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A Simple Algebraic Formulation for the Scalar
Linear Network Coding Problem
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Abstract—In this work, we derive an algebraic formulation an equivalent set of directed trees. In a network, a group-
for the scalar linear network coding problem as an alternatve  valued circulation is a mapping from the set of edges to a
to the one presented by Koetter and Mdard in their work. o5 sych that the net flow through any node is conserved
We first show an equivalence between network information flow der th dditi fi 8l O dil
and group-valued circulations. Given a general network coiahg un e_r € group addrion F)pera |0n [8]. One can readily see
pr0b|em’ we provide an a|gorithm to generate a graph (Speciﬁ that ||nea.r netWOI‘k-COded |nf0rmat|0n ﬂOW Should be C|§Jse|
cally, a collection of trees) on which group-valued circultions are  related to group-valued circulations. However, sincedli€no
equivalent to information flow in the original network. We use multiplication operation in groups, we show that the networ
this collection of trees to derive a system of polynomial ecations needs to be transformed before a direct relationship can be

that algebraically represents the scalar linear network cding . . . .
problem. Surprisingly, this system of polynomials has a maxnum established between linear network coding over a field and

degree of2. We illustrate our formulation and its advantages over @ group valued circulation. We develop an algorithm for this
the formulation presented by Koetter and Médard in terms of network transformation, which results in a set of trees.

the number of variables and equations involved (apart from a  \We then use the corresponding flow in the set of trees to
reduction in degree) through example networks drawn from tte  4arive a system of polynomial equations that provides and
literature. - - . .
algebraic formulation for the network coding problem in the
original network. Surprisingly, this set of equations hasax-
. INTRODUCTION imum degree of only2. Moreover, the form of the equations

HE idea of network coding over error-free networkdhas additional structure that can be exploited in seveisgxa
pioneered in [1], has been a subject of active currek¥e illustrate this simplification through examples and canep

research. The general idea of linear network coding, whe?d! formulation with the one proposed in [3] in terms of the
intermediate nodes linearly combine incoming packets, wagmber of variables and equations involved.
explored in [2]. A simple and effective algebraic formutati AN alternative way of viewing our formulation is that we
of the general network coding problem was introduced ®gerform a graphical simplification of the formulation in [3]
[3]. This established a direct connection between a netwoppich uses scaling variables on every link. The crux of our
information flow problem and an algebraic variety over th&implification lies in a graph transformation that migraadis
closure of a finite field. scaling variables to the sources. All the intermediate sode

Using the formulations of [2], [3], the multicast networksimply perform addition and have only a single outgoing
coding problem, where one source transmits at the same ra@sle in the transformed graph (a set of directed trees).dn th
to a set of sinks, has been characterized almost completéignsformed graph, we get only linear and degree-2 equation
A linear network code exists for the multicast case in a largélating the scaling variables at the sources.
enough finite field and can be found in polynomial time [4]. We will start with a notational description of the network
However, the general network coding problem still remairPding problem in Sectiohlll. Then, we will provide a brief
much harder to characterize. The insufficiency of lineaiimgpd Motivation for the work presented here in Sectiod IIl. In
in the non-multicast case has been demonstrated in [5].fReceection1V, we will introduce some theory on group-valued
work in [6] and [7] has shown the restrictions imposed on tHérculations. Our main result is presented in Secfign V, ehe
field characteristic for the scalar linear solvability of engral We first give an algorithm that, given a network coding prob-
network coding problem. See [6] for more details on the statm, constructs an equivalent group-valued circulatiot: ne
of-the-art for the non-multicast problems. work. Then, we derive a system of polynomial equations that

The algebraic formulation of [3], while being simple anddlgebraically represents the given network coding problem
powerful, results in equations that are not readily amengb! At the end of the section, we also give ways to simplify the
easy solution in many cases. In this paper, our main resultdgrived system of equations. In Section VI, we further eixpla
to derive an alternative algebraic formulation for the gehe the transformation and algebraic formulation using vasiou
scalar linear network coding problem. Specifically, we sho@xample networks drawn from the literature. We also provide
a correspondence between linear network-coded informatigsults from the application of the algorithms describetiera

flow in a given network and group-valued circulations if0 @ large Internet Service Provider (ISP) network. Finatly
Sectior VIl, we give an algorithm to derive the linear netkor
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algorithms that, given a network coding problem, will giveexists that satisfies all the connection requirements, then
a count of the number of variables and equations resultingnetwork coding problem iscalar-linearly solvable

our algebraic formulation described in Sectioh V. In a scalar linear network coded flow (over a figlf), the
edge function of an edgecan be written ai‘ii‘l a; X;, where
Il. THE NETWORK CODING PROBLEM a;, X; € H. We refer toZLi'l a; X; as either the edge function
The communication network is modelled as a directe@f e or the symbol flowing through and denote it as a vector
acyclic multigraph,G = (V, E), where the node seV f.= la1 az --- a)g].

represents the terminals and switches in the network and the
edge setF represents the communication links. It is assumed,
without loss of generality, that all communication linksear [1l. M OTIVATION
error-free and have unit capacity. Any link of higher capaci
between two nodes can be modelled as multiple unit capacityThe scalar linear network coding problem was formulated
links between the nodes. as a system of polynomial equations in [3]. Our aim in this
For a given edge = (u,v), we denote: work has been to arrive at a simpler algebraic formulatian fo
the general scalar-linear network coding problem than tree o
described in [3]. This advantage of the algebraic formatati
v = heade) that we will describe in the next few sections can be easily
noticed when we compare the two formulations for the case
of the modified butterfly network shown in Figl 1 with two
I(v) = {e € E : heade) = v} sources and four sinks. Note that the network in Elg. 1 is
O() = {e € E : tail(e) = v} identical to the cl_assw butterfly network under our defimiti
of sources and sinks.
Let us further assume the following without loss of gener- The edge functions under the direct assignment of scaling
ality: factors (as in [3]) is shown in Fig] 1. The formulation debked
1) A nodew is a source node iffl(v)| = 0 and all source
nodes produce exactly one unit of data per unit time. X X,
2) A nodew is a sink node iff|O(v)] = 0 and all sink
nodes demand exactly one unit of data per unit time.

