
ar
X

iv
:0

80
7.

05
64

v2
  [

cs
.IT

]  
18

 S
ep

 2
00

8

Linear-Programming Receivers
Mark F. Flanagan

DEIS, University of Bologna
via Venezia 52, 47023 Cesena (FC), Italy

Email: mark.flanagan@ieee.org

Abstract—It is shown that any communication system which
admits a sum-product (SP) receiver also admits a corresponding
linear-programming (LP) receiver. The two receivers have arela-
tionship defined by the local structure of the underlying graphical
model, and are inhibited by the same phenomenon, which we
call pseudoconfigurations. This concept is a generalization of
the concept of pseudocodewordsfor linear codes. It is proved
that the LP receiver has the ‘optimum certificate’ property, and
that the receiver output is the lowest cost pseudoconfiguration.
Equivalence of graph-cover pseudoconfigurations and linear-
programming pseudoconfigurations is also proved. While theLP
receiver is generally more complex than the corresponding SP
receiver, the LP receiver and its associated pseudoconfiguration
structure provide an analytic tool for the analysis of SP receivers.
As an example application, we show how the LP design technique
may be applied to the problem of joint equalization and decoding.

I. I NTRODUCTION

The decoding algorithms for the best known classes of
error-correcting code to date, namely concatenated (“turbo”)
codes [1] and low-density parity check (LDPC) codes [2],
have been shown to be instances of a much more general
algorithm called thesum-product(SP) algorithm [3], [4], [5].
This algorithm solves the general problem of marginalizing
a product of functions which take values in a semiringR.
In the communications context,R is equal toR and the
maximization of each marginal function minimizes the error
rate on a symbol-by-symbol basis. It was also shown that many
diverse situations may allow the use of SP based reception [6],
including joint iterative equalization and decoding (orturbo
equalization) [7] and joint source-channel decoding [8].

Recently, a linear-programming (LP) based approach to
decoding linear (and especially LDPC) codes was developed
for binary [9], [10] and nonbinary coding frameworks [11],
[12]. The concept ofpseudocodewordproved important in
the performance analysis of both LP and SP based decoders
[13], [14], [15]. Also, linear-programming decoders for ir-
regular repeat-accumulate (IRA) codes and turbo codes were
described in [16]. Regarding applications beyond coding, an
LP-based method for low-complexity joint equalization and
decoding of LDPC coded transmissions over the magnetic
recording channel was proposed in [17].

In this paper it is shown that the problem of maximizing
a product ofR-valued functions is amenable to an approxi-
mate (suboptimal) solution using an LP relaxation, under two
conditions: first, that the semiringR is equal to a subset of
R, and second, that all non-pendant factor nodes are indicator
functions for a local behaviour. Fortunately, these conditions

are satisfied by almost all practical communication receiver
design problems. Interestingly, the LP exhibits a “separation
effect” in the sense that pendant factor nodes in the factor
graph contribute the cost function, and non-pendant nodes
determine the LP constraint set. This distinction is somewhat
analagous to the case of SP-based reception where pendant
factor nodes contribute initial messages exactly once, and
all other nodes update their messages periodically. Our LP
receiver generalizes the LPdecodersof [10], [12], [16]. It is
proved that both the SP and LP based receivers are inhibited
by the same phenomenon which we characterize as a set of
pseudoconfigurations; this is not intuitively obvious since the
SP receiver derives from an attempt to minimize error rate on
a symbol-by-symbol basis, while the LP receiver derives from
an attempt to minimize the configuration error rate.

II. M AXIMIZATION OF A PRODUCT OFFUNCTIONS BY

L INEAR PROGRAMMING

We begin by introducing some definitions and notation.
Suppose that we have variablesxi, i ∈ I, whereI is a finite
set, and the variablexi lies in the finite setAi for eachi ∈ I.
Let x = (xi)i∈I ; then x is called aconfiguration, and the
Cartesian productA =

∏

i∈I Ai is called theconfiguration
space. Suppose now that we wish to find that configuration
x ∈ A which maximizes the product of real-valued functions

u (x) =
∏

j∈J

fj (xj) (1)

whereJ is a finite set,xj = (xi)i∈Ij
andIj ⊆ I for each

j ∈ J . We define theoptimumconfigurationxopt to be that
configurationx ∈ A which maximizes (1). The functionu(x)
is called theglobal function[5].

