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Abstract— We consider the problem of minimum-energy
multicast using network coding in mobile ad hoc networks
(MANETs). The optimal solution can be obtained by solving a
linear program every time slot, but it leads to high computa-
tional complexity. In this paper, we consider a low-complexity
approach, network coding with periodic recomputation, which
recomputes an approximate solution at fixed time intervals, and
uses this solution during each time interval. As the network
topology changes slowly, we derive a theoretical bound on
the performance gap between our suboptimal solution and
the optimal solution. For complexity analysis, we assume that
interior-point method is used to solve a linear program at
the first time slot of each interval. Moreover, we can use the
suboptimal solution in the preceding interval as a good initial
solution of the linear program at each fixed interval. Based
on this interior-point method with a warm start strategy, we
obtain a bound on complexity. Finally, we consider an example
network scenario and minimize the complexity subject to the
condition that our solution achieves a given optimality gap.

I. INTRODUCTION

In this paper, we consider the problem of establishing
minimum-energy multicast connections using network cod-
ing in mobile ad hoc networks (MANETs). In a static ad
hoc network, this problem can be formulated as a linear
program for linear and separable cost functions [5], unlike
the case without coding which is NP-hard [6]. However, in a
mobile scenario, where the locations of nodes in the network
change over time, it may still be computationally unattractive
to solve the linear optimization at every time slot.

In this paper, we investigate an approximate solution
approach based on periodic recomputation. This approach
comes from an intuition that when network topology changes
slowly, small perturbations occur in the original optimization
problem and the original solution remains relatively close to
the new optimal solution. In the strategy, time is divided
into equal intervals and a suboptimal solution is computed
at the first time slot of each interval. As the network topology
changes slowly, we use the resulting coding subgraph as
a suboptimal solution during each interval. We first derive
a bound on the maximum percentage deviation from the
optimal cost in terms of the percentage deviation in the cost
vector coefficients. For complexity analysis, we assume that
barrier and interior-point method is used to solve a linear
program at the first time slot of each interval. When we
recompute a solution, the linear optimization problem is a
slight perturbation of that of the previous time interval as

the network topology changes slowly. Then the suboptimal
solution in the preceding interval can be used as a warm-
start point for interior-point method. By combining our cost
bound with this warm start strategy, we obtain a bound on
complexity. Finally, we present an example network scenario.
In that scenario, we first evaluate our suboptimal strategy and
the cost bound. We also consider an optimization problem
that minimizes the time complexity subject to the condition
that suboptimal solution in the interval achieves a given
optimality gap during the interval.

A. Overview

We continue the introduction with a short review of related
work in Section I-B. Section II introduces the system model
and formulates the problem. We describe our approach and
obtain the theoretical cost bound in Section III. In Section
IV, we derive the time-complexity from interior-point method
with a warm-start strategy. We present a network scenario in
Section V. Section VI concludes this paper.

B. Related Work

Here we briefly review related works on network opti-
mization in MANETs for the case without coding.

In [10], Zhang et al. investigated energy-efficient packet
routing in a multi-hop wireless network with a deterministic
mobility model. They considered the objective of minimiz-
ing the energy consumption for packet delivery, subject to
the packet delay constraint and SINR requirement among
concurrent transmissions.

Rodoplu and Meng [11] describe a distributed position-
based network protocol optimized for minimum energy con-
sumption in mobile wireless networks that support peer-
to-peer communications. They illustrate that a simple local
optimization scheme executed at each node guarantees strong
connectivity of the entire network and attains the global
minimum energy solution for stationary networks.

Above works consider energy-efficient communication
problems in MANETs without coding. Each of them for-
mulates the optimization problem and proposes a strategy to
solve the problem with specific mobility model. In our paper,
we also consider an optimization problem that minimizes
the energy consumption in MANETs. We assume the use
of network coding and develop a suboptimal strategy with
lower complexity. Since we do not assume specific mobility
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model in our strategy, our bounds on the performance gap
and complexity can be used as a general bound for any
mobility model.

