . Otherwise, if it is assigned to transmit,
it quantizes all received signals in the previous block

(i.e. Y
(k−1,m)
i , m = 1, . . . ,M ) to Ŷ

(k,m)
i which is

then randomly mapped into a Gaussian codewordX
(k,m)
i

using a random mapping functionfi(Ŷ
(k,m)
R ) and sends

it in that tmT time symbols. Given the knowledge of all
the encoding functions at the relay and signals received
over K + |V | − 2 blocks, the decoder D, attempts to
decode the message W sent by the source.

B. DMT of the relaying scheme

As we showed in [10], for any fixed listen-transmit
scheduling, the quantize-map relaying scheme described
above, achieves within a constant gap to the capacity.
Therefore by Theorem 4.7 in [10], for all channel gains
we have,

Chd − κ ≤ Rquantize-map (10)

whereκ ≤ 5|V| is a constant that does not depend on
the channel gains andSNR.

Therefore similar to Theorem 3.1 we can show the
following theorem:

Theorem 4.1:For any fixed scheduling, the quantize-
map relaying scheme achieves the diversity-multiplexing
tradeoff ofChd, whereChd is defined by (9).

To find the optimal performance of this scheme, one
should optimize over all possible scheduling strategies.
In general we don’t know the optimizing strategy, how-
ever as we show in Section IV-C, in a special case of



Chd ≤ Chd = max
p({xm

j }j∈V,m∈{1,...,M})

tm: 0≤tm≤1,
PM

m=1
tm=1

min
Ω∈ΛD

M
X

m=1

tmI(Ym
Ωc ;Xm

Ω |Xm
Ωc ) (9)

two hop network withN non interfering relays, a fixed
uniform scheduling (i.e.tm = 2−N , m = 1, . . . , 2N )
achieves the optimal DMT.

C. Optimal DMT of two hop network withN non-
interfering half duplex relays

Consider a two hop network with single sourceS,
destinationD andN half-duplex relaysRi, 1 ≤ i ≤ N ,
as shown in Figure 4.

All the assumptions in section II are carried over with
additional assumption that there is no link among any
two relays. Lethsri be the link from sourceS to relay
i andhrid be the link fromith relay to destinationD.

Here is our main result for this relay network.
Theorem 4.2:The optimal diversity-multiplexing

tradeoff of a two-hop relay network, withN non-
interfering half-duplex relays is equal to the diversity-
multiplexing tradeoff of the(N +1)× 1 MISO channel.
Furthermore, it is achieved by the quantize-map relaying
strategy define in Section IV-A with fixed and uniform
scheduling,tm = 2−N , m = 1, . . . , 2N .

Proof: See Appendix B
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Fig. 4. Two-hop network with N half-duplex relays

APPENDIX A
ACHIEVING THE MISO BOUND IN THE RELAY

CHANNEL WITH t = 0.5

From theorem 3.1, it is sufficient to show that DMT
of Chd is equal to that of MISO.

For ease of computation definensd := log(1+|hsd|
2ρ)

andαsd as its exponential order i.e.,

αsd := lim
ρ→∞

log(1 + |hsd|
2ρ)

log ρ

then the probability density function (pdf) ofαsd can
be shown to be

fαsd
(αsd) = lim

ρ→∞
exp(−ρ−(1−αsd))ρ−(1−αsd) log ρ

= ρ−(1−αsd) 0 ≤ αsd ≤ 1

Consider first term in inequality (2), usingt = 0.5

0.5
(

log(1 + ρ(|hsr|
2 + |hsd|

2))
)

+ 0.5
(

log(1 + ρ|hsd|
2
)

.
= 0.5

(

max{log(1 + ρ|hrd|
2), log(1 + ρ|hsd|

2)}
)

+ 0.5
(

log(1 + ρ|hsd|
2
)

= nsd + 0.5(nrd − nsd)
+

similarly second term can be simplified resulting in

Chd
.
= nsd + 0.5min{(nsr − nsd)

+, (nrd − nsd)
+}

For R = r log ρ the cut-set bound is in outage if

nsd + 0.5min{(nsr − nsd)
+, (nrd − nsd)

+} ≤ r log ρ

i.e., αsd + 0.5min{(αsr − αsd)
+, (αrd − αsd)