The factor graph for the global functionu(x) and its
factorization (1) is a (bipartite) graph defined as follows.There
is a variable node for each variablexi (i ∈ I) and a factor
node for each factorfj (j ∈ J ). An edge connects variable
nodexi to factor nodefj if and only if xi is an argument of
fj. Note that for anyj ∈ J , Ij is the set ofi ∈ I for which
xi is an argument offj . Also, for anyi ∈ I, the set ofj ∈ J
for which xi is an argument offj is denotedJi. The degree
of a nodev, denotedd(v), is the number of nodes to which it
is joined by an edge. Any nodev for which d(v) = 1 is said
to bependant.

Define

Y = {i ∈ I : ∃j ∈ Ji with d(fj) = 1}
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i.e., Y ⊆ I is the set ofi ∈ I for which variable nodexi is
connected to a pendant factor node. Then, fori ∈ Y, define

hi (xi) =
∏

j∈Ji : d(fj)=1

fj (xi) .

We assume that the functionhi (xi) is positive-valued for each
i ∈ Y. Also, denoting the Cartesian productAY =

∏

i∈Y Ai,
we define the projection

PY : A −→ AY such that PY (x) = (xi)i∈Y .

Also, we adopt the notationxY = (xi)i∈Y for elements of
AY .

Next defineL = {j ∈ J : d(fj) ≥ 2}. So, without loss
of generality we may write

u (x) =
∏

i∈Y

hi (xi) ·
∏

j∈L

fj (xj) (2)

Now, assume that all factor nodesfj, j ∈ L, are indicator
functions for some local behaviourBj , i.e.,

fj (xj) = [xj ∈ Bj] ∀j ∈ L

where the indicator function for the logical predicateP is
defined by

[P ] =

{

1 if P is true
0 otherwise.

Note that we write anyv ∈ Bj as v = (vi)i∈Ij
, i.e., v is

indexed byIj . Also we define theglobal behaviourB as
follows: for anyx ∈ A, we havex ∈ B if and only if xj ∈ Bj

for everyj ∈ L. The configurationx ∈ A is said to bevalid
if and only if x ∈ B.

We assume that the mappingP Y is injective onB, i.e.,
if x1,x2 ∈ B and P Y(x1) = PY(x2), then x1 = x2.
This corresponds to a ‘well-posed’ problem. Note that in the
communications context, since all non-pendant factor nodes
are indicator functions, observations may only be contributed
through the set of pendant factor nodes. Therefore, failureof
the injectivity property in the communications context would
mean that one particular set of channel inputs could correspond
to two different transmit information sets, which would reflect
badly on system design.

So we have

xopt = argmax
x∈A





∏

i∈Y

hi (xi) ·
∏

j∈L

fj (xj)





= arg max
x : xj∈Bj∀j∈L

∏

i∈Y

hi (xi)

= argmax
x∈B

∑

i∈Y

log hi (xi) .

DenoteNi = |Ai| for i ∈ I, andNY =
∑

i∈Y Ni. Now, for
eachi ∈ I, define the mapping

ξi : Ai −→ {0, 1}Ni ⊂ R
Ni

by
ξi(α) = ([γ = α])γ∈Ai

.

Building on these mappings, we also define

Ξ : AY −→ {0, 1}NY ⊂ R
NY

according to
Ξ(xY) = (ξi(xi))i∈Y .

We note thatΞ is injective.
Now, for vectorsg ∈ R

NY , we adopt the notation

g = (gi)i∈Y where gi = (g
(α)
i )α∈Ai

∀i ∈ Y .

In particular, we define the vectorλ ∈ R
NY by setting

λ
(α)
i = log hi(α)

for each i ∈ Y, α ∈ Ai. This allows us to develop the
formulation of the optimum configuration as

xopt = argmax
x∈B

∑

i∈Y

log hi (xi)

= argmax
x∈B

∑

i∈Y

λiξi(xi)
T

= argmax
x∈B

λΞ(PY(x))
T .