II. PROBLEM FORMULATION

In this section, we formulate the minimum-energy multi-
cast problem with network coding in MANETs using linear
programming. We adopt the framework from [3] which
models a wireless network with a directed hypergraph H =
(N ,A), where N is the set of nodes and A is the set
of hyperarcs. Each hyperarc (i, J) represents a loseless
broadcast link from node i to nodes in nonempty set J ⊂ N .
ziJ denotes the rate at which coded packets are injected into
hyperarc (i, J). The rate vector z consisting of entries ziJ de-
fines a coding subgraph for the multicast connection.A linear
and separable cost function F maps valid rate vectors to real
numbers. di,j denotes the Euclidean distance between nodes
i and j in the network and we assume for simplicity that ciJ

= maxj∈J di,j . Then, network cost F (z) =
∑

(i,J)∈A ciJziJ .
The source node s transmits packets at a positive, real rate
R to a nonempty set of sink nodes T .

We extend the above formulation to the problem in
MANETs by introducing a discrete time dimension. As
nodes move, the network topology and link costs change over
time. We periodically update the hyperarc set, assuming that
any two nodes i and j are connected if di,j < D, where D

is a given threshold distance. We use c
(k)
iJ and A(k) to denote

the cost of hyperarc (i, J) and the hyperarc set at the kth
time slot, respectively. Then the optimization problem at the
kth time slot in MANETs can be formulated as follows:

min
∑

{(i,J)∈A(k)}
c
(k)
iJ z

(k)
iJ

z
(k)
iJ �

∑
{j∈J}

x
(t,k)
iJj ,∀(i, J) ∈ A(k), t ∈ T

∑
{J|(i,J)∈A(k)}

∑
{j∈J}

x
(t,k)
iJj −

∑
{j|(j,I)∈A(k),i∈I}

x
(t,k)
jIi = σ

(t)
i ,

∀i ∈ N , t ∈ T.

x
(t,k)
iJj � 0,∀(i, J) ∈ A(k), j ∈ J, t ∈ T

(1)

where

σ
(t)
i =

⎧⎨
⎩

R if i = s
−R if i ∈ T
0 otherwise.

We use L(k) to denote this linear program (2) at the kth
time slot. By solving L(k), we obtain the global optimal
solution (X(k))∗ = {x(t,k)

iJj |(i, J) ∈ A, j ∈ J, t ∈ T}. Let

C(k) = {c(k)
iJ |(i, J) ∈ A} and (Z(k))∗ = {z(k)

iJ |(i, J) ∈ A}
be the network cost vector at time k and the optimal rate
vector corresponding to the optimal solution (X(k))∗, re-
spectively. An optimal solution for the problem in MANETs
can be obtained by solving (2) every time slot, but it leads
to high computational complexity.

III. NETWORK CODING WITH PERIODIC

RECOMPUTATIONS

Instead of solving (2) every time slot, we propose a
suboptimal strategy with lower computational complexity,
network coding with periodic recomputation.

A. Algorithm

Algorithm 1 Algorithm for network coding with periodic
recomputation
if k ≡ 0 mod(pw)

Reconstruct a hyperarc set A(k). Given c
(k)
iJ and A(k),

solve L(k) with an optimality gap εk using interior-
point method and obtain a suboptimal solution
(Z(k),X(k)).

else if k ≡ 0 mod(p)
Given c

(k)
iJ and A(k), solve L(k) with an optimality gap

εk

using interior-point method. We use (Z(k−p), X(k−p))
as a feasible warm start point of interior-point
method and obtain a suboptimal solution (Z(k), X(k)).

else
(Z(k), X(k)) = (Z(k1·p),X(k1·p)) where k1 = �k

p
�.

end if

In the algorithm, time is divided into intervals where each
interval contains p time slots. We recompute an approximate
solution in the first time slot of each interval using interior
point method and use the resulting coding subgraph as a
suboptimal solution during each interval. We assume that
the hyperarc set is reconstructed every w intervals, i.e.,
every pw time slots, and remains the same over w intervals.
Reconstructing hyperarc set periodically can cause loss of
optimality, but it allows to use the solution computed at the
first time slot of interval as a feasible suboptimal solution
over interval. When k ≡ 0 mod (pw), we recompute
the suboptimal solution (Z(k), X(k)) by solving L(k) using
interior-point method until an optimality gap εk is achieved,
as shown in (2).∑

