
ar
X

iv
:0

80
7.

11
58

v1
 [

cs
.IT

]
8

Ju
l 2

00
8

1

A Simple Algebraic Formulation for the Scalar
Linear Network Coding Problem

Abhay T. Subramanian, Andrew Thangaraj,Member, IEEE

Abstract—In this work, we derive an algebraic formulation
for the scalar linear network coding problem as an alternative
to the one presented by Koetter and Ḿedard in their work.
We first show an equivalence between network information flow
and group-valued circulations. Given a general network coding
problem, we provide an algorithm to generate a graph (specifi-
cally, a collection of trees) on which group-valued circulations are
equivalent to information flow in the original network. We use
this collection of trees to derive a system of polynomial equations
that algebraically represents the scalar linear network coding
problem. Surprisingly, this system of polynomials has a maximum
degree of2. We illustrate our formulation and its advantages over
the formulation presented by Koetter and Médard in terms of
the number of variables and equations involved (apart from a
reduction in degree) through example networks drawn from the
literature.

I. I NTRODUCTION

T HE idea of network coding over error-free networks,
pioneered in [1], has been a subject of active current

research. The general idea of linear network coding, where
intermediate nodes linearly combine incoming packets, was
explored in [2]. A simple and effective algebraic formulation
of the general network coding problem was introduced in
[3]. This established a direct connection between a network
information flow problem and an algebraic variety over the
closure of a finite field.

Using the formulations of [2], [3], the multicast network
coding problem, where one source transmits at the same rate
to a set of sinks, has been characterized almost completely.
A linear network code exists for the multicast case in a large
enough finite field and can be found in polynomial time [4].
However, the general network coding problem still remains
much harder to characterize. The insufficiency of linear coding
in the non-multicast case has been demonstrated in [5]. Recent
work in [6] and [7] has shown the restrictions imposed on the
field characteristic for the scalar linear solvability of a general
network coding problem. See [6] for more details on the state-
of-the-art for the non-multicast problems.

The algebraic formulation of [3], while being simple and
powerful, results in equations that are not readily amenable to
easy solution in many cases. In this paper, our main result is
to derive an alternative algebraic formulation for the general
scalar linear network coding problem. Specifically, we show
a correspondence between linear network-coded information
flow in a given network and group-valued circulations in

A. T. Subramanian and A. Thangaraj are with the Department ofElectrical
Engineering, Indian Institute of Technology Madras, Chennai, India. E-mail:
abhay,andrew@iitm.ac.in

Manuscript received July 7, 2008

an equivalent set of directed trees. In a network, a group-
valued circulation is a mapping from the set of edges to a
group such that the net flow through any node is conserved
under the group addition operation [8]. One can readily see
that linear network-coded information flow should be closely
related to group-valued circulations. However, since there is no
multiplication operation in groups, we show that the network
needs to be transformed before a direct relationship can be
established between linear network coding over a field and
a group valued circulation. We develop an algorithm for this
network transformation, which results in a set of trees.

We then use the corresponding flow in the set of trees to
derive a system of polynomial equations that provides and
algebraic formulation for the network coding problem in the
original network. Surprisingly, this set of equations has amax-
imum degree of only2. Moreover, the form of the equations
has additional structure that can be exploited in several cases.
We illustrate this simplification through examples and compare
our formulation with the one proposed in [3] in terms of the
number of variables and equations involved.

An alternative way of viewing our formulation is that we
perform a graphical simplification of the formulation in [3],
which uses scaling variables on every link. The crux of our
simplification lies in a graph transformation that migratesall
scaling variables to the sources. All the intermediate nodes
simply perform addition and have only a single outgoing
node in the transformed graph (a set of directed trees). In the
transformed graph, we get only linear and degree-2 equations
relating the scaling variables at the sources.

We will start with a notational description of the network
coding problem in Section II. Then, we will provide a brief
motivation for the work presented here in Section III. In
Section IV, we will introduce some theory on group-valued
circulations. Our main result is presented in Section V, where
we first give an algorithm that, given a network coding prob-
lem, constructs an equivalent group-valued circulation net-
work. Then, we derive a system of polynomial equations that
algebraically represents the given network coding problem.
At the end of the section, we also give ways to simplify the
derived system of equations. In Section VI, we further explain
the transformation and algebraic formulation using various
example networks drawn from the literature. We also provide
results from the application of the algorithms described earlier
to a large Internet Service Provider (ISP) network. Finally, in
Section VII, we give an algorithm to derive the linear network
code (the actual coding coefficients at intermediate nodes as
in [3]) from a solution to the system of polynomial equations
derived from the transformed graph. Appendix A provides

http://arxiv.org/abs/0807.1158v1

2

algorithms that, given a network coding problem, will give
a count of the number of variables and equations resulting in
our algebraic formulation described in Section V.

II. T HE NETWORK CODING PROBLEM

The communication network is modelled as a directed,
acyclic multigraph,G = (V,E), where the node setV
represents the terminals and switches in the network and the
edge setE represents the communication links. It is assumed,
without loss of generality, that all communication links are
error-free and have unit capacity. Any link of higher capacity
between two nodes can be modelled as multiple unit capacity
links between the nodes.

For a given edgee = (u, v), we denote:

u = tail(e)

v = head(e)

For each nodev ∈ V , we define:

I(v) = {e ∈ E : head(e) = v}

O(v) = {e ∈ E : tail(e) = v}

Let us further assume the following without loss of gener-
ality:

1) A nodev is a source node iff|I(v)| = 0 and all source
nodes produce exactly one unit of data per unit time.

2) A node v is a sink node iff|O(v)| = 0 and all sink
nodes demand exactly one unit of data per unit time.

In cases where a nodev produces (demands) more than
one data symbol, we can add virtual source (sink) nodes that
produce (demand) exactly one data symbol, have exactly one
output (input) link connecting them tov and no input (output)
links.

Then, the set of source and sink nodes is defined as:

S = {v ∈ V : |I(v)| = 0} = {s1, s2, . . . , s|S|}

T = {v ∈ V : |O(v)| = 0} = {t1, t2, . . . , t|T |}

Let us now assume that we use a finite alphabetH . For
each edgee, an edge function is then defined as a mapping:

fe : H
i → H

where,i = 1 if tail(e) ∈ S and i = |I(tail(e))| otherwise.
Definition 1: The collection of all the edge functions in a

given network is defined as anetwork code. If all the edge
functions are linear maps with respect to a field alphabetH ,
then the code is ascalar linear code.

Let the data symbol generated at thei-th source node,
si ∈ S, be denoted byXi and the data symbol demanded
by the j-th sink node,tj ∈ T , be denoted byZj. These also
implicitly define a set of connection requirements, denoted
by C, for the given networkG. Given a networkG, the set
of source nodesS, the set of sink nodesT and the set of
connection requirementsC, the network coding problem is to
determine all the edge functions such that all the connection
requirements are satisfied. If such a set of edge functions
exists, then the network coding problem issolvable. If a set
of linear edge functions, with respect to a finite alphabetH ,

exists that satisfies all the connection requirements, thenthe
network coding problem isscalar-linearly solvable.