Note that the optimization has reduced to the maximization of
an inner product of vectors, where the first vector derives only
from observations (or “channel information”) and the second
vector derives only from the global behaviour (the set of valid
configurations). This problem may then be recast as a linear
program

xopt = P−1
Y

(

Ξ
−1(gopt)

)

(3)

where
gopt = arg max

g∈KY(B)
λgT (4)

and the maximization is over the convex hull of all points
corresponding to valid configurations:

KY(B) = Hconv

{

Ξ (PY (x)) : x ∈ B
}

. (5)

III. E QUIVALENT L INEAR PROGRAMMING SOLUTION FOR

THE OPTIMUM CONFIGURATION

In this section we define a lower-complexity LP to solve
for the optimum configuration, and prove that its performance
is equivalent to the original. Here, for eachi ∈ I, let αi be
an arbitrary element ofAi, and letA−

i = Ai\{αi} (note that
for eachi ∈ I, |Ai| ≥ 2, otherwisexi is not a ‘variable’).
DenoteN−

i = |A−
i | ≥ 1 for every i ∈ I, and denoteN−

Y =
∑

i∈Y N−
i . Then, for eachi ∈ I, define the mapping

ξ̃i : Ai −→ {0, 1}N
−

i ⊂ R
N

−

i

by
ξ̃i(α) = ([γ = α])γ∈A

−

i
.

Building on this, we also define

Ξ̃ : AY −→ {0, 1}N
−

Y ⊂ R
N

−

Y

according to
Ξ̃(xY) = (ξ̃i(xi))i∈Y .



We note thatΞ̃ is injective.
Now, for vectorsg̃ ∈ R

N
−

Y , we adopt the notation

g̃ = (g̃i)i∈Y where g̃i = (g̃
(α)
i )α∈A

−

i
∀i ∈ Y .

In particular, we define the vector̃λ ∈ R
N

−

Y by setting

λ̃
(α)
i = log

[

hi(α)

hi(αi)

]

for eachi ∈ Y, α ∈ A−
i . Our new LP is then given by

xopt = P−1
Y

(

Ξ̃
−1

(g̃opt)
)

(6)

where

g̃opt = arg max
g̃∈K̃Y(B)

λ̃g̃T (7)

and the maximization is over the convex hull of all points
corresponding to valid configurations:

K̃Y(B) = Hconv

{

Ξ̃ (P Y (x)) : x ∈ B
}

. (8)

The following proposition proves the equivalence of the
original and lower-complexity linear programs.

Proposition 3.1:The linear program defined by (6)–(8)
produces the same (optimum) configuration output as the
linear program defined by (3)–(5).

Proof: It is easy to show that the simple bijection

W : K̃Y(B) −→ KY(B)

defined by

W (g̃) = g

where

∀i ∈ Y, α ∈ Ai, g
(α)
i =

{

g̃
(α)
i if α ∈ A−

i

1−
∑

β∈A
−

i
g̃
(β)
i if α = αi

which has inverse given by

g̃
(α)
i = g

(α)
i ∀i ∈ Y, α ∈ A−

i

has the property that̃g = Ξ̃(PY(x)) if and only if g =
W (g̃) = Ξ(PY(x)). Also observe that ifg = W (g̃),

λ̃g̃T =
∑

α∈A
−

i

[log hi(α)− log hi(αi)] g̃
(α)
i

=
∑

α∈A
−

i

log hi(α)g
(α)
i − log hi(αi)[1− g

(αi)
i ]

= λgT − log hi(αi) (9)

i.e. the bijectionW preserves the cost function up to an
additive constant. Taken together, these two facts imply that
g̃ maximizesλ̃g̃T over K̃Y(B) if and only if g = W (g̃)
maximizesλgT over KY(B). This proves the result, and
justifies the use of the notationxopt in (6).

IV. EFFICIENT L INEAR PROGRAMMING RELAXATION AND

ITS PROPERTIES

To reduce complexity of the LP, we introduce auxiliary
variables whose constraints, along with those of the elements
of g̃ ∈ R

N
−

Y , will form the relaxed LP problem. We denote
these auxiliary variables by

pj,b for each j ∈ L, b ∈ Bj (10)

and we form the following vector

p =
(

pj

)

j∈L
where pj = (pj,b)b∈Bj

∀j ∈ L .