In cases where a node produces (demands) more than
one data symbol, we can add virtual source (sink) nodes that
produce (demand) exactly one data symbol, have exactly one
output (input) link connecting them te and no input (output)
links.

Then, the set of source and sink nodes is defined as:

S={veV:|[I(v)]=0}={s1,50,...,55}
T = {U eV: |O(U)| :0} = {tl,tg,...7t|T|}

Let us now assume that we use a finite alphatietFor Qolany +oas) N
each edge;, an edge function is then defined as a mapping: azXy asXp
Fag(a X + a2 Xs) +az(an Xy + axX2)
LIl ©) 10

X, X X X

u = tail(e)

For each node ¢ V , we define:

Xo

Xs
a1 X1 + e Xo

where,i = 1 if tail (¢) € S andi = |I(tail(e))| otherwise.
Definition 1: The collection of all the edge functions in
given network is defined as r@etwork codef all the edge
functions are linear maps with respect to a field alphatet in [3] gives the following 8 equations in 10 variables:
then the code is acalar linear code
Let the data symbol generated at thwh source node, as + ago; =1 agan =0
s; € S, be denoted byX; and the data symbol demanded as +agar =0
by the j-th sink nodet; € T', be denoted byZ;. These also
implicitly define a set of connection requirements, denoted
by C, for the given networkG. Given a networkG, the set agaz +aig =1 agay =0
of source nodesS, the set of sink node§" and the set of
connection requirementd the network coding problem is to  In contrast, our formulation arrives at just 1 equation
determine all the edge functions such that all the connectio
requirements are satisfied. If such a set of edge functions asbs =1
exists, then the network coding problemsslivable If a set
of linear edge functions, with respect to a finite alphabet in 2 variables as given i(8).

aFig. 1. Flow in the butterfly network.

Qglig = 1

azon +ag =0 arap =1
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Fig. 2. (a)Picture of a node employing a linear network cgdsicheme. (b) Picture of a node for a group-valued circulat{o) Transformation of node
shown in (a).

IV. GROUP-VALUED CIRCULATIONS that node through all its input links. Let us assume a coding
scheme over a field". Let . € F represent the symbol
flowing through edge. Then, the general form of the relation
between the symbols flowing through one of the output links,
e € O(v), and the set of input links[(v), of a nodev € V

can be written as:

Z f(e) = Z f(e) (1) Te = Z G’ eLe! (2)

e:heade)=v e:tail(e)=v e'el(v)

Consider a directed multigrapy¥ = (V, E) and a finite
abelian groupH. Then, a group-valued circulation or di-
circulation is defined as a mappinfg: £ — H such that the
following equation is satisfied at each node V:

This can be understood as a conservation of flow — the swihere the coefficients. . are elements of". This is shown
of the symbols entering a node is equal to the sum of the Fig. @a. Note that the linear network-coded flow is not
symbols leaving it, with addition ovefl. This is shown in immediately a group-valued circulation. The conservaléovs
Fig. [2b. of Fig.[da andPb are not the same. In this section, we develop a
Tutte’s theorem (refer [8]) characterizes the number @fansformation of the network, which results in an equinate
group-valued flows in a given graph. The following Lemma is
an adaptation of Tutte’s theorem for counting the number g\f
group-valued circulations in a given graph. '
Lemma 2: The number of group-valued circulations on a Consider the node shown in Figl 2a. There are a total of
given multigraphG: is given by|H|™ where|H]| is the group |O(v)| linear equations that need to be satisfied at this node.
size andm is the number of edges left after contracting norf#€nce, an equivalent graph with group-valued circulations
loop edges one after another till all edges in the graph drist havelO(v)| copies of this node, each satisfying one of
loops. these equations. H; denotes thé-th output link of the node,
Proof: Let us assume first that all edges Gf= (V, E) the equation to be satisfied at théh copy of the node in the
are loops (head) = tail(e) V e € E). Then, given a finite €quivalent graph is given by:
abelian groupH, every mapE — H is an H-circulation on _
G. Hence, the number of circulations is given [@|™ where Tes = Z e’ eidef
m is the number of loops.
Now assume that there is an edgg,that is not a loop.  Hence, the node shown in FIg. 2a will have to be replicated
Consider the multigrapi’; which is same a§; but with the as many times as the number of its output links along with
edgeey contracted. It can be seen that the circulationgign its entire set of input links. In addition, the flow in the
correspond bijectively td-circulations onG [8, Thm. 6.3.1]. input links will have to be appropriately scaled. After thes
Thus, the non-loop edges can be contracted one by one tillta#insformations, the linear-network coded flow in one node
the remaining edges are loops. At this point, the number giiown in Fig[Pa is equivalent to the group-valued circofati
circulations can be reduced &/ wherem is the number in the graph shown in Figd.l 2c.
of edges (loops) left in the graph. |

Equivalence for one node

®)

e’el(v)

B. Equivalence for network
V. NETWORK INFORMATION FLOW AS GROUP-VALUED

We now extend the construction of the equivalent graph to
CIRCULATIONS

the entire network. The single node transformation caneot b
In a linear network coding scheme, each output link of applied to all nodes simultaneously. A careful sequenciihg o
node carries a linear combination of the symbols received hgdes is necessary as discussed below.



In the transformation of a single node since all edges maintained by the transformation. The underlying undadct
e € I(v) are replicatedO(v)| times, the number of edgesgraph is a set of disjoint trees, because any cycle in it must
in O(v'), v' € {tail(e) : e € I(v)} may increase. However, imply that either the cycle is also present in the directexpbr
in order to apply the single node transformation on a noae that one of the nodes in the directed graph has more than
v’ € G, the complete sed(v’) needs to be known beforehandne output link. Hence, the equivalent network is made up of
along with the symbols that should flow on each edge a set of directed trees.
O(v'). To solve this problem, we notice thét(v’) will not The transformation maintains one output link for each node
change once the single-node transformation discusseceabiovthe original graph that ha®(v)| > 1. So, the only nodes
has been applied to all nodese {heade) : ¢ € O(v)}. that will have|O(v)| = 0, and hence be the roots of these
Hence, the transformation can be appliedvtoonly after it trees, are the sink nodes (which hai(v)| = 0 to start with).
has been applied to all nodes= {heade) : e € O(v')}. Hence, each sink would be the root of a directed tree in which
This sequencing can be achieved by applying the traral edges are directed towards this root.
formation in the topological order defined by the original Also, the number of input links of a copied node in the
directed acyclic network. A standard algorithm for findingransformed graph is equal to the number of input links
such a topological ordering of the nodes is given below [9]possessed by the original node. So, the only nodes that will