In a scalar linear network coded flow (over a fieldH), the
edge function of an edgee can be written as

∑|S|
i=1 aiXi, where

ai, Xi ∈ H . We refer to
∑|S|

i=1 aiXi as either the edge function
of e or the symbol flowing throughe and denote it as a vector
fe = [a1 a2 · · · a|S|].

III. M OTIVATION

The scalar linear network coding problem was formulated
as a system of polynomial equations in [3]. Our aim in this
work has been to arrive at a simpler algebraic formulation for
the general scalar-linear network coding problem than the one
described in [3]. This advantage of the algebraic formulation
that we will describe in the next few sections can be easily
noticed when we compare the two formulations for the case
of the modified butterfly network shown in Fig. 1 with two
sources and four sinks. Note that the network in Fig. 1 is
identical to the classic butterfly network under our definition
of sources and sinks.

The edge functions under the direct assignment of scaling
factors (as in [3]) is shown in Fig. 1. The formulation described

3

4

21

65

8 9 107

X1
X2

X1 X2

X1 X2

α1X1 + α2X2 α1X1 + α2X2

α9(α1X1 + α2X2)
+α10X2

α3X1

+α4(α1X1 + α2X2)
α8X2

X2X1X2X1

α1X1 + α2X2

+α7(α1X1 + α2X2)

+α5X1

α6(α1X1 + α2X2)

Fig. 1. Flow in the butterfly network.

in [3] gives the following 8 equations in 10 variables:

α3 + α4α1 = 1 α4α2 = 0

α5 + α6α1 = 0 α6α2 = 1

α7α2 + α8 = 0 α7α1 = 1

α9α2 + α10 = 1 α9α1 = 0

In contrast, our formulation arrives at just 1 equation

a4b3 = 1

in 2 variables as given in (8).

3

(b)(a)

(c)

xe1 =

n
∑

i=1

ae′
i
,e1xe′

i

xe′n
xe′n

xem =

n
∑

i=1

ae′
i
,emxe′

i

xe′
1 xe1

xe′
1

xemm
∑

i=1

xei =

n
∑

j=1

xe′
j

n
∑

i=1

ae′
i
,e1xe′

i
= xe1

n
∑

i=1

ae′
i
,e2xe′

i
= xe2

n
∑

i=1

ae′
i
,emxe′

i
= xem

ae′n,e1xe′n

ae′
1
,e1xe′

1

ae′n,emxe′n

ae′
1
,emxe′

1ae′
1
,e2xe′

1

ae′n,e2xe′n

Fig. 2. (a)Picture of a node employing a linear network coding scheme. (b) Picture of a node for a group-valued circulation. (c) Transformation of node
shown in (a).

IV. GROUP-VALUED CIRCULATIONS

Consider a directed multigraphG = (V,E) and a finite
abelian groupH . Then, a group-valued circulation or anH-
circulation is defined as a mappingf : E → H such that the
following equation is satisfied at each nodev ∈ V :

∑

e:head(e)=v

f(e) =
∑

e:tail(e)=v

f(e) (1)

This can be understood as a conservation of flow – the sum
of the symbols entering a node is equal to the sum of the
symbols leaving it, with addition overH . This is shown in
Fig. 2b.

Tutte’s theorem (refer [8]) characterizes the number of
group-valued flows in a given graph. The following Lemma is
an adaptation of Tutte’s theorem for counting the number of
group-valued circulations in a given graph.

Lemma 2:The number of group-valued circulations on a
given multigraphG is given by|H |m where|H | is the group
size andm is the number of edges left after contracting non-
loop edges one after another till all edges in the graph are
loops.

Proof: Let us assume first that all edges ofG = (V,E)
are loops (head(e) = tail(e) ∀ e ∈ E). Then, given a finite
abelian groupH , every mapE → H is anH-circulation on
G. Hence, the number of circulations is given by|H |m where
m is the number of loops.

Now assume that there is an edge,e0 that is not a loop.
Consider the multigraphG1 which is same asG but with the
edgee0 contracted. It can be seen that the circulations onG1

correspond bijectively toH-circulations onG [8, Thm. 6.3.1].
Thus, the non-loop edges can be contracted one by one till all
the remaining edges are loops. At this point, the number of
circulations can be reduced to|H |m wherem is the number
of edges (loops) left in the graph.

V. NETWORK INFORMATION FLOW AS GROUP-VALUED

CIRCULATIONS

In a linear network coding scheme, each output link of a
node carries a linear combination of the symbols received by

that node through all its input links. Let us assume a coding
scheme over a fieldF . Let xe ∈ F represent the symbol
flowing through edgee. Then, the general form of the relation
between the symbols flowing through one of the output links,
e ∈ O(v), and the set of input links,I(v), of a nodev ∈ V
can be written as:

xe =
∑

e′∈I(v)

ae′,exe′ (2)

where the coefficientsae′,e are elements ofF . This is shown
in Fig. 2a. Note that the linear network-coded flow is not
immediately a group-valued circulation. The conservationlaws
of Fig. 2a and 2b are not the same. In this section, we develop a
transformation of the network, which results in an equivalence.

A. Equivalence for one node

Consider the node shown in Fig. 2a. There are a total of
|O(v)| linear equations that need to be satisfied at this node.
Hence, an equivalent graph with group-valued circulations
must have|O(v)| copies of this node, each satisfying one of
these equations. Ifei denotes thei-th output link of the node,
the equation to be satisfied at thei-th copy of the node in the
equivalent graph is given by:

xei =
∑

e′∈I(v)

ae′,eixe′ (3)

Hence, the node shown in Fig. 2a will have to be replicated
as many times as the number of its output links along with
its entire set of input links. In addition, the flow in the
input links will have to be appropriately scaled. After these
transformations, the linear-network coded flow in one node
shown in Fig. 2a is equivalent to the group-valued circulation
in the graph shown in Fig. 2c.

B. Equivalence for network

We now extend the construction of the equivalent graph to
the entire network. The single node transformation cannot be
applied to all nodes simultaneously. A careful sequencing of
nodes is necessary as discussed below.

4

In the transformation of a single nodev, since all edges
e ∈ I(v) are replicated|O(v)| times, the number of edges
in O(v′), v′ ∈ {tail(e) : e ∈ I(v)} may increase. However,
in order to apply the single node transformation on a node
v′ ∈ G, the complete setO(v′) needs to be known beforehand
along with the symbols that should flow on each edgee ∈
O(v′). To solve this problem, we notice thatO(v′) will not
change once the single-node transformation discussed above
has been applied to all nodesv ∈ {head(e) : e ∈ O(v′)}.
Hence, the transformation can be applied tov′ only after it
has been applied to all nodesv ∈ {head(e) : e ∈ O(v′)}.

This sequencing can be achieved by applying the trans-
formation in the topological order defined by the original
directed acyclic network. A standard algorithm for finding
such a topological ordering of the nodes is given below [9].