{(i,J)∈A}
ck
iJzk

iJ �
∑

{(i,J)∈A}
ck
iJ(zk

iJ )∗ + εk. (2)

In this case, we use any feasible solution as a starting
point of interior-point method. When k ≡ 0 mod (p) and
k �≡ 0 mod (pw), we solve L(k) with an optimality gap εk

using interior-point method. Here we can use a suboptimal
solution (Z(k−p),X(k−p)) computed at the first time slot of
previous interval as a feasible warm start point of interior-
point method since the hyperarc set remains the same. When
k �≡ 0 mod (p), we use the suboptimal solution computed
at the first time slot of interval which contains the kth time
slot as a feasible suboptimal solution. Since by assumption
only coefficients of the network cost vector change during
each interval, the set of feasible solutions remain the same
in the interval. Therefore, we can use the coding subgraph
obtained in the first time slot of the interval as a feasible
suboptimal solution during each interval.
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B. Theoretical Cost Bound

In this section, we derive a theoretical bound on the
performance gap between our suboptimal solution and the
optimal solution. In our algorithm, a suboptimal solution
is computed in the first slot of each interval, whose cost
deviates from the optimal by at most a given optimality
gap. We find a bound on the resulting loss when we use
the same solution over the entire interval despite changes in
the objective function coefficients.

First, we introduce a useful Lemma by Oguz [7]. This
Lemma upper bounds the maximum percentage deviation in
the objective function from optimality in terms of the per-
centage deviation in the objective function coefficients when
we stick to the same solution. We consider the following two
instances of a general form optimization problem:

min z1 = {C1X|X ∈ S},
min z2 = {C2X|X ∈ S}.

where Ck = (ck
1 , .., ck

n) ∈ Rn
+ is an objective coefficient

vector for k = 1, 2 and S is an arbitrary closed and bounded,
nonempty set in Rn

+. Let X∗
1 and X∗

2 be the optimal solutions
of the above two problems with z1 = C1X

∗
1 and z2 = C2X

∗
2 ,

respectively. We assume that c1
i = 0 implies c2

i = 0.
Lemma 1: If |c1

i − c2
i |

c1
i

� ε

for all i such that c1
i �= 0, then

z2 − z3

z2
�

2ε

1 − ε
.

where z3 = C2X∗
1 .

Proof: Please see [7].
We extend the above Lemma 1 to the following result

which states that small perturbations in the network cost
vector during the interval leave the suboptimal solution
computed at the start of the interval, relatively close to the
optimal solutions in the interval.

Lemma 2: If C(mp)Z(mp) � C(mp)(Z(mp))∗ + εmp and

max
(i,J)∈A

max
0�j�p

|c(mp)
iJ − c

(mp+j)
iJ |

c
(mp)
iJ

= δmp, then

C(mp+l)Z(mp)
�

1 + δmp

1 − δmp

C(mp+l)(Z(mp+l))∗+(1+δmp)εmp,

for ∀ 0 � l � p.

Proof: Since |c(mp)
iJ

−c
(mp+j)
iJ

|
c
(mp)
iJ

� δmp for ∀(i, J) ∈ A
and ∀ 0 � j � p for which c

(mp)
iJ �= 0,

(1−δmp)C
(mp)

� C(mp+l)
� (1+δmp)C

(mp), ∀0 � l � p.

By postmultiplying (Z(mp+l))∗ and Z(mp) to the left and
right inequalities respectively,

(1 − δmp)C
(mp)(Z(mp+l))∗ � C(mp+l)(Z(mp+l))∗, (3)

C(mp+l)Z(mp)
� (1 + δmp)C

(mp)Z(mp).

Since C(mp)Z(mp) � C(mp)(Z(mp))∗ + εmp,

C(mp+l)Z(mp)

� (1 + δmp)C
(mp)Z(mp)

� (1 + δmp)(C
(mp)(Z(mp))∗ + εmp)

� (1 + δmp)(C
(mp)(Z(mp+l))∗ + εmp).