Algorithm 1: Topological Sorting have|I(v)| = 0, and hence be leaf nodes in these trees, are
Input A directed acyclic graphtz = (V, E). copies of the source nodes (which hgdv)| = 0 to start
1) Associate with each node, a value N(v) that is With). u
initialized to |O(v)|. From the above theorem, we see that the graph transforma-
2) Pick a nodev such thatN (v) = 0, do tion can be applied starting from the sink and working towsard
« For each edge € I(v), the source. The topological sorting is a formal method that
N(tail(e)) « N(tail(e)) — 1. achieves such a sequencing. . .
« N(v) < -1 An example of this transformauon applied to the butterfly
« Appendv to the orderingP. network (Fig[Ba) can be seen in Hig. 3b. From the theorem, we

see that there will be four trees at the end of the transfoomat
fSoted at the sink nodes 7, 8,9 and 10. Working up from Node

. . _ 7 towards the source and copying necessary nodes, we see that
Output P, a topological ordering (permutation) of the node%e tree rooted at Node 7 in F[d. 3b results in a straightfodwa

SuEh tha_ttthetr_e IS ?gtedgzg _fff ”-7't_'f i < J- de fromanner. Similarly, the other trees can be obtained. However
Very 1ieration of Step 2 elieclively removes one node Irofy, point out later that this intuitive method might not beyeas

the graph. After this operation, the resultant graph id stil, implement on more complicated networks

a directed acyclic graph. Since every directed acyclic lgrap 1, 5551y the graph transformation algorithm formally, one

always has at least one node with out-degree 0, this algorithy /b topological ordering of the nodesis 8 —9 — 10 —

will terminate once all nodes have been added to the orderiRg 4, 31”9 Nodes 7. 8. 9 and 10 are sink nodes. and
The final algorithm V.Vh'Ch takes a network_ codln_g problergecr first in the ordering. Nodes 5 and 6 will be replicated

and constructs an equivalent group-valued circulation/ogt 2 times, since they both have 2 output links. This will result

is given below: in the replicati .

. ) . plication of the edges, e5, e ande7. Node 4 will
| AI%(?Ar\ng_m 2,[ ((j;raphl_'l'ransfohr;mftu‘)/n B ¢ of s now have 4 output links and will have to be replicated as
npu irected acyclic grapliz = (V, E), set of sources, many times along with edge;. Similarly, Node 3 will also

set of sinksT’, connection requirements be replicated 4 times along with edgesandes. Finally, the

3) If any node has not been added to the ordering yet,
to Step 2. Else terminate.

1) Obtain a topological ordering> for the graphG' = soyrce nodes 1 and 2 will be replicated 6 times each since
(V, E) using Algorithm 1. they both now have 6 output links.
2) LetG'(V!,E') = G(V. E). _ Note that the scaling variables in the equivalent group-
3) Loop through the nodes € V' in the order defined by yajyed circulation occur only at the leaf source nodes. All
P, do the intermediate nodes simply perform addition. This is the
a) If O(v) > 1, for each edge € O(v), do main reason for the simplification in the structure of our

o Add a new nodey’ to V’ with one output link formulation. However, the flows in the different trees of the
connecting it to hea@) and one input linke’ equivalent graph are not independent, since they sharesedge
for eache” € I(v) such that tafle’) = tail(e”).  of the original graph. This dependence results in the deBree

Output &' = (V',E’), a transformed network such thatquations of our formulation.
group-valued circulations irG’ are equivalent to network-
coded information flows irG. C. Algebraic Formulation

Theorem 3:The final transformed network is made up of a We will describe and illustrate the formulation with the
set of directed trees. Each sink is the root of one tree. Al lebutterfly network (Fig[13a) for simplicity. The generalimat
nodes are copies of one of the source nodes. Scaling is damerbitrary networks follows immediately.
only at the leaf nodes. 1) Scaling variables:Let us now define one variable for

Proof: Each node in the transformed network will haveach scalard;’s, b;'s) associated with each leaf node as illus-

exactly one output link and the acyclic property of the graph trated in Fig[Bb for the butterfly network. The variable name
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Fig. 3. (a) The (modified) butterfly network with 4 sinks andaices. (b) The final transformed network in which groupsedl circulations correspond to
information flow in the original network. The transformedtwerk has 4 disjoint trees - one for each each sink node. Tpeoppate scaling factors at the
leaf nodes are denoted lay’s andb;’s

are chosen as follows. Source nodes 1 and 2 are assignedothéhe source symbols flowing from the leaf nodes. This

variable names andb, respectively. The subscripts are choseimplies that, for each tree, the scalar constants pergiton

tree by tree in the transformed network. In the tree with emot the required symbol at the sink must add up to 1 and those

Node 7, the two copies of source node 1 are assigned varialgegtaining to every other symbol must add up to 0.

a1 andas, while the single copy of source node 2 is assigned In Fig. [3b, the symbols (edge functions) received at the

the variableb;. In the tree with root node 8, the variables arsink nodes 7, 8, 9 and 10 afe; + a2)X1 + b1 X2, (ag +

as, a4 for the two copies of Node 1, arid for the single copy a4) X1 + b2 X5, a5 X1 + (bs + bs) X2 andas X1 + (bs + bg) X2,

of Node 2. We continue in this manner to name the scalimgspectively. For the symbol at Node 7 to be equal to the

variables at the source leaf nodes of the other two treestto gequiredX;, we havea; +a2 = 1 andb; = 0. Other equations

variablesay, as, -+ -, ag andby, bs, - - -, bg. are derived similarly. Hence, in the butterfly network of Fig
Once values are assigned to the scaling variables (fr@nwe get the following linear equations:

some field), all edge functions are defined in the transformed

network. Hence, the network coding problem has been reduced

to finding a feasible assignment of values to these unknown oo =1 br =0
variables (scaling factors at leaf nodes) from a field suel th ag + as =0 by =1
the circulations generated in the transformed graph can be as =1 b3 +bs =0
implemented as a code over the given network. The scaling ag =0 bs +bg =1 (4)

variables need to satisfy two types of conditions as desdrib . . .
in SectionsTV-CB and V-4 below for obtaining a valid. Itis glear that, since the_ flow on .the tree is a group-vallued
circulation, the conservation law implies that interméelia

Feeg{\fj\li(r)él:nfleor\llrsln the original network that meets the COnnm:tlonodes do not scale the symbols, but only perform addition.