+} ≤ r

∴ O(r) = {αsd, αsr, αrd | αsd

+ 0.5min{(αsr − αsd)
+, (αrd − αsd)

+} ≤ r}

PO(r) =

∫

α∈O(r)
fα(α)dα

=

∫

α∈O(r)
fαsd

(αsd)fαsr
(αsr)fαrd

(αrd)dα

=

∫

α ∈ O(r)
0 ≤ α ≤ 1

ρ−3+(αsd+αsr+αrd)dα

.
= ρ−d(r)



where

d(r) = inf
(αsd, αsr, αrd) ∈ O(r)
0 ≤ αsd, αsr, αrd ≤ 1

3− (αsd + αsr + αrd)

1) If αsd ≥ min{αsr, αrd}: Then outage im-
plies min{αsr, αrd} ≤ αsd ≤ r. And since
max{αsr, αrd} ≤ 1 we have(αsd + αsr +αrd) ≤
1 + 2r.

2) If αsd ≤ min{αsr, αrd}: Then Outage implies

αsd + 0.5(min{αsr, αrd} − αsd) ≤ r

αsd +min{αsr, αrd} ≤ 2r

αsd +min{αsr, αrd}+max{αsr, αrd} ≤ 1 + 2r

Therefore

d(r) = 3− (1 + 2r)

= 2(1− r)

�

Thus quantize-map relaying scheme achieves the optimal
DMT of 2× 1 MISO system.

APPENDIX B
DMT FOR TWO-HOP NETWORK WITHN

NON-INTERFERING HALF-DUPLEX RELAYS

We prove theorem 4.2 in two steps, we first show that
DMT of cut-set bound with fixed uniform scheduling
achieves DMT of(N + 1) × 1 MISO system and then
apply theorem 3.1.

A. DMT of cut-set bound for fixed uniform scheduling

In subsection IV-B theorem 3.1 showed that for any
fixed scheduling quantize-map relaying scheme achieves
the DMT of the cut-set for that scheduling. We make
use of this fact to show the achievablity of MISO
performance inN relay case. First we note that since
there areN half-duplex relays, each relay has a choice
to be either in receiving mode or in transmitting mode,
accordingly we haveM = 2N states. Then following the
lead from our single relay case and using the fact the
everything in network is nicely symmetrical we operate
network in each of these states for equal amount of
time i.e., tm = 2−N for m = 1, · · · , 2N . Now if we
show that DMT of cut-set for this scheduling is equal to
(N + 1)(1 − r) we are done.

We first derive a lower bound on the cut-set. Any cut
in a network partitions all nodes into two groupsΩ with

S ∈ Ω and its complimentΩc with D ∈ Ωc, each relay
has a choice of being in a eitherΩ or Ωc, thus we have
2N total possible cuts and the cut-set bound of network
is equal to the minimum of mutual information flowing
through each of these2N possible cuts.

V m

W
m

hsd

DS

Fig. 5. mth state of Network
V m

hsd

RVm

RWm

W
m

S D

Fig. 6. Z− channel

Consider a cutΩ in the network which is operating



in statem it looks as shown in fig. 5. LetVm ⊆ Ω− S

be the set of relaysRj ∈ Ω which are transmitting and
Wm ⊆ Ωc −D be the set of relaysRj ∈ Ωc which are
receiving in statem. Let RVm

be a relay with strongest
channel sayh∗rd := maxj{hrjd} j ∈ Vm to the destina-
tion and analogously letRWm

be a relay with strongest
channel sayh∗sr := maxj{hsrj} j ∈ Wm from source.
We can lower bound the total mutual information flowing
across this cut in fig 5 by the the mutual information
flowing across the same cut{S,RVm

}{RWm
,D} in the

Z-channel formed by these nodes, see fig 6. This Z-
channel can be viewed as MIMO system with upper

triangular channel matrixH =

(

h∗rd hsd
0 h∗sr

)

So mutual

information flow across this cut in Z-channel is given by

log det
(

I2×2 + ρHH†
)

= log
(

1 + ρ(|h∗rd|
2 + |hsd|

2 + |h∗sr|
2 + ρ|h∗rd|

2|h∗sr|
2)
)

≥ max{log(1 + ρ|hsd|
2),

log
(

(1 + ρ|h∗sr|
2)(1 + ρ|h∗rd|

2)
)