Algorithm 1: Topological Sorting
Input: A directed acyclic graph,G = (V,E).

1) Associate with each nodev, a value N(v) that is
initialized to |O(v)|.

2) Pick a nodev such thatN(v) = 0, do
• For each edgee ∈ I(v),

N(tail(e))← N(tail(e))− 1.
• N(v)← −1
• Appendv to the ordering,P .

3) If any node has not been added to the ordering yet, go
to Step 2. Else terminate.

Output: P , a topological ordering (permutation) of the nodes
such that there is no edgevi → vj if i ≤ j.

Every iteration of Step 2 effectively removes one node from
the graph. After this operation, the resultant graph is still
a directed acyclic graph. Since every directed acyclic graph
always has at least one node with out-degree 0, this algorithm
will terminate once all nodes have been added to the ordering.

The final algorithm which takes a network coding problem
and constructs an equivalent group-valued circulation network
is given below:

Algorithm 2: Graph Transformation
Input: A directed acyclic graphG = (V,E), set of sourcesS,
set of sinksT , connection requirementsC.

1) Obtain a topological orderingP for the graphG =
(V,E) using Algorithm 1.

2) Let G′(V ′, E′) = G(V,E).
3) Loop through the nodesv ∈ V in the order defined by

P , do
a) If O(v) > 1, for each edgee ∈ O(v), do

• Add a new nodev′ to V ′ with one output link
connecting it to head(e) and one input linke′

for eache′′ ∈ I(v) such that tail(e′) = tail(e′′).
Output: G′ = (V ′, E′), a transformed network such that
group-valued circulations inG′ are equivalent to network-
coded information flows inG.

Theorem 3:The final transformed network is made up of a
set of directed trees. Each sink is the root of one tree. All leaf
nodes are copies of one of the source nodes. Scaling is done
only at the leaf nodes.

Proof: Each node in the transformed network will have
exactly one output link and the acyclic property of the graphis

maintained by the transformation. The underlying undirected
graph is a set of disjoint trees, because any cycle in it must
imply that either the cycle is also present in the directed graph
or that one of the nodes in the directed graph has more than
one output link. Hence, the equivalent network is made up of
a set of directed trees.

The transformation maintains one output link for each node
in the original graph that has|O(v)| ≥ 1. So, the only nodes
that will have |O(v)| = 0, and hence be the roots of these
trees, are the sink nodes (which had|O(v)| = 0 to start with).
Hence, each sink would be the root of a directed tree in which
all edges are directed towards this root.

Also, the number of input links of a copied node in the
transformed graph is equal to the number of input links
possessed by the original node. So, the only nodes that will
have |I(v)| = 0, and hence be leaf nodes in these trees, are
copies of the source nodes (which had|I(v)| = 0 to start
with).

From the above theorem, we see that the graph transforma-
tion can be applied starting from the sink and working towards
the source. The topological sorting is a formal method that
achieves such a sequencing.

An example of this transformation applied to the butterfly
network (Fig. 3a) can be seen in Fig. 3b. From the theorem, we
see that there will be four trees at the end of the transformation
rooted at the sink nodes 7, 8, 9 and 10. Working up from Node
7 towards the source and copying necessary nodes, we see that
the tree rooted at Node 7 in Fig. 3b results in a straightforward
manner. Similarly, the other trees can be obtained. However,
we point out later that this intuitive method might not be easy
to implement on more complicated networks.

To apply the graph transformation algorithm formally, one
possible topological ordering of the nodes is7− 8− 9− 10−
5−6−4−3−1−2. Nodes 7, 8, 9 and 10 are sink nodes, and
occur first in the ordering. Nodes 5 and 6 will be replicated
2 times, since they both have 2 output links. This will result
in the replication of the edgese4, e5, e6 ande7. Node 4 will
now have 4 output links and will have to be replicated as
many times along with edgee3. Similarly, Node 3 will also
be replicated 4 times along with edgese1 ande2. Finally, the
source nodes 1 and 2 will be replicated 6 times each since
they both now have 6 output links.

Note that the scaling variables in the equivalent group-
valued circulation occur only at the leaf source nodes. All
the intermediate nodes simply perform addition. This is the
main reason for the simplification in the structure of our
formulation. However, the flows in the different trees of the
equivalent graph are not independent, since they share edges
of the original graph. This dependence results in the degree-2
equations of our formulation.

C. Algebraic Formulation

We will describe and illustrate the formulation with the
butterfly network (Fig. 3a) for simplicity. The generalization
to arbitrary networks follows immediately.

1) Scaling variables:Let us now define one variable for
each scalar (ai’s, bi’s) associated with each leaf node as illus-
trated in Fig. 3b for the butterfly network. The variable names

5

3 4

1

2 6

102

3 4

1

2

5

71

3 4

1

2 6

9

2

3 4

1

2

5

1

8

2

3

1

4

5 6

7 8 9 10

(a) (b)

e2

e1 e3

e7

e11

e5

a6X1

b5X2

b6X2

e2

e1 e3

e6

e8e4
a1X1

a2X1

b1X2

e2

e1 e3

e7
e10

e5

a5X1

b3X2

b4X2

e2

e1 e3

e6

e4
a3X1

a4X1

b2X2

e9

e1

e3

e6 e7

e8 e9 e10 e11

e2

X1
X2 X1 X2

e4 e5

X1

X1

X2 X2

Fig. 3. (a) The (modified) butterfly network with 4 sinks and 2 sources. (b) The final transformed network in which group-valued circulations correspond to
information flow in the original network. The transformed network has 4 disjoint trees - one for each each sink node. The appropriate scaling factors at the
leaf nodes are denoted byai’s andbi ’s

are chosen as follows. Source nodes 1 and 2 are assigned the
variable namesa andb, respectively. The subscripts are chosen
tree by tree in the transformed network. In the tree with rootas
Node 7, the two copies of source node 1 are assigned variables
a1 anda2, while the single copy of source node 2 is assigned
the variableb1. In the tree with root node 8, the variables are
a3, a4 for the two copies of Node 1, andb2 for the single copy
of Node 2. We continue in this manner to name the scaling
variables at the source leaf nodes of the other two trees to get
variablesa1, a2, · · · , a6 andb1, b2, · · · , b6.

Once values are assigned to the scaling variables (from
some field), all edge functions are defined in the transformed
network. Hence, the network coding problem has been reduced
to finding a feasible assignment of values to these unknown
variables (scaling factors at leaf nodes) from a field such that
the circulations generated in the transformed graph can be
implemented as a code over the given network. The scaling
variables need to satisfy two types of conditions as described
in Sections V-C3 and V-C4 below for obtaining a valid
network flow in the original network that meets the connection
requirements.

2) Counting group-valued circulations:By applying the
result in Lemma 2 to one particular tree obtained through the
transformation, we can see that the number of edges (loops)
left after contracting non-loop edges one after another is equal
to the number of leaf nodes in the tree. But the symbols
flowing from all the leaf nodes are not independent - they
carry scaled versions of the input symbols generated at the
source nodes in the original network.