2) Counti lued circulationsB ing th Note that the no-interference conditions produce linearaeq
) -ounting group-vaiued cireuiationsby applying the- 4,4 554 no scaling variable appears in more than onerlinea
result in Lemm42 to one particular tree obtained through tr(]:‘ uation. This is because the set of variables defined for

transformation, we can see that the number of edges (I00pg}y, yree are mutually exclusive and, within each tree, the

left after contracting non-loop edges one after anotheqimb Oiﬁet of variables corresponding to each input symbol are also

]Elo the r}umber”otfh Ie?f ?odeds in the trteg.dBut tr(;e ?ymtkr’] utually exclusive. This surprising property results iroadf
owing from afl tne feal nodes are not independent - implifications in our formulation.

carry scaled versions of the input symbols generated at &or completion, we state the general form of the no-

source nodes-m the original network. . ) interference conditions below. In general, each unknovaif sc
A fixed assignment of values to these variables will proag yariaple in the transformed network is associated with
duce different circulations for different values_ﬁfl_and X5 exactly one source symbol and one sink (or tree). Let us éenot
(symbols generated at the source nodes). This gives a fotali ,nknown scalars by, wherei € {1,...,|S|} denotes
H? (|H_|‘S‘ in general) circulations each of which correspondg,e source symbol assoc?ated with the 3(73@1@’,{17 T
to a unique set of values assumed by the source symhiQls, genotes the sink (or the tree) associated with the scaldr, an
and X. k € N is an index among all variables in the same tree
3) No Interference conditionsThe required output at eachyssociated with the same source symbol. Then, the general

sink must be received without any “interference” from othggrm of the “No Interference” conditions can be written as:
source symbols to meet the connection requirements. The

. . . 1 if Z(t;) = X (s;
symbol received at the root of one particular tree in the Zaijk :{ 0 othe(r\;v)ise (5:) (5)
transformed graph is equal to the sum of the scaled versions k



4) Edge Compatibility conditionsThe circulations in the  We see that the compatibility conditions can be simplified as
different trees of the transformed network are not indepahd not all of them are independent. However, since the vargable
because they contain copies of the same edge that can caawy take the value zero, simplifying the equations needeto b
only one symbol at a time on the original network. Hence, idone very carefully. Hence, we simply enumerate all equoatio
the transformed network, these edges must carry “compatibat this stage and simplify later.
symbols. The requirement is that symbols flowing through two We have seen that not all duplicated edges result in distinct
copies of the same edge in the transformed network must dmmpatibility conditions. In general, edge compatibiktgua-
scalar multiples of each other. tions will be required for each edgein the original network

For example, given a network with two source nodes prthat satisfies the following conditions:

ducing symbolsX; and X5, suppose the transformed network 1) Number of copies of heg) in the transformed network
has two copies of an edge denoted by, ande,, carrying > 1 (or the edge will not be replicated at all)
symbolsa; X1 +b1 X, andas X +b2X,, respectively. Inorder  2) Number of different source nodes having a path to
to implement a network code on the original network, it is e > 1 (since if two copies of carrya; X; andas X1,
necessary and sufficient that the two edge functions,cand these will be scalar multiples of each other for any value
eo are scalar multiples of each other. If they are not scalar  assigned tai;, as)
multiples, it is clear that the original edge will need torgar  3) |(tail(¢))| > 1 (or the equations will be same as that
two symbols per unit time in the original network, which is for ¢’ € I(tail(e)))
not possible. If they are scalar multiples, a network code ca
be obtained for the original network as shown later in Sch%o
[VIT] Intuitively, since scaling variables are allowed onKs of
the original network, scalar multiples in duplicated edtjest
arise from multiple outgoing links in the original graph daa
accommodated by suitable scaling in different outgoingdin
Hence, the scalars, as, b1, b2 of the edge functions of;
ande, need to satisfy the following condition:

aibs = azb; E @iy 1k E Gigjal

k€hiq iy (v1) l€hiyj (v2)

For completion, we now state the general form of the edge-
mpatibility conditions in terms of nodes of the transfern
network for added simplicity. Given a node € V in the
original network, the general form of the condition for two
copies ofwv, denoted bywv; and v, belonging to thej;-th

and j»-th trees respectively in the transformed network can be
written as:

These type of degree-2 equations relate the scaling fafttors
every pair of symbols flowing through every pair of copies Z o Z . )
of an edge in different trees of the transformed network. 1z e
Notice that the equation is equivalent to the fractionahfor
Zl = 21 modified to avoid division by zero problems whenwhere h;;(v) denotes the set of leaf nodes in tieh tree
some variable takes the value zero. However, the fractionmht are copies of the source nogleand have a path to. A
form is more intuitive and can be readily extended to obtaiareful study of the general form shows an edge compatibilit
edge compatibility conditions when more than two sources atondition needs to be introduced for every two copigsy, €
involved. V', of nodev € V and for every two sources;,,s;, € S

In our illustrative example of Fid.I3b, the edggis copied such that (a)I(vy)| > 1, (b) vy € Vj,,v2 € V},, V;, = Set of
four times. Since there arez) = 6 ways of choosing two nodes in thej;-th tree, and (ch, j, (v1) # ¢, ml(vl) £ .
copies among the four, there will be six edge compatibility 5) Simplifying the equationsAs pointed out before, the lin-
conditions fores. The symbols on the copies ef on the ear equations (No Interference conditions) possess thaaspe
trees with root nodes 7, 8, 9 and 10 aeX; +b1X2, a4 X1+  property that each of them involves a mutually exclusive set
b2 Xo, as X1 + b3 X2 and ag X1 + b5 X2, respectively. Hence, of variables. Using this property, we can simplify the syste

in fractional form, we needz = {2 (roots 7 and 8)22 = 3L of equations in the following two ways:

MGhile(i&) n€hiyj (v1)

(roots 7 and 9)22 = (roots 7 and 10)% = 2 (8 and 9), 1) Itis possible that some of the variables never occur in the
- = b2 (8 and 10) anou— b (9 and 10) non-linear equations (Edge Compatibility conditions).
In the degree-2 form, the edge compatibility conditions for From [8), we can see that; is one such variable in
the four copies of the edge are listed below: the example of the butterfly network. It can be easily

seen that the linear equation involving can be trivially
azby = asby azbs = asby satisfied for any value assigned to the other variables
asbs = aghy asbs = asbo involved in the same linear equation by choosing an
asbs = agbs asbs = agbs (6) appropriate value od; (which does not have any other

condition on it). Hencey; along with the linear equation
For the butterfly network example, we do not get any other it occurs in can be removed from the system as trivially

edge compatibility conditions. For edgegsander, the equa- solvable.
tions are identical to the ones listed above. Also, therenare Therefore, the first simplification would involve elimi-
equations for edges,, e3, ¢4 andes; since these edges have nation of variables (and their corresponding linear equa-

scaled versions of the same symbol flowing through them. tions) that do not occur in any non-linear equation.
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Fig. 4. lllustration of flow transformation.

2) Since each linear equation involves a mutually exclusiggoup-valued circulations in a transformed network (a det o
set of variables, we can eliminate one variable using eadhiected trees, one for each sink). We have used this equiva-
linear equation easily. Eliminating this variable from théence to derive a set of polynomial equations (with maximum
non-linear equations (note that this does not increase ttegree 2) which provide a new and simple formulation for the
degree of the system) might reduce some of them soalar linear network coding problem.
linear equations which can again be used to eliminate
more variables iteratively. VI

In the case of the butterfly network, after the first step @. Illlustration
simplification, we are left with 8 variables, 4 linear eqoas

and 6 non-linear equations. illustrate, in Fig.[&, the steps of the transformation foe th

In the second step of the simplification, after the first rounghy in the butterfly network of Figd1 to the sinks at Node 7
of elimination of variables using the linear equations @) izng Node 8.

@), we are left with 4 variablests, a4, b3 and b5 and the 6
equations as shown below.

. EXAMPLES AND COMPARISON

To further clarify the graph and flow transformation, we

In Fig.[da, we start with the flows to the sink nodes 7 and
8. The scaling factors are eliminated and moved one node up
_ _ in Fig.[4b by copying Node 5. The same process continues in
as = 0 b5 =0 . . .

Figs.[4c and1d till we get two trees and the scaling factors
azbs =0 azbs =0 are at the leaf nodes. At this point, we have a group-valued
ashs =0 ashs =1 circulation in the trees.

- . . Notice that the relationship between the scaling variaioles
Subsequentlyy, andb; can also be eliminated, using the lin- P 9

i b leaving iust 2 variabl 4 th l t_our formulation, shown in Fid.3b, and the direct formulatio
ear equations above, leaving just 2 variables an emea'(Fig.I]]) can now be seen readily. For instanae, — s,

a4b3 =1 (8 a2 = O0y4Q, bl = iy, a3 = 5, A4 = OO, b2 = QgQ2.
This, along with similar relationships for nodes 9 and 1@hes
Hence, the network coding problem for the example of theubstitution of variables that results in our formulatioanf
butterfly network has been reduced to solving only one (notie direct formulation. Our algorithm for graph transfotioa
trivial) equation given in[{8). along with the no interference and edge compatibility cendi
To summarize, our main result has been to show thié#bns perform this substitution implicitly resulting imiar and
network information flow in a given network is equivalent talegree-2 equations with possibilities for simplificatiemally,
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Fig. 5. (a) An example network that is solvable only over feldth characteristic 2. There are three sources - 1, 2 andr@duping symbolsX;, X2 and

X3 respectively. There are three sinks - 12, 13 and 14 - demgrglimbols X3, X; and X5 respectively. (b),(c),(d) The final transformed networkha8
trees - one for each sink node.

TABLE |

we obtain the simple equationsbs = 1, which is not obvious COMPARISON OF FORMULATIONS

even when the substitution is clearly specified.

Group-valued Circulations Direct Formulation

B. Another Example Example Var!  Deg. 2 Eqn$ Var. Eqns Deg.
Consider the network shown in Figl. 5a taken from [5], [6], Butterfly 4 6 10 8 2
where it has been proved to have linear coding solutions only Fig.Ha 8 15 14 9 3
over fields of characteristic 2. Nodes 1, 2 and 3 are sources[g E:g g} 297 55 ég 342 g
producingX;, X, and X3 respectively. Nodes 12, 13 and 14 s, Fig. 3] 12 30 22 17 3

are sinks demand|n§3, X1 and X, respecuvely The trees in LAfter one iteration of elimination using the linear equato

the equivalent group-valued circulation network are shawn

Fig.[@b,c,d. Notice that the intuitive method of startingthwi

the sink and moving up towards the source for performin

the graph transformation needs care in its execution f&r th g be a solution. This example demonstrates that, in peactic

example working with the equations derived through our formulation
The set of equations generated by the “No InterferenG&" be advantageous.
condition” are: For this example, the direct formulation of [3], as illuséa

in [6], results in 17 equations in 22 variables.
Node 12:a1 + a9 = O,bl + by = O;Cl =1
Node 13:a5 = 1503+ by =0;¢c0+ ¢35 =0 C. Complexity comparison
Node 14:a4 +as = 03bs 4+ bg + b7 = Lica+c5 =0 (9) It has been shown in [10] that the complexity of Grobner
Basis algorithms depends, among other things, on the maxi-
The set of equations generated by the “Edge Compatibiliyum degree of the starting basis. The degrees of the interme-
condition” for edgesy, eq, e3 andey respectively are: diate polynomials computed during Grobner Basis calaiat
. _ . _ . _ . has been shown to grow up 88" if the maximum degree of
€1+ G2 = agbi; azbs = aabi; arbr = ashy; the starting basis igl. Due to these issues, Grobner Basis
algorithms become practically intractable except for $mal
ez 1 az(bs + bs) = aa(br + ba); azca = ascy; problem instances.
(b1 + ba)eq = (bs + bg)ca In the light of these results, our work on deriving a system
of polynomial equations whose maximum degree is only 2
becomes important and will help in reducing the running
complexity of Grobner Basis algorithms that may be used to
Using the linear equations to eliminate variables itegdyiv SOIve the system.