For eachi ∈ I\Y, let ti be an arbitrary element ofJi. The
constraints of the relaxed LP problem are then

∀j ∈ L, ∀b ∈ Bj, pj,b ≥ 0 , (11)

∀j ∈ L,
∑

b∈Bj

pj,b = 1 , (12)

∀i ∈ Y, ∀j ∈ Ji ∩ L, ∀α ∈ A−
i ,

g̃
(α)
i =

∑

b∈Bj, bi=α pj,b (13)

and

∀i ∈ I\Y, ∀j ∈ Ji\{ti}, ∀α ∈ A−
i ,

∑

b∈Bj , bi=α pj,b =
∑

b∈Bti
, bi=α pti,b . (14)

Constraints (11)-(14) form a polytope which we denote by
Q̃. The maximization of the objective functioñλg̃T over Q̃
forms the relaxed LP problem.

Observe that the further constraints

∀j ∈ L, ∀b ∈ Bj, pj,b ≤ 1 , (15)

∀i ∈ Y, ∀α ∈ A−
i , 0 ≤ g̃

(α)
i ≤ 1 (16)

and
∀i ∈ Y,

∑

α∈A
−

i

g̃
(α)
i ≤ 1 (17)

follow from the constraints (11)-(14), for any(g̃,p) ∈ Q̃.
The receiver algorithm works as follows. First, we say

a point in a polytope isintegral if and only if all of its
coordinates are integers. If the LP solution(g̃out,p) is an
integral point in Q̃, the output is the configurationxout =

P−1
Y

(

Ξ̃
−1

(g̃out)
)

(we shall prove in the next section that this
output is indeed inB). This configuration may be equal to the
optimum configuration (we call this ‘correct reception’) orit
may not be (we call this ‘incorrect reception’). Of course, in
the communications context, we are usually only interestedin
a subset of the configuration symbols, namely the information
bits. If the LP solution is not integral, the receiver reports
a ‘receiver failure’. Note that in this paper, we say that the
receiver makes areception errorwhen the receiver output is
not equal to the correct configuration (this could correspond
to a ‘receiver failure’, or to an ‘incorrect reception’).



V. LP EQUIVALENT TO THE EFFICIENT RELAXATION

We next define another linear program, and prove that
its performance is equivalent to that defined in Section IV.
This new program is more computationally complex than that
defined previously, but (due to its equivalence and simplicity
of description) is more useful for theoretical work. For this
we defineN =

∑

i∈I Ni and

Ξ̄ : A −→ {0, 1}N ⊂ R
N

according to
Ξ̄(x) = (ξi(xi))i∈I .

Again, Ξ̄ is injective. For vectors̄g ∈ R
N , we denotēg =

(gi)i∈I and g = (gi)i∈Y , wheregi = (g
(α)
i )α∈Ai

for each
i ∈ I.

The new LP optimizes the cost functionλgT over the
polytopeQ defined with respect to variables̄g and p, the
constraints (11) and (12), and the following single constraint:

∀j ∈ L, ∀i ∈ Ij , ∀α ∈ Ai, g
(α)
i =

∑

b∈Bj , bi=α

pj,b . (18)

Note that (15), together with the constraints

∀i ∈ I, ∀α ∈ Ai, 0 ≤ g
(α)
i ≤ 1 (19)

and
∀i ∈ I,

∑

α∈Ai

g
(α)
i = 1 (20)

follow from the constraints (11), (12) and (18), for any
(ḡ,p) ∈ Q.

In this case, the receiver output is equal to the configuration
xout = Ξ̄

−1
(ḡout) in the case where the LP solution(ḡout,p)

is an integral point inQ (again, this output is inB), and reports
a ‘receiver failure’ if the LP solution is not integral.

The following theorem ensures the equivalence of the two
linear programs, and also assures theoptimum certificate
property, i.e., if the receiver output is a configuration, then
it is the optimum configuration.

Theorem 5.1:The linear program defined by (11), (12)
and (18) produces the same output (configuration or receiver
failure) as the linear program defined by (11)–(14). Also, in
the case of configuration output, if the receiver output is a
configuration, then it is the optimum configuration, i.e.,xout =
xopt.

Proof: It is straightforward to show that the mapping

V : Q̃ −→ Q

(g̃,p) 7→ (ḡ,p)

defined by

g
(α)
i =











g̃
(α)
i if i ∈ Y, α ∈ A−

i

1−
∑

β∈A
−

i
g̃
(β)
i if i ∈ Y, α = αi

∑

b∈Bti
, bi=α pti,b if i ∈ I\Y

and with inverse

g̃
(α)
i = g

(α)
i ∀i ∈ Y, α ∈ A−

i

is a bijection from one polytope to the other (i.e.g̃ ∈ R
N

−

Y

satisfies (11)–(14) for some vectorp if and only if ḡ ∈ R
N

with (ḡ,p) = V (g̃,p) satisfies (11), (12) and (18) for the
same vectorp). Also, since(ḡ,p) = V (g̃,p) implies g =
W (g̃), (9) implies that the bijectionV preserves the cost
function up to an additive constant.