A fixed assignment of values to these variables will pro-
duce different circulations for different values ofX1 andX2

(symbols generated at the source nodes). This gives a total of
H2 (|H ||S| in general) circulations each of which corresponds
to a unique set of values assumed by the source symbols,X1

andX2.
3) No Interference conditions:The required output at each

sink must be received without any “interference” from other
source symbols to meet the connection requirements. The
symbol received at the root of one particular tree in the
transformed graph is equal to the sum of the scaled versions

of the source symbols flowing from the leaf nodes. This
implies that, for each tree, the scalar constants pertaining to
the required symbol at the sink must add up to 1 and those
pertaining to every other symbol must add up to 0.

In Fig. 3b, the symbols (edge functions) received at the
sink nodes 7, 8, 9 and 10 are(a1 + a2)X1 + b1X2, (a3 +
a4)X1+ b2X2, a5X1+(b3+ b4)X2 anda6X1+(b5+ b6)X2,
respectively. For the symbol at Node 7 to be equal to the
requiredX1, we havea1+a2 = 1 andb1 = 0. Other equations
are derived similarly. Hence, in the butterfly network of Fig.
3, we get the following linear equations:

a1 + a2 = 1 b1 = 0

a3 + a4 = 0 b2 = 1

a5 = 1 b3 + b4 = 0

a6 = 0 b5 + b6 = 1 (4)

It is clear that, since the flow on the tree is a group-valued
circulation, the conservation law implies that intermediate
nodes do not scale the symbols, but only perform addition.
Note that the no-interference conditions produce linear equa-
tions, and no scaling variable appears in more than one linear
equation. This is because the set of variables defined for
each tree are mutually exclusive and, within each tree, the
set of variables corresponding to each input symbol are also
mutually exclusive. This surprising property results in a lot of
simplifications in our formulation.

For completion, we state the general form of the no-
interference conditions below. In general, each unknown scal-
ing variable in the transformed network is associated with
exactly one source symbol and one sink (or tree). Let us denote
the unknown scalars byaijk wherei ∈ {1, . . . , |S|} denotes
the source symbol associated with the scalar,j ∈ {1, . . . , |T |}
denotes the sink (or the tree) associated with the scalar, and
k ∈ N is an index among all variables in the same tree
associated with the same source symbol. Then, the general
form of the “No Interference” conditions can be written as:

∑

k

aijk =

{

1 if Z(tj) = X(si)
0 otherwise

(5)

6

4) Edge Compatibility conditions:The circulations in the
different trees of the transformed network are not independent,
because they contain copies of the same edge that can carry
only one symbol at a time on the original network. Hence, in
the transformed network, these edges must carry “compatible”
symbols. The requirement is that symbols flowing through two
copies of the same edge in the transformed network must be
scalar multiples of each other.

For example, given a network with two source nodes pro-
ducing symbolsX1 andX2, suppose the transformed network
has two copies of an edgee, denoted bye1 ande2, carrying
symbolsa1X1+b1X2 anda2X1+b2X2, respectively. In order
to implement a network code on the original network, it is
necessary and sufficient that the two edge functions one1 and
e2 are scalar multiples of each other. If they are not scalar
multiples, it is clear that the original edge will need to carry
two symbols per unit time in the original network, which is
not possible. If they are scalar multiples, a network code can
be obtained for the original network as shown later in Section
VII. Intuitively, since scaling variables are allowed on links of
the original network, scalar multiples in duplicated edgesthat
arise from multiple outgoing links in the original graph canbe
accommodated by suitable scaling in different outgoing links.

Hence, the scalarsa1, a2, b1, b2 of the edge functions ofe1
ande2 need to satisfy the following condition:

a1b2 = a2b1

These type of degree-2 equations relate the scaling factorsfor
every pair of symbols flowing through every pair of copies
of an edge in different trees of the transformed network.
Notice that the equation is equivalent to the fractional form
a1

a2

= b1
b2

modified to avoid division by zero problems when
some variable takes the value zero. However, the fractional
form is more intuitive and can be readily extended to obtain
edge compatibility conditions when more than two sources are
involved.

In our illustrative example of Fig. 3b, the edgee3 is copied
four times. Since there are

(

4
2

)

= 6 ways of choosing two
copies among the four, there will be six edge compatibility
conditions fore3. The symbols on the copies ofe3 on the
trees with root nodes 7, 8, 9 and 10 area2X1+b1X2, a4X1+
b2X2, a5X1 + b3X2 and a6X1 + b5X2, respectively. Hence,
in fractional form, we needa2

a4

= b1
b2

(roots 7 and 8),a2

a5

= b1
b3

(roots 7 and 9),a2

a6
= b1

b5
(roots 7 and 10),a4

a5
= b2

b3
(8 and 9),

a4

a6

= b2
b5

(8 and 10) anda5

a6

= b3
b5

(9 and 10).
In the degree-2 form, the edge compatibility conditions for

the four copies of the edgee3 are listed below:

a2b2 = a4b1 a2b3 = a5b1

a2b5 = a6b1 a4b3 = a5b2

a4b5 = a6b2 a5b5 = a6b3 (6)

For the butterfly network example, we do not get any other
edge compatibility conditions. For edgese6 ande7, the equa-
tions are identical to the ones listed above. Also, there areno
equations for edgese1, e2, e4 and e5 since these edges have
scaled versions of the same symbol flowing through them.

We see that the compatibility conditions can be simplified as
not all of them are independent. However, since the variables
can take the value zero, simplifying the equations needs to be
done very carefully. Hence, we simply enumerate all equations
at this stage and simplify later.

We have seen that not all duplicated edges result in distinct
compatibility conditions. In general, edge compatibilityequa-
tions will be required for each edgee in the original network
that satisfies the following conditions:

1) Number of copies of head(e) in the transformed network
> 1 (or the edge will not be replicated at all)

2) Number of different source nodes having a path to
e > 1 (since if two copies ofe carrya1X1 anda2X1,
these will be scalar multiples of each other for any value
assigned toa1, a2)

3) |I(tail(e))| > 1 (or the equations will be same as that
for e′ ∈ I(tail(e)))

For completion, we now state the general form of the edge-
compatibility conditions in terms of nodes of the transformed
network for added simplicity. Given a nodev ∈ V in the
original network, the general form of the condition for two
copies of v, denoted byv1 and v2, belonging to thej1-th
andj2-th trees respectively in the transformed network can be
written as:

∑

k∈hi1j1
(v1)

ai1j1k

∑

l∈hi2j2
(v2)

ai2j2l

 =

∑

m∈hi1j2
(v2)

ai1j2m

∑

n∈hi2j1
(v1)

ai2j1n

 (7)

wherehij(v) denotes the set of leaf nodes in thej-th tree
that are copies of the source nodesi and have a path tov. A
careful study of the general form shows an edge compatibility
condition needs to be introduced for every two copies,v1, v2 ∈
V ′, of nodev ∈ V and for every two sourcessi1 , si2 ∈ S
such that (a)|I(v1)| > 1, (b) v1 ∈ Vj1 , v2 ∈ Vj2 , Vji = Set of
nodes in theji-th tree, and (c)hi1j1(v1) 6= φ, hi2j1(v1) 6= φ.