The last inequality is obtained from the optimality of
(Z(mp))∗. Then, by (3),

C(mp+l)Z(mp)
�

1 + δmp

1 − δmp

C(mp+l)(Z(mp+l))∗+(1+δmp)εmp,

for ∀ 0 � l � p.
This bounds the optimality gap over the interval in terms

of the maximum percentage deviation in the cost vector
coefficients during the interval and the optimality gap of our
suboptimal solution at the first time slot of the interval.

IV. COMPLEXITY

When the suboptimal solution is recomputed at the first
time slot of each interval, the linear program (2) can be
solved using barrier and interior-point method as shown
in [8,9]. Convergence analysis of barrier and interior-point
method for linear optimization problem is given in e.g. [8,
Sec. 11.5], where computational complexity is defined in
terms of the total number of Newton iterations. In the first
time slot of each interval, the linear optimization problem is a
slight perturbation of that of the previous time interval as net-
work topology changes slowly. When the hyperarc set is not
changed, we can use the suboptimal solution in the preceding
interval as the feasible warm-start point for interior point
method at the first time slot of following interval. Combining
our cost bound with a warm-start strategy using interior
point method gives a worst-case bound on the number of
Newton iterations required to achieve a given optimality gap.
(Z(k)(0),X(k)(0)) and q(k) are used to denote the feasible
starting subgraph for L(k) and the optimal cost of L(k),
respectively. From [8-9], an upper bound on the total number
of Newton steps for L(k), N (k), is given as follows:

N (k) = G

⌈√
M log2(

(C(k)Z(k)(0) − C(k)(Z(k))∗)
εk

)

⌉

� G

(√
M log2(

C(k)Z(k)(0) − q(k)

εk

) + 1

) (4)

where M is the number of inequalities in L(k), εk is the
required optimality gap, and G = 11.5.

In our algorithm, the suboptimal solution (Z(mp), X(mp))
is recomputed at time mp for ∀m � 0. Since the hy-
perarc set is reconstructed every w intervals, the feasible
solution set is accordingly changed every w intervals. Thus,
if m ≡ 0(mod w), we first find any feasible solution
of L(mp) and start interior-point method from that point.
Otherwise, (Z(m−1)p,X(m−1)p) is used as the suboptimal
solution during the interval ((m−1)p, mp−1), and it is also
used as a feasible starting point of interior-point method at
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time mp, i.e. (Z(mp)(0), X(mp)(0)) = (Z(m−1)p,X(m−1)p).
Here we define the normalized complexity during the interval
(mp, (m+1)p−1) as the total number of Newton iterations
at the first time slot of the interval divided by the interval
length, i.e. N(mp)

p
. By combining Lemma 2 with (4), we

can obtain an upper bound on the normalized complexity as
follows.

Theorem 1: For m �≡ 0 mod w, the normalized complex-
ity over interval (mp, (m + 1)p − 1) is at most

G

p

(√
M log2

(
f(δ(m−1)p, ε(m−1)p, εmp, q

(mp))
)

+ 1
)

,

where

f(δ(m−1)p, ε(m−1)p, εmp, q
(mp))

=

2δ(m−1)p

1−δ(m−1)p
q(mp) + (1 + δ(m−1)p)ε(m−1)p

εmp

.

Proof: Since m �≡ 0( mod w),
(Z(mp)(0), X(mp)(0)) = (Z(m−1)p, X(m−1)p). Then,
from (4),

N (mp)

p

�
G

p

(√
M log2(

C(mp)Z(mp)(0) − q(mp)

εmp

) + 1

)

=
G

p

(√
M log2(

C(mp)Z(m−1)p − q(mp)

εmp

) + 1

)
.

(5)

From Lemma 2,

C(mp)Z(m−1)p − q(mp)

�
1 + δ(m−1)p

1 − δ(m−1)p
q(mp) + (1 + δ(m−1)p)ε(m−1)p − q(mp)

=
2δ(m−1)p

1 − δ(m−1)p
q(mp) + (1 + δ(m−1)p)ε(m−1)p

= εmpf(δ(m−1)p, ε(m−1)p, εmp, q
(mp)).

(6)

Then,

N (mp)

p

�
G

p

(√
M log2

(
f(δ(m−1)p, ε(m−1)p, εmp, q

(mp))
)

+ 1
)

.