Next, we prove that for every configurationx ∈ B, there
existsp such that(Ξ̄ (x) ,p) ∈ Q. Let x ∈ B, and define

∀j ∈ L, b ∈ Bj , pj,b =

{

1 if b = (xi)i∈Ij

0 otherwise.

Letting g̃ = Ξ̃(PY(x)) andḡ = Ξ̄(x), it is easy to check that
(g̃,p) ∈ Q̃ and(ḡ,p) ∈ Q (and that in fact(ḡ,p) = V (g̃,p)).
This property ensures that every valid configurationx ∈ B has
a “representative” in the polytope, and thus is a candidate for
being output by the receiver.

Next, let (g̃,p) ∈ Q̃ and letḡ ∈ R
N be such that(ḡ,p) =

V (g̃,p) ∈ Q. Suppose that all of the coordinates ofp are
integers. Then, by (11) and (12), for anyj ∈ L we must have

∀b ∈ Bj , pj,b =

{

1 if b = b
(j)

0 otherwise

for someb(j) ∈ Bj.
Now we note that for anyi ∈ I, j, k ∈ Ji ∩ L, if b

(j)
i = α

then (using (18))

g
(α)
i =

∑

b∈Bj, bi=α

pj,b = 1 =
∑

b∈Bk, bi=α

pk,b (21)

and thusb(j)i = α. Therefore, there existsx ∈ A such that

(xi)i∈Ij
= b(j) ∀j ∈ L .

Therefore,x is a valid configuration (x ∈ B). Also we may
conclude from (21) that

g
(α)
i =

{

1 if xi = α
0 otherwise

and thereforēg = Ξ̄ (x). Also, from the definition of the
mappingV , we haveg̃ = Ξ̃ (P Y (x)).

Summarizing these results, we conclude that(ḡopt,p) ∈ Q
optimizes the cost functionλgT overQ and is integral if and
only if (g̃opt,p) = V −1(ḡopt,p) ∈ Q̃ optimizes the cost

function λ̃g̃T over Q̃ and is integral, wherēΞ
−1

(ḡ) = x ∈ B

andxY = Ξ̃
−1

(g̃) = PY(x).

Thus both LP receivers output either a receiver failure, or
the optimum configuration, and have the same performance.
The LP receiver of Section IV has lower complexity and is
suitable for implementation (e.g. for the program of Section
VII); however, for theoretical work the LP of Section V is
more suitable (we shall use this polytope throughout Section
VI).

VI. PSEUDOCONFIGURATIONS

In this section, we prove a connection between the failure
of the LP and SP receivers based onpseudoconfiguration
concepts.



A. Linear Programming Pseudoconfigurations

Definition 6.1: A linear-programming pseudoconfigura-
tion (LP pseudoconfiguration) is a point(ḡ,p) in the polytope
Q with rational coordinates.

Note that, since the coefficients of the LP are rational,
the LP output must be the LP pseudoconfiguration which
minimizes the cost function.

B. Factor Graph Covers and Graph-Cover Pseudoconfigura-
tions

We next define what is meant by a finite cover of a factor
graph.

Definition 6.2: Let M be a positive integer, and letS =
{1, 2, · · · ,M}. Let G be the factor graph corresponding to the
global functionu and its factorization given in (1). Acover
configurationof degreeM is a vectorx(M) = (x

(M)
i )i∈I

wherex(M)
i = (xi,l)l∈S ∈ AM

i for eachi ∈ I. Defineu(M)

as the following function of the cover configurationx(M) of
degreeM :

u(M)
(

x(M)
)

=
∏

l∈S

∏

j∈J

fj (xj,l) (22)

where, for eachj ∈ J , i ∈ Ij , Πj,i is a permutation on the
setS, and for eachj ∈ J , l ∈ S,

xj,l = (xi,Πj,i(l))i∈Ij
.