5) Simplifying the equations:As pointed out before, the lin-
ear equations (No Interference conditions) possess the special
property that each of them involves a mutually exclusive set
of variables. Using this property, we can simplify the system
of equations in the following two ways:

1) It is possible that some of the variables never occur in the
non-linear equations (Edge Compatibility conditions).
From (6), we can see thata1 is one such variable in
the example of the butterfly network. It can be easily
seen that the linear equation involvinga1 can be trivially
satisfied for any value assigned to the other variables
involved in the same linear equation by choosing an
appropriate value ofa1 (which does not have any other
condition on it). Hence,a1 along with the linear equation
it occurs in can be removed from the system as trivially
solvable.
Therefore, the first simplification would involve elimi-
nation of variables (and their corresponding linear equa-
tions) that do not occur in any non-linear equation.

7

5

7

1

4

5

8

1

4

5

7

4

11

3

2

5

8

4

1

3

1 2

5

7

5

8

7 8

X1

X2

α4(α1X1 + α2X2)

α5X1

α6(α1X1 + α2X2)

α5X1

X2X1

α4α1X1 α4α2X2 α6α1X1 α6α2X2

(d)

(a) (b)

(c)

α3X1 α5X1

α6(α1X1 + α2X2)

X2X1

α6(α1X1 + α2X2)

+α5X1

α4(α1X1 + α2X2)
α4(α1X1 + α2X2)

+α3X1

α3X1

α3X1

X1 X2

Fig. 4. Illustration of flow transformation.

2) Since each linear equation involves a mutually exclusive
set of variables, we can eliminate one variable using each
linear equation easily. Eliminating this variable from the
non-linear equations (note that this does not increase the
degree of the system) might reduce some of them to
linear equations which can again be used to eliminate
more variables iteratively.

In the case of the butterfly network, after the first step of
simplification, we are left with 8 variables, 4 linear equations
and 6 non-linear equations.

In the second step of the simplification, after the first round
of elimination of variables using the linear equations (4) in
(6), we are left with 4 variables:a2, a4, b3 and b5 and the 6
equations as shown below.

a2 = 0 b5 = 0

a2b5 = 0 a2b3 = 0

a4b5 = 0 a4b3 = 1

Subsequently,a2 andb5 can also be eliminated, using the lin-
ear equations above, leaving just 2 variables and the relation:

a4b3 = 1 (8)

Hence, the network coding problem for the example of the
butterfly network has been reduced to solving only one (non-
trivial) equation given in (8).

To summarize, our main result has been to show that
network information flow in a given network is equivalent to

group-valued circulations in a transformed network (a set of
directed trees, one for each sink). We have used this equiva-
lence to derive a set of polynomial equations (with maximum
degree 2) which provide a new and simple formulation for the
scalar linear network coding problem.

VI. EXAMPLES AND COMPARISON

A. Illustration

To further clarify the graph and flow transformation, we
illustrate, in Fig. 4, the steps of the transformation for the
flow in the butterfly network of Fig. 1 to the sinks at Node 7
and Node 8.

In Fig. 4a, we start with the flows to the sink nodes 7 and
8. The scaling factors are eliminated and moved one node up
in Fig. 4b by copying Node 5. The same process continues in
Figs. 4c and 4d till we get two trees and the scaling factors
are at the leaf nodes. At this point, we have a group-valued
circulation in the trees.

Notice that the relationship between the scaling variablesin
our formulation, shown in Fig. 3b, and the direct formulation
(Fig. 1) can now be seen readily. For instance,a1 = α3,
a2 = α4α1, b1 = α4α2, a3 = α5, a4 = α6α1, b2 = α6α2.
This, along with similar relationships for nodes 9 and 10, isthe
substitution of variables that results in our formulation from
the direct formulation. Our algorithm for graph transformation
along with the no interference and edge compatibility condi-
tions perform this substitution implicitly resulting in linear and
degree-2 equations with possibilities for simplification.Finally,

8

2

6

1

7

3
4 5

8 9

111012 1314

6

8

1012

4
1 2 21

7

5

3

6

1
4

8 9

1110 14

2

5

7

32

6

3
4

21 3

9

11 13

2

5

7

23

6

4

1

(a) (b) (d)(c)

e1

e2 e3

e4 e1

e2

e4 e1

e2 e3

e4
e1

e3

e4e1

Fig. 5. (a) An example network that is solvable only over fields with characteristic 2. There are three sources - 1, 2 and 3 - producing symbolsX1, X2 and
X3 respectively. There are three sinks - 12, 13 and 14 - demanding symbolsX3, X1 andX2 respectively. (b),(c),(d) The final transformed network with 3
trees - one for each sink node.

we obtain the simple equation,a4b3 = 1, which is not obvious
even when the substitution is clearly specified.

B. Another Example

Consider the network shown in Fig. 5a taken from [5], [6],
where it has been proved to have linear coding solutions only
over fields of characteristic 2. Nodes 1, 2 and 3 are sources
producingX1, X2 andX3 respectively. Nodes 12, 13 and 14
are sinks demandingX3, X1 andX2 respectively. The trees in
the equivalent group-valued circulation network are shownin
Fig. 5b,c,d. Notice that the intuitive method of starting with
the sink and moving up towards the source for performing
the graph transformation needs care in its execution for this
example.

The set of equations generated by the “No Interference
condition” are:

Node 12:a1 + a2 = 0; b1 + b2 = 0; c1 = 1

Node 13:a3 = 1; b3 + b4 = 0; c2 + c3 = 0

Node 14:a4 + a5 = 0; b5 + b6 + b7 = 1; c4 + c5 = 0 (9)

The set of equations generated by the “Edge Compatibility
condition” for edgese1, e2, e3 ande4 respectively are:

e1 : a2b3 = a3b1; a2b5 = a4b1; a2b7 = a5b1;

a3b5 = a4b3; a3b7 = a5b3; a4b7 = a5b5

e2 : a2(b5 + b6) = a4(b1 + b2); a2c4 = a4c1;

(b1 + b2)c4 = (b5 + b6)c1

e3 : a3b7 = a5b3; a3c5 = a5c2; b3c5 = b7c2

e4 : b2c3 = b4c1; b2c4 = b6c1; b4c4 = b6c3 (10)

Using the linear equations to eliminate variables iteratively,
we get 9 equations in 6 variables shown below.

a2b3 = b1; a2 = −a4b1; a4b3 = −1;

a2c4 = a4; c4 = a4c2; b3c4 + c2 = 0;

b1c2 + b3 = 0; b1c4 + 1 = 0; b3c4 = c2 (11)

From equationsb3c4+c2 = 0 andb3c4 = c2, we can derive
the relation2c2 = 0. Substitutingc2 = 0 in the above system
leads to the condition1 = 0 which is not possible. Hence, we
must have2 = 0, which implies that the system is not solvable
in any field with an odd characteristic. Also, in characteristic
2, setting all variables to 1 in the above equations, is seen

TABLE I
COMPARISON OF FORMULATIONS

Group-valued Circulations Direct Formulation
Example

Butterfly
Fig. 5a

[3, Fig. 5]
[5, Fig. 3]
[6, Fig. 3]

Var.1 Deg. 2 Eqns1

4 6
8 15
9 5
27 45
12 30

Var. Eqns Deg.