Corollary 1: If we require a fractional performance gap
εmp

q(mp) = 1
γ

for ∀m � 0 in the first time slot of each interval,
then for each interval (mp, (m + 1)p − 1), m �≡ 0 mod w,
the normalized complexity is at most

G

p

(√
M log2(g(δ(m−1)p, δmp, γ)) + 1

)
,

where

g(δ(m−1)p, γ) =
2δ(m−1)pγ + (1 + δ(m−1)p)

1 − δ(m−1)p
.

Proof: From Theorem 1,

f(δ(m−1)p, ε(m−1)p, εmp, q
(mp))

=
2δ(m−1)pγ

1 − δ(m−1)p
+

(1 + δ(m−1)p)ε(m−1)p

εmp

.

By (3) in the proof of Lemma 2,

(1 − δ(m−1)p)C
(m−1)p(Z(mp))∗ � C(mp)(Z(mp))∗.

From the optimality of (Z(m−1)p)∗, we obtain

(1 − δ(m−1)p)q
(m−1)p

= (1 − δ(m−1)p)C
(m−1)p(Z(m−1)p)∗

� (1 − δ(m−1)p)C
(m−1)p(Z(mp))∗

� C(mp)(Z(mp))∗ = q(mp).

Then,

q(m−1)p

q(mp)
=

ε(m−1)p

εmp

�
1

1 − δ(m−1)p
. (7)

and thus,

f(δ(m−1)p, ε(m−1)p, εmp, q
(mp))

�
2δ(m−1)pγ + (1 + δ(m−1)p)

1 − δ(m−1)p

= g(δ(m−1)p, γ).

Therefore,

N (mp)

p

�
G

p

(√
M log2

(
f(δ(m−1)p, ε(m−1)p, εmp, q

(mp))
)

+ 1
)

�
G

p

(√
M log2(g(δ(m−1)p, γ)) + 1

)
.

Corollary 1 gives an upper bound on the normalized com-
plexity that grows logarithmically with γ. This result matches
the intuition that the amount of computation increases as
higher precision is required.

V. EVALUATION

In this section, we present an example network scenario
for which we evaluate our suboptimal strategy and the cost
bound in the scenario. We also optimize the normalized
complexity subject to the condition that suboptimal solution
in the interval achieves a given optimality gap during the
interval.
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Fig. 1. Scenario: 5 rooms are distributed over large area. Distance between
any two rooms are sufficiently large. Each room contains two nodes and
each node is connected to at least one node in different room.

A. Scenario

We consider a scenario in which m square rooms are
distributed over same area, as shown in Fig. 1. Each room
contains several nodes, total n nodes. Hypergraph H =
(N ,A) is defined on this network. To communicate with
nodes in different rooms, for any hyperarc (i, J), we assume
that the set of destination nodes J contains at least one node
contained in a different room from i. d0 is used to denote
the minimum distance between any two rooms. Then, by the
definition of hyperarc cost, ciJ � d0 for ∀(i, J) ∈ A. Here
we use a mobility model based on a two-dimensional random
walk model. The initial location of each node is given, and
each node in each room moves as a random walker on a
two-dimensional lattice. Each node has a probability of 1

4 of
moving to a position above, below, to the left, or to the right
of its current position with step size α every time slot. When
a node reaches a boundary of the room, it is reflected.

B. Cost Bound

Here we evaluate our suboptimal strategy and the cost
bound for above scenario. From Lemma 2, the cost bound
increases with the maximum percentage deviation in the
objective function coefficients during an interval. We will
show that the cost bound for above scenario can be expressed
in terms of p, d0, and α. It is also shown that the cost bound
grows as the length of interval and the speed of nodes. Before
proving that, we introduce an useful Lemma.

Lemma 3: Given any two finite sequences {a0, a1, ..} and
{b0, b1, ..},

max
i

|ai − bi| � |max
k

ak − max
t

bt|.
Proof: Suppose that maxk ak = al and maxt bt = bs.

Case 1): al � bs.
Since bs � bl, |maxk ak−maxt bt| = |al−bs| = al−bs �

al − bl = |al − bl| � maxi |ai − bi|.
Case 2): al < bs.
Since al � as, |maxk ak−maxt bt| = |al−bs| = bs−al �

bs − as = |bs − as| � maxi |bi − ai| = maxi |ai − bi|.