}

= max{log(1 + ρ|hsd|
2), log(1 + ρmax

j∈Vm

(|hrjd|
2))

+ log(1 + ρ max
j∈Wm

(|hsrj |
2))}

= max{nsd,max
j∈Vm

(nrjd) + max
j∈Wm

(nsrj))}

Thus for each cutΩ the cut value is,

CΩ ≥
1

2N

2N

∑

i=1

max{nsd,max
j∈Vm

(nrjd) + max
j∈Wm

(nsrj )}

(11)
Now the cut-set bound is simply,

Chd ≥ min
Ω

CΩ (12)

Lemma B.1:For any cutΩ, there areN + 1 distinct
links flowing across the cut and the mutual information
flowing through it given by (11) can be further lower
bounded by their average

CΩ ≥
nsd +

∑

j∈Ω−{S} nrjd +
∑

j∈Ωc−{D} nsrj

N + 1
(13)

Proof: See Appendix B-C

B. Optimality of DMT of each cutCΩ

Following Appendix A for each j, we define
αsd, αrjd, αsrj as exponential order’s ofnsd, nrjd, nsrj

respectively.
From lemma B.1 outage is equal to set

O(r) = {α | αsd+
∑

j∈Ω−{S}

αrjd+
∑

j∈Ωc−{D}

αsrj ≤ (N+1)r}

(14)

PO(r) =

∫

α∈O(r)
fα(α)dα

=

∫

α ∈ O(r)
0 ≤ α ≤ 1

ρ−(N+1)

.ραsd+
P

j∈Ω−{S} αrjd
+

P

j∈Ωc−{D} αsrj dα
.
= ρ−d(r)

where

d(r) = inf
α ∈ O(r)
0 ≤ α ≤ 1

(N + 1)−



αsd +
∑

j∈Ω−{S}

αrjd

+
∑

j∈Ωc−{D}

αsrj





= (N + 1)(1− r)

last equality follows from the equation 14. Now since
each cut has optimal DMT, from inequality (12) it is
clear that cut-set bound also achieves optimal DMT. And
then we use theorem 3.1.

C. Proof of Lemma B.1

To prove this, first we show the following lemma,
Lemma B.2:Consider a set of numbersa, s1, . . . , sn.

Assume functionf is such that for any setV ⊆
{1, . . . , n} we have,

f(V ) ≥ max(a, sV ) (15)

where

sV = {si|i ∈ V } (16)

Then

1

2n

∑

V⊆{1,...,n}

f(V ) ≥
a+

∑n
i=1 si

n+ 1
(17)



Proof: Without loss of generality assume thatsi’s
are ordered (i.e.s1 ≤ s2 ≤ . . . ≤ sn). Then we have

1

2n

∑

V⊆{1,...,n}

f(V )

≥
a+max(a, s1) + . . . + 2n−1max(a, sn)

2n
∗
≥

a+max(a, s1) + . . . +max(a, sn)

n+ 1

≥
a+ s1 + s2 + . . .+ sn

n+ 1

where ∗ is true by applying two sequences
(a, s1, . . . , sm) and (2−n, 2−n, 2−n+1, . . . , 2−1) to
the Tchebychef’s inequality,

Tchebychef’s inequality: Assume two sequences
(a1, . . . , an) and (b1, . . . , bn) are similarly ordered (i.e.
(au − av)(bu − bv) ≥ 0, for all u andv). Then

1

n

n
∑

i=1

aibi ≥

(

1

n

n
∑

i=1

ai

)(

1

n

n
∑

i=1

bi

)

(18)

Now we prove Lemma B.1.
Proof: (proof of Lemma B.1)

First note that for anyVm ⊆ Ω− {S} andWm ⊆ Ωc −
{D} we have

f(Vm,Wm) = max

(

nsd,max
i∈Vm

(nrid) + max
i∈Wm

(nsri)

)

≥ max(nsd, n3Vm
, n2Wm

)

where

n3Vm
= {nrid|i ∈ Vm}

n2Wm
= {nsrj |j ∈ Wm}

Now by Lemma B.2 we know that

1

2N

∑

Vm⊆Ω−{S}

∑

Wm⊆Ωc−{D}

f(Vm,Wm)

≥
nsd +

∑

i∈Ω−{S} nrid +
∑

i∈Ωc−{D} nsri

N + 1

hence the proof is complete.
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