10 8 2
14 9 3
14 4 4
50 32 3
22 17 3

1After one iteration of elimination using the linear equations

to be a solution. This example demonstrates that, in practice,
working with the equations derived through our formulation
can be advantageous.

For this example, the direct formulation of [3], as illustrated
in [6], results in 17 equations in 22 variables.

C. Complexity comparison

It has been shown in [10] that the complexity of Gröbner
Basis algorithms depends, among other things, on the maxi-
mum degree of the starting basis. The degrees of the interme-
diate polynomials computed during Gröbner Basis calculations
has been shown to grow up to22

d

if the maximum degree of
the starting basis isd. Due to these issues, Gröbner Basis
algorithms become practically intractable except for small
problem instances.

In the light of these results, our work on deriving a system
of polynomial equations whose maximum degree is only 2
becomes important and will help in reducing the running
complexity of Gröbner Basis algorithms that may be used to
solve the system.

A comparison between the number of variables, equa-
tions and maximum degree of the the system of polynomial
equations derived based on our formulation described in the
previous section and the formulation proposed by Koetteret
al in [3] is shown in Table I. Appendix A explains how to
count the number of variables and equations obtained in our
formulation. It can be seen that, apart from having a maximum
degree of only 2, the number of variables is also lesser in our
new formulation for every case. Also, the number of equations
is more than the number of variables in most cases for our
formulation which makes it viable to use special algorithms
such as [11] for solving the derived system of equations.

9

1 2

3

4
5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33 34

35 36

37

38

39

40

41

42

43

44

45 46
47

48

49

50

51

52
5354

55

56

57

58

59

60

61

62 63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Fig. 6. An ISP network over Europe with 87 nodes and 161 edges.

D. A Bigger Example

Consider an ISP network topology shown in Fig. 6 taken
from [12]. The network has 87 nodes and 161 edges. Assuming
all links have unit capacity, we tried the following three cases
with different number of sources on this network. Further,
we assumed characteristic 2 in our simplification steps. The
five nodes 31, 41, 47, 69 and 82 were set as sources in all
the following cases. Each sink demands data from one of the
source nodes. The sinks and their demands were chosen at
random depending on graph connectivity.

1) 5 sources (all rate 1) and 10 sinks.The direct for-
mulation (from [3]) gives a system of 44 equations
in 30 variables. Our formulation initially results in
44 linear equations and 3 degree-2 equations in 316
variables. After applying the simplification steps, we
are left with only 3 degree-2 equations in 7 variables
assuming solution exists in a characteristic 2 field. In
fact, setting all the remaining 7 variables to zero results
in a valid solution to the three equations (some other
scaling variables are non-zero). Hence, a solution over
GF(2) is possible.

2) 5 sources (one with rate 2, others rate 1) and 12 sinks.
The direct formulation yields a system of 50 equations in
40 variables in this case. In comparison, our formulation
initially resulted in 50 linear equations and 34 degree-
2 equations in 330 variables. But after applying the
simplification steps, we are left with only 13 degree-2

equations in 17 variables assuming solution exists in a
characteristic 2 field. Again the all-zero solution is valid
for the remaining 17 variables resulting in a network
code over GF(2).

3) 5 sources (all with rate 2) and 11 sinks.The direct
formulation yields a system of 88 equations in 180
variables. Our formulation initially gives 88 linear and
11198 degree-2 equations in 632 variables. But on
applying the simplification steps, assuming characteristic
2, it turns out that the system is not solvable over
characteristic 2.

Hence, we see that the algebraic formulation of scalar linear
network coding based on group valued circulations appears to
work better even over large networks with a few sources and
sinks.

VII. N ETWORK CODE FROM GROUP-VALUED

CIRCULATIONS

We now describe an algorithm to obtain a network code for
the original network from the group-valued circulations onthe
transformed network. Note that this completes the proof of the
sufficiency of edge compatibility conditions.

First, we will briefly describe the algorithm and then present
a notational version of the same. A solution to the system
of polynomial equations in our formulation consists of a set
of values assigned to the scaling variables at the leaf source
nodes in the group-valued circulation network such that the

10

A1 A2 A3

e1 e2 e3

v

e5e4

a1A1 + a2A2

+a3A3

c1A1 + c2A2

+c3A3

b1A1 + b2A2 + b3A3a1A1 + a2A2

e3(1)

e2(1)

a1A1

e1(3)e1(2)

a2A2 a3A3 b1A1 b2A2 b3A3

e2(2)

e3(2)

e2(3)

e3(3)

v(3)v(2)v(1)

e4(1) e4(2) e5(1)

v in G

Copies ofv in G′

ce1 = [a1 b1 c1]

c1A1 + c2A2

+c3A3

c1A1 c2A2 c3A3

e1(1)

+a3A3 = k(a1A1 + a2A2 + a3A3)

ce2 = [a2 b2 c2]

ce4 = [1 k] ce5 = [1]

ce3 = [a3 b3 c3]

Fig. 7. Determining the vectorsf andc for outgoing links

no interference conditions as well as the edge compatibility
conditions are satisfied. The algorithm to construct a network
code from such a solution consists of propagating the values
of these coefficients from the source nodes to the sink nodes
through the transformed network.

We compute two vectors for every edgee of the graph
G = (V,E). The first vectorfe = [fe(1) fe(2) · · · fe(|S|)]
represents the edge function or symbol

∑|S|
i=1 fe(i)Xi sent

over edgee. Supposee is replicatedn times to obtain edgese′′i ,
1 ≤ i ≤ n in the transformed graphG′ = (V ′, E′). The second
vectorce = [c1 c2 · · · cn] is such that the edge function on
e′′i ∈ E′ is ci

∑|S|
i=1 fe(i)Xi. Note that such a scaling property

is guaranteed for all copies of an edge by the compatibility
conditions. Once the vectorsfe are computed for alle ∈ E,
the network code inG is completely known.

Supposefe′ andce′ are known for all the incoming edges
e′ ∈ I(v) for a nodev ∈ V . The vectorsfe and ce can be
computed for the outgoing edgese ∈ O(v) as illustrated for
a sample case in Fig. 7. In the figure, a nodev ∈ V with
I(v) = {e1, e2, e3} andO(v) = {e4, e5} is replicated thrice
into v(1), v(2) and v(3) in G′. The incoming and outgoing
links are replicated as shown. For instance, the edgee1 is
replicated thrice ase1(1), e1(2) ande1(3). Suppose there are
three source nodesS = {s1, s2, s3}, and fei = [αi1 αi2 αi3]
resulting in edge functionsAi =

∑3
j=1 αijXj for i = 1, 2, 3.