Using Lemma 3, we prove Theorem 2 which states that
the cost bound during an interval grows with the length of
interval and the step size of random walk.

Theorem 2: For ∀ 0 � l � p and m � 0,

C(mp+l)Z(mp)
�

(
1 + 2αp

d0

1 − 2αp
d0

)
C(mp+l)(Z(mp+l))∗

+ (1 +
2αp

d0
)εmp.

Proof: From Theorem 1, it is enough to show δmp �
2αp
d0

for m � 0. We use d
(k)
i,j to denote the distance between

nodes i and j at time k.

δmp

= max
(i,J)∈A

max
0�s�p

|c(mp)
iJ − c

(mp+s)
iJ |

c
(mp)
iJ

� max
(i,J)∈A

max
0�s�p

s∑
q=1

|c(mp+q−1)
iJ − c

(mp+q)
iJ |

c
(mp)
iJ

(since |a + b| � |a| + |b|.)

= max
(i,J)∈A

p∑
q=1

|c(mp+q−1)
iJ − c

(mp+q)
iJ |

c
(mp)
iJ

= max
(i,J)∈A

p∑
q=1

|maxj∈J d
(mp+q−1)
i,j − maxj∈J d

(mp+q)
i,j |

maxj∈J d
(mp)
i,j

(since c
(k)
iJ = max

j∈J
d
(k)
i,j .)

� max
(i,J)∈A

p∑
q=1

maxj∈J |d(mp+q−1)
i,j − d

(mp+q)
i,j |

maxj∈J d
(mp)
i,j

.

The last inequality is obtained from Lemma 3. From our
mobility model, |d(k)

i,j − d
(k+1)
i,j | � 2α for ∀k � 0. Since

we assumed that ciJ � d0 for ∀(i, J), maxj∈J d
(mp)
i,j � d0.

Therefore,

max
∀(i,J)∈A

p∑
q=1

maxj∈J |d(mp+q−1)
i,j − d

(mp+q)
i,j |

maxj∈J d
(mp)
i,j

�
2αp

d0
.

Therefore, the cost bound grows with α and p. This result
matches the intuition that as the speed of nodes increases
or as the length of an interval increases, our suboptimal
solution may deviate further from the optimal solution during
an interval.

From simulation, we test our suboptimal strategy and the
cost bound in the given scenario. Two square rooms are
placed over a network and the distance between two rooms,
d0, is 104. Each room contains 8 nodes. Room 1 contains
a source node and room 1 and 2 contain 2 sink nodes,
respectively. Suppose that a size of room is 20, the length of
each interval p = 15, and the step size α = 10. As shown in
Fig. 2, the cost of a suboptimal solution obtained from our
strategy is close to optimal cost during an interval. Moreover,
since d0 >> α and p is not too large, our cost bound is also
close to the cost of suboptimal solution.
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Fig. 2. Simulation result: two rooms are placed on the network and each
room contains 8 nodes. d0 = 10

4, p = 15, and α = 10. In this scenario,
the cost of our suboptimal solution is close to optimal cost.

C. Complexity

In this section, we consider an optimization problem
that minimizes the normalized complexity subject to the
condition that suboptimal solutions in the interval achieve
a given optimality gap during the interval. From Theorem 1,
we first derive the following upper bound on the normalized
complexity can be expressed in terms of interval length p
and the fractional optimality gap at the first time slot of
each interval, 1

γ
.

Corollary 2: For m �≡ 0 mod w, the normalized com-
plexity over interval (mp, (m + 1)p − 1) is at most

T =
G

p

(√
M log2(

4αp
d0

γ + (1 + 2αp
d0

)

1 − 2αp
d0

) + 1

)
.

Proof: From (6) in the proof of Theorem 1,

C(mp)Z(m−1)p − q(mp)

�
2δ(m−1)p

1 − δ(m−1)p
q(mp) + (1 + δ(m−1)p)ε(m−1)p.