aszbs = a4bsz; azby = asbs; asby = asbs

e3 1 agby = asbs;aszcs = asca;bzes = brea

€4 : bacz = bycy;bacy = bgci;bacy = becs (10)

we get 9 equations in 6 variables shown below. _ A comparisgn between the number of variables, equa-
tions and maximum degree of the the system of polynomial
azbs = b1; az = —aqby; asbs = —1; equations derived based on our formulation described in the

A2Cs = Q4; C4 = A4Co; b3ca + co = 0; previous section and the formulation proposed by Koedter

bico+bs = 0: byes+1 = 0: bscy = ¢ (11) al in [3] is shown in Tabld]l. AppendikJA explains how to

count the number of variables and equations obtained in our
From equation$sc, +co = 0 andbscs = ¢, we can derive formulation. It can be seen that, apart from having a maximum
the relation2¢, = 0. Substitutinges = 0 in the above system degree of only 2, the number of variables is also lesser in our
leads to the conditiod = 0 which is not possible. Hence, wenew formulation for every case. Also, the number of equation
must have2 = 0, which implies that the system is not solvablés more than the number of variables in most cases for our
in any field with an odd characteristic. Also, in charactaris formulation which makes it viable to use special algorithms
2, setting all variables to 1 in the above equations, is sesach as [11] for solving the derived system of equations.



Fig. 6. An ISP network over Europe with 87 nodes and 161 edges.

D. A Bigger Example

Consider an ISP network topology shown in Hig. 6 taken
from [12]. The network has 87 nodes and 161 edges. Assuming
all links have unit capacity, we tried the following threesea
with different number of sources on this network. Further, 3
we assumed characteristic 2 in our simplification steps. The
five nodes 31, 41, 47, 69 and 82 were set as sources in all
the following cases. Each sink demands data from one of the
source nodes. The sinks and their demands were chosen at
random depending on graph connectivity.

1) 5 sources (all rate 1) and 10 sink§he direct for-

/
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equations in 17 variables assuming solution exists in a
characteristic 2 field. Again the all-zero solution is valid
for the remaining 17 variables resulting in a network
code over GF(2).

) 5 sources (all with rate 2) and 11 sink¥he direct

formulation yields a system of 88 equations in 180
variables. Our formulation initially gives 88 linear and

11198 degree-2 equations in 632 variables. But on
applying the simplification steps, assuming characteristi

2, it turns out that the system is not solvable over
characteristic 2.

2)

mulation (from [3]) gives a system of 44 equationé_'ence’ we see that the algebraic formulation of scalar tinea
network coding based on group valued circulations appears t

in 30 variables. Our formulation initially results in )
rk better even over large networks with a few sources and

44 linear equations and 3 degree-2 equations in 3%
variables. After applying the simplification steps, Wé'nks'
are left with only 3 degree-2 equations in 7 variables
assuming solution exists in a characteristic 2 field. In
fact, setting all the remaining 7 variables to zero results

in a valid solution to the three equations (some other We now describe an algorithm to obtain a network code for
scaling variables are non-zero). Hence, a solution ovére original network from the group-valued circulationstba
GF(2) is possible. transformed network. Note that this completes the proofef t

5 sources (one with rate 2, others rate 1) and 12 sinksufficiency of edge compatibility conditions.

The direct formulation yields a system of 50 equations in First, we will briefly describe the algorithm and then prdsen
40 variables in this case. In comparison, our formulaticm notational version of the same. A solution to the system
initially resulted in 50 linear equations and 34 degreef polynomial equations in our formulation consists of a set
2 equations in 330 variables. But after applying thef values assigned to the scaling variables at the leaf sourc
simplification steps, we are left with only 13 degree-Bodes in the group-valued circulation network such that the

VII. NETWORK CODE FROM GROUP-VALUED

CIRCULATIONS
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a1 Ay + ag A 1 A1+ a4y

a1l + agsAs b1 Ay + by As + b3 As c1A; + caAs
tazAs tesAs +asAs = k(a1 41 + a2 Aa + azAs) +c3As
vin G Ce, = [1 K] Ce, = [1]

Copies ofv in G’

Fig. 7. Determining the vector and ¢ for outgoing links

no interference conditions as well as the edge compatibilito compute the network code for the original graph from the
conditions are satisfied. The algorithm to construct a netwogroup-valued circulation on the transformed graph. We now
code from such a solution consists of propagating the valuesroduce some notation to describe the algorithm formally
of these coefficients from the source nodes to the sink nodes
through the transformed network. A. Notation

We compute two vectors for every edgeof the graph  Consider the given network = (V, E') and the equivalent
G = (V, E). The first vectorf, = [f.(1) fc(2) --- f(|S])] group-valued circulation network’’ = (V’, E’). Then, for
represents the edge function or sym‘ii‘1 fe(i)X; sent each nodev € V, let us define the set of network coding
over edges. Suppose is replicated times to obtain edgeg’, coefficients asi. . V € € I(v),e € O(v) i.e. if z. is the
1 <i < ninthe transformed grapfi’ = (V’, E’). The second symbol received on the link’ € I(v), the symbol sent on
vectorc. = [c1 ¢; -+ ¢, is such that the edge function one € O(v) IS 3.y, @ eTer (S€€ FigLR).
el € E'is ¢ Zgl f.(i)X;. Note that such a scaling property Nodes and edges get replicated during the transformation
is guaranteed for all copies of an edge by the compatibiliffom G to G'. We define some sets to hold information about
conditions. Once the vectofs are computed for alt € £, the replicated nodes and edges. Foe V (v ¢ SUT) and
the network code iz is completely known. e,e’ € I, define:

Supposef., andc. are known for all the incoming edges R, ={v' € V' : v is a copy ofv}
e’ € I(v) for a nodev € V. The vectorsf. andc. can be
computed for the outgoing edges= O(v) as illustrated for . .
a sample case in Fi@l 7. In the figure, a nade V' with Rere = {e" € Rer - heade”) € Riie) b
I(v) = {e1,e2,e3} and O(v) = {eq,es5} is replicated thrice The setsR, and R. hold nodes and edges ii’ that are
into v(1), v(2) andwv(3) in G’. The incoming and outgoing copies ofv ande , respectively. Two other useful sets are (1)
links are replicated as shown. For instance, the edgés Rj.,q,, that contains copies of head satisfying the relation
replicated thrice as; (1), e1(2) ande;(3). Suppose there are Ryeaqe) = headR.), and (2) Ry that contains copies of
three source nodeS = {s1, s2,s3}, andf,, = i1 a;2 i3] tail(e). The setR. . contains copies of an edgéthat connect
resulting in edge functiong; = Z?Zl a;; X; fori=1,2,3. to a copy ofe.
The scaling vectors,, are as shown in the figure. Let the vectorfe = [fe(1) fe(2) -+ fe(|S])] represent

Using the edge functions and scaling factors on the incone edge functiorzﬁll f-(i)X; sent over edge € E in the
ing edges, the edge function of the copiesegfi = 1,2,3 final linear network code irG. Since the edge compatibility
are computed first. For instance, the edge functiom;¢2) is  conditions are satisfied, the edge function on each copy of
computed a$,A,. Then, the edge function for the outgoing: in R, will be a scalar multiple off.. For ¢’ € R,,
links of v(1), v(2) andv(3) in G are computed by simple let the edge function ore” be f..» = c.(e”)f.. We col-
addition. As shown in the figure, the symbols senteafll) lect the multiplying factorsc.(e”), ¢” € R, into a vector
ande4(2) will be scalar multiples. We then assign the symba, = [ce(e”) : €’ € R.]. Note that there is a one-to-one
on e, in G to be the symbol om4(1) given by > | a;4; = correspondence between elements of the Bgtsq.) andc.
> (X0 aiey;) X, (assumed nonzero). Thef), andc,, given byc.(¢”) < heade”) for ¢” € R,. Finally, we define
are assigned suitably. sub-vectorsc.r . = [cer(e”) @ €’ € Re ] collecting the

In this manner, all the nodes are processed in a suitable ordailtiplying factors on copies of’ that connect ta:.

R.={€e" € E': " is a copy ofe}
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B. The Algorithm process node 3 - we knofy, c. for both its input linkseq, es.
The vectorsf, and c. are initialized for an outgoing link There are 4 copies of this node as shown in Eig. 3b and all 4
¢ from the source node as follows. For th¢h source node Copies have copies of edggas their only output links. Hence,
s; € Sande € O(s;), f. = [0°1 1 015177, Fore” € R, the Ceies = Cey andce, ¢, = ce,. After computingFe, ., Fe, e,
coordinatec, (¢”') of c. is equal to the value of the scalingWe arrive at:
o ( 0O a 1 0 )T
€3 01 a2 0

variable at the leaf node téit’) € R;..
Now, let f., = [« 1], the second row of... Hence, we

Algorithm 3: Deriving the Network Code
Input A directed acyclic networlkG = (V, E), an equivalent

haveae, ¢, = @, ac, ., = 1, the network coding coefficients
at node 3. Alsoc., = [0 1 a? 0].

group-valued circulation network’ = (V’, E’), a topological
ordering of nodes” (from Algorithm[d) and a solution to the

Next, we will move to node 4 which has two output links,
es, e7. Hence, we have,, ., = [0 1], ce;.e. = [@? 0]. We can

derived system of polynomial equations.
For each nodey in the reverse topological ordering’, of

then computefe, .., Fe, ., and then arrive at:
0 0
Fa=a 1)

P, ifv¢g SUT, do
1 o?
ro=(o %)

1) Getf./,c. from tail(e’) V e’ € I(v).
2) For each edge € O(v)
a) Getc. . from c., as defined abové ¢’ € I(v).
b) Fu . + ¢l fo V¢ € I(v), are matrices such
Now we can choosé ; = [« 1], the second row of",, and
f.. = [1 o?], the first row of F,... Then, the network coding
oefficients for node 4 ar@., ., = 1, ac, ., = o*. Completing
e last step of the iteration, we get, = [0 1],c., = [1 0].

that each row corresponds to the symbol flowing
through a copy of edge in G’ due to the flow
Now we come to node 5. For the output liek, we have

through a copy of edge'.

c) F, «+ Ze,el(v) F. ., is a matrix such that each
row corresponds to the symbol flowing through
copy of edgee in G'.

d) f. «+ any non-zero row (say,) of ., or the zero

row if F, is the zero matrix. This is the symbolees = [ ceqee = [0] ar.ld foreg, we havece, e, =
that will actually flow throughe in G. [, e o = [1]- Then we get.

€) Gere < Ce (i) Ve € I(v), wherei is the row F..=110]
selected in the previous step. This is the set of net- F, =1[01]

work coding coefficients of node corresponding

to output linke.
f) c.(j) « (" row of F.)/f. or0if f. =0V j =
1., ce|

The decoding coefficients at a sink notieare given by the
set{cc;e € I(t;)}. Note that all the matrices in this set have
only one element since there is only one copy of each sink

node (and and all its input links) i6".
Output The set of all network coding coefficients, ., for
the given network.

C. An Example

We will now present an example of this algorithm applied to

So,f., = [1 0] andf.,, = [0 1], the only rows of the
respective matrices. Then, the network coding coefficiéarts
node 5 are:

Ueyes = s Gegres =0
Qeyeg = Oy Uegeg = 1
Also, c., = ¢, = [1].
Similarly, the network coding coefficients for node 6 can

also be computed so that sinks 9, 10 receive the required
symbols.