A coverof the factor graphG, of degreeM , is a factor graph
for the global functionu(M) and its factorisation (22). In order
to distinguish between different factor node labels, we write
(22) as

u(M)
(

x(M)
)

=
∏

l∈S

∏

j∈J

fj,l (xj,l)

wherefj,l = fj for eachj ∈ J , l ∈ S.

It may be seen that a cover graph of degreeM is a graph whose
vertex set consists ofM copies ofxi (labelledxi,l) andM
copies offj (labelledfj,l), such that for eachj ∈ J , i ∈ Ij ,
theM copies ofxi and theM copies offj are connected in
a one-to-one fashion determined by the permutations{Πj,i}.

We define thecover behaviourBM as follows. The cover
configurationx(M) lies in BM if and only if xj,l ∈ Bj for
eachj ∈ J , l ∈ S.

For anyM ≥ 1, a graph-cover pseudoconfigurationis a
valid cover configuration (i.e. one which lies in the behaviour
BM ).

For any graph-cover pseudoconfiguration, we also define the
graph-cover pseudoconfiguration vectorh̄ ∈ R

N according to

h̄ = (hi)i∈I where hi = (h
(α)
i )α∈Ai

∀i ∈ I

and
h
(α)
i = |{l ∈ S : xi,l = α}|

for eachi ∈ I, α ∈ Ai. Finally, we define thenormalized
graph-cover pseudoconfiguration vectorḡ ∈ R

N by ḡ =
h̄/M .

C. Equivalence between Pseudoconfiguration Concepts

In this section, we show the equivalence between the set
of LP pseudoconfigurations and the set of graph-cover pseu-
doconfigurations. The result is summarized in the following
theorem.

Theorem 6.1:There exists an LP pseudoconfiguration
(ḡ,p) if and only if there exists a graph-cover pseudocon-
figuration with normalized pseudoconfiguration vectorḡ.

Proof: Supposex(M) is a graph-cover pseudoconfigura-
tion for some cover of degreeM of the factor graph, and̄g is
its normalized graph-cover pseudoconfiguration vector. Then,

g
(α)
i =

1

M
|{l ∈ S : xi,l = α}|

for all i ∈ I, α ∈ Ai. Next definep according to

pj,b =
1

M
|{l ∈ S : xj,l = b}|

for all j ∈ L, b ∈ Bj . Then it is easily seen that (11), (12)
and (18) are satisfied, and so(ḡ,p) ∈ Q.

To prove the other direction, suppose(ḡ,p) ∈ Q. Denote by
M the lowest common denominator of the (rational) variables
pj,b for j ∈ L, b ∈ Bj . Define zj,b = Mpj,b for j ∈ L,
b ∈ Bj ; these must all be nonnegative integers. Also define
h
(α)
i = Mg

(α)
i for all i ∈ I, α ∈ Ai; these must all be

nonnegative integers by (18).
We now construct a cover graph of degreeM as follows.

Begin withM copies of vertexxi (labelledxi,l) andM copies
of vertex fj (labelledfj,l), for i ∈ I, j ∈ J . Then proceed
as follows:

• Labelh(α)
i copies ofxi with the valueα, for eachi ∈ I,

α ∈ Ai. By (20), all copies ofxi are labelled.
• Labelzj,b copies offj with the valueb, for everyj ∈ L,

b ∈ Bj . By (12), all copies offj are labelled.
• Next, let T (α)

i denote the set of copies ofxi labelled
with the valueα, for i ∈ I, α ∈ Ai. Also, for all j ∈ L,
i ∈ Ij , α ∈ Ai, let R(α)

i,j denote the set of copies offj
whose labelb satisfiesbi = α. The vertices inT (α)

i and
the vertices inR(α)

i,j are then connected by edges in an
arbitrary one-to-one fashion, for everyj ∈ L, i ∈ Ij ,
α ∈ Ai.
Numerically, this connection is always possible because

|T
(α)
i | = h

(α)
i =

∑

b∈Cj, bi=α

zj,b = |R
(α)
i,j |

for every j ∈ L, i ∈ Ij , α ∈ Ai. Here we have
used (18). Finally, for eachi ∈ Y and j ∈ Ji satisfying
d(fj) = 1, theM copies ofxi are connected to theM
copies offj in an arbitrary one-to-one fashion. It is easy
to check that the resulting graph is a cover graph for
the original factorization. Therefore, this vertex labelling
yields a graph-cover pseudoconfiguration.