Since it is shown that δ(m−1)p �
2αp
d0

in the proof of
Theorem 2,

C(mp)Z(m−1)p − q(mp)

�

4αp
d0

1 − 2αp
d0

q(mp) + (1 +
2αp

d0
)ε(m−1)p.

Then, from (5) in the proof of Theorem 1,

N (mp)

p

�
G

p

(√
M log2(

C(mp)Z(m−1)p − q(mp)

εmp

) + 1

)

�
G

p

⎡
⎢⎢⎣√M log2

⎛
⎜⎜⎝

4αp

d0

1− 2αp

d0

q(mp) + (1 + 2αp
d0

)ε(m−1)p

εmp

⎞
⎟⎟⎠ + 1

⎤
⎥⎥⎦ .

Since
ε(m−1)p

εmp
�

1
1−δ(m−1)p

from (7) in the proof of Corollary

1 and δ(m−1)p �
2αp
d0

,

4αp

d0

1− 2αp

d0

q(mp) + (1 + 2αp
d0

)ε(m−1)p

εmp

�

4αp
d0

γ + (1 + 2αp
d0

)

1 − 2αp
d0

.

Therefore,

N (mp)

p
�

G

p

(√
M log2(

4αp
d0

γ + (1 + 2αp
d0

)

1 − 2αp
d0

) + 1

)
= T.

Next we show that T grows logarithmically with the
maximum percentage deviation in the cost bound of our
suboptimal solution. We use y to denote an upper bound on
the fractional optimality gap over each interval. (Note that
1
γ

� y).
Lemma 4: Let

y =
1

1 − 2αp
d0

(
4αp

d0
+

1

γ
(1 +

2αp

d0
)).

Then, for m �≡ 0 mod w,

T =
G

p
(
√

M log2(yγ) + 1), and

C(mp+l)Z(mp)
� (1 + y)q(mp+l) for ∀0 � l � p.

Proof: From Corollary 2, it is obvious that

T =
G

p
(
√

M log2(yγ) + 1).

It is enough to show that C(mp+l)Z(mp) � (1 + y)q(mp+l)

for ∀0 � l � p. From Theorem 2,

C(mp+l)Z(mp)
�

1 + 2αp
d0

1 − 2αp
d0

q(mp+l) + (1 +
2αp

d0
)εmp.

Then,

C(mp+l)Z(mp)

q(mp+l)
�

1 + 2αp
d0

1 − 2αp
d0

+
(1 + 2αp

d0
)εmp

q(mp+l)
.

Now we can obtain the following inequalities.

q(mp+l) = C(mp+l)(Z(mp+l))∗

� (1 − δmp)C
(mp)(Z(mp+l))∗

� (1 − 2αp

d0
)C(mp)(Z(mp+l))∗

� (1 − 2αp

d0
)C(mp)(Z(mp))∗

= (1 − 2αp

d0
)q(mp).

First inequality comes from (3) in the proof of Theorem
1 and the second inequality is true since δmp �

2αp
d0

. The
last inequality comes from the optimality of (Z(mp))∗. Since
εmp

q(mp) = 1
γ

,

εmp

q(mp+l)
=

qmp

q(mp+l)
· εmp

q(mp)
�

1

(1 − 2αp
d0

)γ
.
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Therefore,

C(mp+l)Z(mp)

q(mp+l)
�

1 + 2αp
d0

1 − 2αp
d0

+
(1 + 2αp

d0
)

(1 − 2αp
d0

)γ

= 1 + y.

Based on Lemma 4, we can formulate an optimization
problem that minimizes the normalized complexity over γ
and p subject to the condition that suboptimal solutions in
the interval achieve a fractional optimality gap y over each
interval. For m �≡ 0 mod w,

min
G

p
(
√

M log2(yγ) + 1)

s.t
1

1 − 2αp
d0

(
4αp

d0
+

1

γ
(1 +

2αp

d0
)) = y

p, γ � 0.

(8)

Assume we are given d0 and α such that 2α
d0

= s << 1.
Then (8) is equivalent to following problem:

min
G

p
(
√

M log2(yγ) + 1)

s.t
1

1 − sp
(2sp +

1

γ
(1 + sp)) = y

p, γ � 0.