The scaling vectorscei are as shown in the figure.
Using the edge functions and scaling factors on the incom-

ing edges, the edge function of the copies ofei, i = 1, 2, 3
are computed first. For instance, the edge function ofe2(2) is
computed asb2A2. Then, the edge function for the outgoing
links of v(1), v(2) and v(3) in G′ are computed by simple
addition. As shown in the figure, the symbols sent one4(1)
ande4(2) will be scalar multiples. We then assign the symbol
on e4 in G to be the symbol one4(1) given by

∑3
i=1 aiAi =

∑3
j=1(

∑3
i=1 aiαij)Xj (assumed nonzero). Then,fe4 andce4

are assigned suitably.
In this manner, all the nodes are processed in a suitable order

to compute the network code for the original graph from the
group-valued circulation on the transformed graph. We now
introduce some notation to describe the algorithm formally.

A. Notation

Consider the given networkG = (V,E) and the equivalent
group-valued circulation networkG′ = (V ′, E′). Then, for
each nodev ∈ V , let us define the set of network coding
coefficients asae′,e ∀ e′ ∈ I(v), e ∈ O(v) i.e. if xe′ is the
symbol received on the linke′ ∈ I(v), the symbol sent on
e ∈ O(v) is

∑

e′∈I(v) ae′,exe′ (see Fig. 2).
Nodes and edges get replicated during the transformation

from G to G′. We define some sets to hold information about
the replicated nodes and edges. Forv ∈ V (v /∈ S ∪ T) and
e, e′ ∈ E, define:

Rv = {v′ ∈ V ′ : v′ is a copy ofv}

Re = {e
′′ ∈ E′ : e′′ is a copy ofe}

Re′,e = {e
′′ ∈ Re′ : head(e′′) ∈ Rtail(e)}

The setsRv and Re hold nodes and edges inG′ that are
copies ofv ande , respectively. Two other useful sets are (1)
Rhead(e) that contains copies of head(e) satisfying the relation
Rhead(e) = head(Re), and (2)Rtail(e) that contains copies of
tail(e). The setRe′,e contains copies of an edgee′ that connect
to a copy ofe.

Let the vectorfe = [fe(1) fe(2) · · · fe(|S|)] represent
the edge function

∑|S|
i=1 fe(i)Xi sent over edgee ∈ E in the

final linear network code inG. Since the edge compatibility
conditions are satisfied, the edge function on each copy of
e in Re will be a scalar multiple offe. For e′′ ∈ Re,
let the edge function one′′ be fe′′ = ce(e

′′)fe. We col-
lect the multiplying factorsce(e′′), e′′ ∈ Re into a vector
ce = [ce(e

′′) : e′′ ∈ Re]. Note that there is a one-to-one
correspondence between elements of the setsRhead(e) andce

given by ce(e′′) ↔ head(e′′) for e′′ ∈ Re. Finally, we define
sub-vectorsce′,e = [ce′(e

′′) : e′′ ∈ Re′,e] collecting the
multiplying factors on copies ofe′ that connect toe.

11

B. The Algorithm

The vectorsfe and ce are initialized for an outgoing link
e from the source node as follows. For thei-th source node
si ∈ S ande ∈ O(si), fe = [0i−1 1 0|S|−i]. For e′′ ∈ Re, the
coordinatece(e′′) of ce is equal to the value of the scaling
variable at the leaf node tail(e′′) ∈ Rsi .

Algorithm 3: Deriving the Network Code
Input: A directed acyclic networkG = (V,E), an equivalent
group-valued circulation networkG′ = (V ′, E′), a topological
ordering of nodesP (from Algorithm 1) and a solution to the
derived system of polynomial equations.
For each node,v in the reverse topological ordering,P ′, of
P , if v /∈ S ∪ T , do

1) Get fe′ , ce′ from tail(e′) ∀ e′ ∈ I(v).
2) For each edgee ∈ O(v)

a) Getce′,e from ce′ as defined above∀ e′ ∈ I(v).
b) Fe′,e ← c

T
e′,efe′ ∀ e′ ∈ I(v), are matrices such

that each row corresponds to the symbol flowing
through a copy of edgee in G′ due to the flow
through a copy of edgee′.

c) Fe ←
∑

e′∈I(v) Fe′,e, is a matrix such that each
row corresponds to the symbol flowing through a
copy of edgee in G′.

d) fe ← any non-zero row (say,i) of Fe, or the zero
row if Fe is the zero matrix. This is the symbol
that will actually flow throughe in G.

e) ae′,e ← ce′,e(i) ∀ e′ ∈ I(v), wherei is the row
selected in the previous step. This is the set of net-
work coding coefficients of nodev corresponding
to output linke.

f) ce(j) ← (jth row of Fe)/fe or 0 if fe = 0 ∀ j =
1, . . . , |ce|.

The decoding coefficients at a sink nodetj are given by the
set{ce; e ∈ I(tj)}. Note that all the matrices in this set have
only one element since there is only one copy of each sink
node (and and all its input links) inG′.
Output: The set of all network coding coefficients,ae′,e, for
the given network.

C. An Example

We will now present an example of this algorithm applied to
a sample solution for the modified butterfly network (Fig. 3).
Consider the following solution for the system overGF (4) =
{0, 1, α, α2}, α2 = 1 + α.

a1 = a5 = b2 = b6 = 1

a2 = a6 = b1 = b5 = 0

a3 = a4 = α

b3 = b4 = α2 (12)

One reverse topological order of edges is1−2−3−4−5−
6− 7− 8− 9− 10. Nodes 1,2 are source nodes. So, we have
fe1 = fe4 = [1 0], fe2 = fe5 = [0 1] and from the solution
above, we havece1 = [0 α 1 0], ce4 = [1 α], ce2 = [0 1 α2 0],
ce5 = [α2 1].

Then, beginning with the iteration for the non-source non-
sink nodes as described in the algorithm above, we will first

process node 3 - we knowfe, ce for both its input links,e1, e2.
There are 4 copies of this node as shown in Fig. 3b and all 4
copies have copies of edgee3 as their only output links. Hence,
ce1,e3 = ce1 andce2,e3 = ce2 . After computingFe1,e3 , Fe2,e3 ,
we arrive at:

Fe3 =

(

0 α 1 0
0 1 α2 0

)T

Now, let fe3 = [α 1], the second row ofFe3 . Hence, we
haveae1,e3 = α, ae2,e3 = 1, the network coding coefficients
at node 3. Also,ce3 = [0 1 α2 0].

Next, we will move to node 4 which has two output links,
e6, e7. Hence, we havece3,e6 = [0 1], ce3,e7 = [α2 0]. We can
then computeFe3,e6 , Fe3,e7 and then arrive at:

Fe6 =

(

0 0
α 1

)

Fe7 =

(

1 α2

0 0

)

Now we can choosefe6 = [α 1], the second row ofFe6 and
fe7 = [1 α2], the first row ofFe7 . Then, the network coding
coefficients for node 4 areae3,e6 = 1, ae3,e7 = α2. Completing
the last step of the iteration, we getce6 = [0 1], ce7 = [1 0].