VII. E XAMPLE APPLICATION: LP-BASED JOINT

EQUALIZATION AND DECODING

In this section we consider an example application where we
use the above framework to design an LP receiver for a system
using binary coding and binary phase-shift keying (BPSK)
modulation over a frequency selective channel (with memory
L) with additive white Gaussian noise (AWGN). Information-
bearing data are encoded to form codewords of the binary
code

C = {c ∈ GF (2)n : cHT = 0}

whereH is the code’sm×n parity-check matrixoverGF (2).
Denote the set of code bit indices and parity-check indices
by U = {1, 2, · · · , n} and V = {1, 2, · · · ,m} respectively.
We factor the indicator function for the code into factors
corresponding to each local parity check: forj ∈ V , define
the single-parity-check code overGF (2) by

Cj = {(ci)i∈Uj
:
∑

i∈Uj

ci = 0}

whereUj ⊆ U is the support of thej-th row ofH for eachj ∈
V , and the summation is overGF (2). Thusc ∈ C if and only if
(ci)i∈Uj

∈ Cj for eachj ∈ V . The BPSK modulation mapping
M, which maps fromGF (2) to R, is given byM(0) = 1 and
M(1) = −1. The channel hasL + 1 taps{h0, h1, · · · , hL}
and the received signal for the communication model may be
written as

ri =

L
∑

t=0

htM(ci−t) + ni

whereni is a zero-mean complex Gaussian random variable
with varianceσ2.

We adopt a state-space (trellis) representation for the chan-
nel, with state spaceS = GF (2)L; also letS− = S\{0}. The
local behaviour (or trellis edge set) for the state-space model,
denotedD, is assumed to be time-invariant, although extension
to the case of time-variant channel is straightforward. For
simplicity we assume that the initial and final states of the
channel are not known at the receiver. Ford ∈ D, let ip(d),
op(d), sS(d) andsE(d) denote the channel input, output, start
state and end state respectively. Thus if we setD = GF (2)L+1

and adopt the notationd = (d0 d1 · · · dL) ∈ D, we
may haveip(d) = d0, sS(d) = (d1 d2 · · · dL), sE(d) =
(d0 d1 · · · dL−1), and op(d) =

∑L
t=0 htM(dt). Also let

D− = D\{0}.
The structure of the LP may be written as follows (we use

the efficient LP defined in Section IV). The variables of the
LP are1

g̃
(d)
i for each i ∈ U ,d ∈ D− ,

wj,b for each j ∈ V , b ∈ Cj ,

qi,d for each i ∈ U ,d ∈ D ,

1On a correct reception, the LP variables{wj,b} and {qi,d} serve as
indicator functions for the single-parity-check codewords and the channel
outputs respectively.

and the LP constraints are (hereU− = U\{n})

∀j ∈ V , ∀b ∈ Cj, wj,b ≥ 0 (23)

and

∀i ∈ U , ∀d ∈ D, qi,d ≥ 0 (24)

which follow from (11),

∀j ∈ V ,
∑

b∈Cj

wj,b = 1 (25)

and

∀i ∈ U ,
∑

d∈D

qi,d = 1 (26)

from (12),

∀i ∈ U ,d ∈ D−, g̃
(d)
i = qi,d (27)

from (13), and

∀i ∈ U , ∀j ∈ Uj ,
∑

d∈D, ip(d)=0 qi,d =
∑

b∈Cj , bi=0 wj,b (28)

and

∀i ∈ U−, ∀s ∈ S−,
∑

d∈D, sE(d)=s qi,d =
∑

d∈D, sS(d)=s qi+1,d (29)

from (14).
Also, the LP cost function is

∑

i∈U

∑

d∈D−

λ̃
(d)
i g̃

(d)
i (30)

where we have, fori ∈ U , d ∈ D−,

λ̃
(d)
i = log

(

p(ri|d)

p(ri|0)

)

=
1

σ2

(

|ri − op(0)|
2
− |ri − op(d)|

2
)

. (31)

Note that in this application, the variables̃g(d)i , together
with the constraint (27), would be removed due to their
redundancy, and the variablesqi,d used directly in the cost
function (30). The resulting LP is capable of joint equalization
and decoding, and has strong links (via Theorems 5.1 and 6.1)
to the corresponding “turbo equalizer” based on application
of the sum-product algorithm to the same factorization of the
global function.
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