(9)

By using the constraint in (9), p can be expressed in terms
of γ. Then, we can reformulate this problem as follows.

min f(γ) = Gs
(1 + γ(2 + y))

γy − 1
(
√

M log2(yγ) + 1)

s.t γ =
1 + ps

y − (2 + y)sp
�

1

y

(10)

Therefore, by solving (10) for γ �
1
y
, we can obtain the

optimal γ∗ and

p∗ =
γ∗y − 1

s(1 + γ∗(2 + y))
. (11)

We prove two propositions that are useful to find the optimal
(γ∗, p∗).

Proposition 1: f(γ) has only one global minimum for
γ �

1
y
.

Proof: From (10), it is enough to show that

g(γ) =

(
1 +

2(γ + 1)

γy − 1

)
(log(yγ) +

1√
M log2 e

).

has only one global minimum for γ �
1
y
.

g′(γ) =
γ2y(y + 2) − 2γ − 1

γ(γy − 1)2

−
2γ(y + 1)(log(yγ) + 1√

M log2 e
)

γ(γy − 1)2

=
h(γ)

γ(γy − 1)2
.
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Fig. 3. Optimal fractional performance gap at the start of interval, 1/γ∗,
versus y, an upper bound on the fractional optimality gap over each interval,
when s = 10

−3 and M = 1000 in (10).

Then, it is enough to show that h(γ) has only one root for
γ �

1
y
.

h′(γ) = 2γy(y + 2) − 2

−2(y + 1)(log(yγ) +
1√

M log2 e
+ 1),

h′′(γ) = 2y(y + 2) − 2(y + 1)

γ
� 0 for γ >

1

y
.

Then h′(γ) increases for γ > 1
y

. Since h′( 1
y
) < 0, h′ has

only one root γ1. Therefore, h decreases for 1
y

< γ � γ1 and
increases for γ > γ1. Since h( 1

y
) = −2(γ+1) 1√

M log2 e
< 0,

h has only one root for γ �
1
y
.

Proposition 2: For 500 � M � 2500, 1.15
y

< γ∗ < 1.78
y

.
Proof: Let γy = K. From the proof of Proposition 1,

h(γ) = K2+2Kγ−2γ−1−2(γ+K)(log(K)+
1√

M log2 e
).

Then,

K2 + 2Kγ − 2γ − 1 − 2(γ + K)(log(K) + 0.031

� h(γ)

� K2 + 2Kγ − 2γ − 1 − 2(γ + K)(log(K) + 0.014).

From above inequalities, we obtain

h(
1.15

γ
) � −0.07γ − 0.2 < 0, .

h(
1.78

γ
) � 0.35γ + 0.01 > 0.

Since h has only one root, 1.15
y

< γ∗ < 1.78
y

for 500 � M �

2500.
As shown in Fig. 3, the optimal fractional performance

gap at the start of interval, 1/γ∗, grows almost linearly with
the upper bound of fractional optimality gap during interval,
y. Given γ∗, p∗ is given by (11). In Fig. 4, the optimal length
of interval, p∗, also grows almost linearly with y. Thus, when
we allow a larger optimality gap, we recompute the solution
less frequently and with less precison. As shown in Fig. 5,
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Fig. 4. Optimal length of interval, p∗, versus y when s = 10
−3 and

M = 1000 in (10).
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Fig. 5. p∗ versus the speed of each node, α when y = 0.05 and d0 = 10
4.

when y is fixed, p∗ decreases as the speed of each node
increases. Since the network topology changes faster as α
increases, we have to recompute the solution more frequently.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyze network coding with periodic re-
computation for minimum energy multicasting in MANETs.
In this approach, we recompute an approximate solution
at fixed time intervals, and use this solution during each
time interval although the network topology changes. We
obtain a simple theoretical cost bound on the gap between
our solution and the optimal cost. We also analyze its
complexity, and show how our results can be applied to trade
off performance and complexity in a given network scenario.

We can also apply our periodic recomputation approach to
other network optimization problems in MANETs to reduce
the computational complexity. If the set of feasible solutions
does not change every time slot, we can directly use our
periodic recomputation approach. It is interesting further
work to extend our results to the case where this does not
hold, and to analyze the performance-complexity tradeoff of
other algorithms.
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