Now we come to node 5. For the output linke8, we have
ce4,e8 = [1], ce6,e8 = [0] and for e9, we havece4,e9 =
[α], ce6,e9 = [1]. Then we get:

Fe8 = [1 0]

Fe9 = [0 1]

So, fe8 = [1 0] and fe9 = [0 1], the only rows of the
respective matrices. Then, the network coding coefficientsfor
node 5 are:

ae4,e8 = 1, ae6,e8 = 0

ae4,e9 = α, ae6,e9 = 1

Also, ce8 = ce9 = [1].
Similarly, the network coding coefficients for node 6 can

also be computed so that sinks 9, 10 receive the required
symbols.

VIII. C ONCLUSION

In this work, we have established an equivalence between
network information flows and group-valued circulations and
used the equivalence to arrive at an algebraic formulation
for the network coding problem that is different from the
one first proposed by Koetteret al in [3]. Given a network
coding problem, we have given algorithms to construct an
equivalent group-valued circulation network and to arriveat
a system of polynomial equations (of maximum degree 2)
that represents the scalar linear network coding problem. We
have demonstrated the computational advantages of our new
algebraic formulation over the traditional approach.

The obvious intuitive connection between network coding
and group-valued circulations is quite interesting in itself and
lends a new perspective to the network coding problem. We
have explored one aspect of this connection by arriving at
an alternative algebraic formulation for the problem. Other

12

aspects and applications of this connection are yet to be
explored.

Since our system of equations is equivalent to the one in
[3], an alternative way of viewing our formulation is that we
simplify the equations in [3] through a recursive graphical
method.

When seen in conjunction with [6], an interesting result
is obtained from our formulation. In [6], the authors show
that solvability of an arbitrary polynomial collection is equiv-
alent to solvability of a network. Our formulation equates
the solvability of a network to the solvability of a degree-2
polynomial collection. Hence, we infer that solvability ofan
arbitrary system of polynomials is equivalent to solvability of
a degree-2 polynomial collection obtained by our formulation.

APPENDIX A
COUNTING NUMBER OF VARIABLES AND EQUATIONS

A. Number of variables

It can be seen that the number of variables involved in
the system of polynomial equations derived in Section V-C
is equal to the number of leaves in the set of trees in the
transformed network (which in turn is equal to the number of
paths from any of the source nodes to any of the sink nodes).
A dynamic programming algorithm for computing this number
is as follows.

Algorithm 4: Counting number of variables
Input: A directed acyclic graph,G = (V,E) and a topological
ordering of nodes,P (from Algorithm 1).

1) Associate with each sink nodev ∈ T , a valueC(v) = 1.
2) For each node in the topological orderingP do,

• C(v)←
∑

e∈O(v)

C(head(e))

3) Number of variables =
∑

v∈S

C(v)

Output: The number of variables in the system of equations.

B. Number of linear equations

As shown in Section V, the graph transformation yields
as many trees as the number of sink nodes. For each tree,
we have as many linear equations as the number of different
source nodes that have a path to the associated sink node - one
equation for the symbol that is demanded and one equation
each for the symbols that are not demanded.

Using the notation used in (7), for a nodev ∈ V ′ in the
transformed network,hij(v) denotes the set of leaf nodes in
the j-th tree of the transformed network that are copies of the
source nodesi and have a path tov. Also, let Vj denote the
set of nodes in thej-th tree. Let us now define:

S(v) = {si : si ∈ S, |hij(v)| > 0} wherev ∈ Vj (13)

In other words,S(v) is the set of source nodes that have a path
to the original copy of the nodev in the given network. Hence,
the total number of linear equations is given by

∑|T |
j=1 |S(tj)|.

C. Number of non-linear equations

As seen from (7), we have one non-linear equation for every
pair of source symbols flowing through every pair of replicated
copies of any edgee such that|I(tail(e))| > 1. The number of
copies created of an edgee is given byC(head(e)) computed
as part of Algorithm 4. A similar dynamic programming
algorithm as Algorithm 4 applied in the reverse topological
order of nodes (from Algorithm 1) can be used to compute
S(tail(e)), the number of different source symbols flowing
through an edgee.

Now, the number of non-linear equations associated with
this edgee is given by:

Q(e) =

(

C(head(e))
2

)(

S(tail(e))
2

)

. (14)

Hence, the total number of non-linear equations is given by
∑

e∈E Q(e).

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow”, IEEE Trans. Inform. Theory, vol. 46, pp. 1204–1216,
July 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE
Trans. Inform. Theory, vol. 49, pp. 371, February 2003.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding”,
IEEE/ACM Trans. Networking, vol. 11, pp. 782–794, October 2003.

[4] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction”, IEEE Trans. Inform. Theory, vol. 51, pp. 1973–1982,
June 2005.

[5] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow”,IEEE Trans. Inform. Theory, vol. 51, pp.
2745–2759, August 2005.

[6] R. Dougherty, C. Freiling, and K. Zeger, “Linear networkcodes and
systems of polynomial equations”,IEEE Trans. Inform. Theory, vol. 54,
pp. 2303–2316, May 2008.

[7] D. Sharma, “Linear network coding for wirelined and wireless net-
works”, Master’s thesis, Indian Institute of Science, April 2007.

[8] R. Diestel, Graph Theory (Graduate Texts in Mathematics), Third
Edition, Springer-Verlag, 2000.

[9] Narsingh Deo, Graph Theory with Application to Engineering and
Computer Science, Prentice-Hall, Englewood Cliffs, NJ, 1974.

[10] H. M. Möller and F. Mora, “Upper and lower bounds for thedegree of
gröbner bases”,Lec. Notes in Comp. Sci., vol. 174, pp. 172–183, 1984.

[11] Nicolas Courtois, Alexander Klimov, Jacques Patarin,and Adi Shamir,
“Efficient algorithms for solving overdefined systems of multivariate
polynomial equations”, inLec. Notes in Comp. Sci.EUROCRYPT, 2000,
pp. 392–407.

[12] T. Anderson, R. Mahajan, N. Spring, and D. Wetherall, “Rocketfuel
project”, http://www.cs.washington.edu/research/networking/rocketfuel.

	Introduction
	The Network Coding Problem
	Motivation
	Group-valued Circulations
	Network Information Flow as Group-valued Circulations
	Equivalence for one node
	Equivalence for network
	Algebraic Formulation
	Scaling variables
	Counting group-valued circulations
	No Interference conditions
	Edge Compatibility conditions
	Simplifying the equations

	Examples and Comparison
	Illustration
	Another Example
	Complexity comparison
	A Bigger Example

	Network Code from Group-valued Circulations
	Notation
	The Algorithm
	An Example

	Conclusion
	Appendix A: Counting Number of Variables and Equations
	Number of variables
	Number of linear equations
	Number of non-linear equations

	References