VIIl. CONCLUSION

a sample solution for the modified butterfly network (Fiy. 3). In this work, we have established an equivalence between

Consider the following solution for the system ovgF'(4) =
{0,1, 0,02}, a® =1+ a.
a1:a5:b2:b6:1
a2:a6:b1:b5:0
az = a4 —

by = by = o (12)

One reverse topological order of edgeg is2—3—-4—-5—

network information flows and group-valued circulationslan
used the equivalence to arrive at an algebraic formulation
for the network coding problem that is different from the
one first proposed by Koetteat al in [3]. Given a network
coding problem, we have given algorithms to construct an
equivalent group-valued circulation network and to arrate

a system of polynomial equations (of maximum degree 2)
that represents the scalar linear network coding problem. W
have demonstrated the computational advantages of our new

6 —7—8—9—10. Nodes 1,2 are source nodes. So, we haatgebraic formulation over the traditional approach.

f., =f., =[10], f, = f., = [0 1] and from the solution

above, we have., = [0 a1 0], c., = [1 a], ce, =[01a? 0],
Ces = [a? 1].

The obvious intuitive connection between network coding
and group-valued circulations is quite interesting inlitsad
lends a new perspective to the network coding problem. We

Then, beginning with the iteration for the non-source nomave explored one aspect of this connection by arriving at
sink nodes as described in the algorithm above, we will firah alternative algebraic formulation for the problem. ®@the
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aspects and applications of this connection are yet to 8e Number of non-linear equations

explored.

As seen from[{l7), we have one non-linear equation for every

Since our system of equations is equivalent to the one fair of source symbols flowing through every pair of repkicht
[3], an alternative way of viewing our formulation is that wecopies of any edge such that(tail(e))| > 1. The number of
simplify the equations in [3] through a recursive graphic@opies created of an edges given byC/(heade)) computed

method.

as part of Algorithm¥. A similar dynamic programming

When seen in conjunction with [6], an interesting resuliigorithm as Algorithn{}4 applied in the reverse topological
is obtained from our formulation. In [6], the authors showrder of nodes (from Algorithril]1) can be used to compute

that solvability of an arbitrary polynomial collection is|&iv-

S(tail(e)), the number of different source symbols flowing

alent to solvability of a network. Our formulation equateghrough an edge.
the solvability of a network to the solvability of a degree-2 Now, the number of non-linear equations associated with

polynomial collection. Hence, we infer that solvability ah
arbitrary system of polynomials is equivalent to solvapibtf
a degree-2 polynomial collection obtained by our formuolati

this edgee is given by:

Q(e) (14)

_ (C(he;c(e))) (S(ta;(e)))_

Hence, the total number of non-linear equations is given by

APPENDIXA > Q(e)
eckE .
COUNTING NUMBER OF VARIABLES AND EQUATIONS
A. Number of variables REFERENCES
1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network

It can be seen that the number of variables involved ir[1
the system of polynomial equations derived in Secfion]V-C
is equal to the number of leaves in the set of trees in thig!
transformed network (which in turn is equal to the number of3]
paths from any of the source nodes to any of the sink nodes).
A dynamic programming algorithm for computing this numbe
is as follows.

Algorithm 4: Counting number of variables

Input A directed acyclic graphiz = (V, F) and a topological Bl

ordering of nodespP (from Algorithm[).
6
1) Associate with each sink nodec 7', a valueC(v) = 1. )
2) For each node in the topological orderifigdo, .
. C)« ¥ Clheade)) 7
e€O(v) [8]

3) Number of variables =~ C(v)

El
veS
Output The number of variables in the system of equationg; g

(11]
B. Number of linear equations

As shown in SectioV, the graph transformation yieldg

as many trees as the number of sink nodes. For each tree,

we have as many linear equations as the number of different

information flow”, IEEE Trans. Inform. Theorwol. 46, pp. 1204-1216,
July 2000.

S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network codih IEEE
Trans. Inform. Theoryvol. 49, pp. 371, February 2003.

R. Koetter and M. Médard, “An algebraic approach to ra#vcoding”,
IEEE/ACM Trans. Networkingvol. 11, pp. 782—794, October 2003.

4] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, Kn,Jand

L. Tolhuizen, “Polynomial time algorithms for multicast merk code
construction”, IEEE Trans. Inform. Theoryvol. 51, pp. 1973-1982,
June 2005.

R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency lmear coding
in network information flow”,IEEE Trans. Inform. Theorwol. 51, pp.
2745-2759, August 2005.

R. Dougherty, C. Freiling, and K. Zeger, “Linear netwotkdes and
systems of polynomial equationdEEE Trans. Inform. Theoryol. 54,
pp. 2303-2316, May 2008.

D. Sharma, “Linear network coding for wirelined and wass net-
works”, Master’s thesis, Indian Institute of Science, AR007.

R. Diestel, Graph Theory (Graduate Texts in Mathematics), Third
Edition, Springer-Verlag, 2000.

Narsingh Deo, Graph Theory with Application to Engineering and
Computer SciengePrentice-Hall, Englewood Cliffs, NJ, 1974.

H. M. Moller and F. Mora, “Upper and lower bounds for tHegree of
grobner bases”Lec. Notes in Comp. Sgivol. 174, pp. 172-183, 1984.
Nicolas Courtois, Alexander Klimov, Jacques Pataang Adi Shamir,
“Efficient algorithms for solving overdefined systems of tivalriate
polynomial equations”, ilec. Notes in Comp. S&EUROCRYPT, 2000,
pp. 392-407.

T. Anderson, R. Mahajan, N. Spring, and D. Wetherall, otRetfuel
project”, http://www.cs.washington.edu/research/meking/rocketfuel.

source nodes that have a path to the associated sink node - one

equation for the symbol that is demanded and one equation
each for the symbols that are not demanded.

Using the notation used if](7), for a nodec V' in the
transformed networkh;;(v) denotes the set of leaf nodes in
the j-th tree of the transformed network that are copies of the
source nodes; and have a path to. Also, letV; denote the
set of nodes in thg-th tree. Let us now define:

Sw) ={s;:s; €8, |hij(v)] >0} wherev e V;  (13)
In other words S(v) is the set of source nodes that have a path
to the original copy of the nodein the given network. Hence,
the total number of linear equations is givenE}jT:‘1 |S(t;)].
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