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Abstract— Greedy gossip with eavesdropping (GGE) is a
randomized gossip algorithm that exploits the broadcast nture
of wireless communications to converge rapidly on grid-lile
network topologies without requiring that nodes know their
geographic locations. When a node decides to gossip, rather
than choosing one of its neighbors randomly, it greedily chases
to gossip with the neighbor whose values are most different
from its own. We assume that all transmissions are wireless
broadcasts so that nodes can keep track of their neighbors’
values by eavesdropping on their communications. We have
previously proved that GGE converges to the average conseans
on connected network topologies. In this paper we study the
rate of convergence of GGE, a non-trivial task due to the
greedy, data-driven nature of the algorithm. We demonstraé
that GGE outperforms standard randomized gossip, and we
characterize the rate of convergence in terms of a topology-
dependent constant analogous to the second-largest eigahue
characterization for previous randomized gossip algoritims.
Simulations demonstrate that the convergence rate of GGE
is superior to existing average consensus algorithms suchs a
geographic gossip.

I. INTRODUCTION AND BACKGROUND
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In particular, activated nodes do not choose a neighbor to
gossip with randomly. Rather, each node keeps track of its
own valueandits neighbors’ values, and when it comes time
to gossip, it greedily chooses to gossip with the neighbatr th

is most different from itself. Because nodes broadcast thei
transmissions, it is easy to track the values of neighboring
nodes by eavesdropping on their transmissions. Moreover,
accelerating gossip in this fashion does not require thd¢so
have any information about geographic locations.

Although the basic idea behind GGE is straightforward,
analyzing its convergence behavior is non-trivial. In jgart
ular, each GGE update depends explicitly on the values at
each node (via the greedy decision of with which neighbor
to gossip). Thus, the standard approach to quantifying rate
of convergence (i.e., examining the mixing time of a related
Markov chain) does not apply. In our previous work, [8],
we proved that GGE converges to the average consensus

Distributed consensus or agreement has been identifiedas demonstrating that GGE can be viewed as a particular

a canonical problem in both the distributed signal proeggsi instance of an incremental subgradient algorithm. We then
and control communities (see, e.g., [1]-[6] and referencesxperimentally characterized the rate of convergence and
therein), tracing back to the seminal work of Tsitsiklis.[7] communication complexity of GGE via simulation. The
The prototypical example of a consensus problem is that elirrent article extends this line of research by beginning
computing theaverage consensugitially, each node in a to develop a theory for the rate of convergence of GGE.
network ofn nodes has a scalar piece of informatigp,and In particular, this paper makes the following contributon
the goal is to compute the average= = """ | v;, at every 1) We develop a bound relating the rate of convergence of
node in the network. Consensus can be viewed as a sort®GE to that of standard randomized gossip. Not surprisjngly
synchronization or agreement, before the network makestl@ae bound suggests that GGE always converges faster than
concerted action. randomized gossip. More interesting, though, is that this

In previous work, we proposed a new average consebound provides insight as to what is the worst case scenario
sus algorithm,greedy gossip with eavesdroppif@GE), for GGE. 2) We develop a worst-case bound on the rate
that takes advantage of the broadcast nature of wirelessconvergence of GGE. Similar to results for other gossip
communications to accelerate convergence [8]. Motivatealgorithms that characterize the rate of convergence as a
by applications in wireless sensor-actuator networks arfdnction of the second largest eigenvalue of a related st®ch
vehicular networks, we assume the network is composéit matrix, our bound characterizes the rate of convergence
of battery-powered nodes, communicating via wireless raf GGE in terms of a constant that is strictly topology
dios. We assume a broadcast model where all neighbaitependent. We investigate the behavior of this constant
within range of a transmitting node successfully receivempirically for random geometric graph topologies, and find
the message. In contrast to previous randomized gossimt, in terms of both rate of convergence and communication
algorithms which perform updates completely at randontomplexity, GGE performs at least as well as other fast
each GGE update is performed in a greedy, myopic fashiogossip algorithms such as geographic gossip.



A. Background and Related Work computation.

The two most widely studied algorithms for solving the SINCe the proposal of geographic gossip, other fast gossip-
average consensus problem digtributed averagingo] and ing algorithms have been proposed. Most related is the work

randomized gossifL0]. In distributed averaging, every node®f Li and Dai [12], and Jung et al. [13]. Both approaches

broadcasts information to its neighbors at every iteratiofd® Pased on using the geographic locations of nodes to

Let 2,(k) denote the value at nodeafter thekth iteration. constructlifted Markov chains that direct the exchange of

Each nodei initializes its value toz;(0) = y;. At the kth information across the network. Benezit et al. have also
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iteration, after node receives values;(k — 1) from each proposed averaging along paths as an extension to geographi

of its neighbors, it replaces; (k) with a weighted average 90SSIP that converges i@(n) communication complexity

of its own previous value and its neighbors’ values. undér-4l- All of these approaches rely on geographic informatio

appropriate conditions on the weights used in the updage sté‘nd thus are not suitable to scenarios where nodes are

one can show that the valueg(k) at every node converge to mobile or Iocat_ion irlformation is not available. The fo.cds. 0
the averagg ask — oo [9]. However, information diffuses thg f:urrent ar.tlcle is on deve]opmg a fast, commur!lcat_|on—
slowly across the network in this scheme, and since tHafficient algorithm that exploits broadcast communicagion
information at each node typically does not change mucrﬁtherthan geographic location information to gossip kjyic

from iteration to iteration, this is not efficient use of the [N a series of recent papers, Aysal et al. propmsadcast
broadcast medium. gossip a consensus algorithm that also makes use of the

Randomized gossipperates at the opposite extreme,broadcaSt nature of wireless networks [15], [16]. At each

where only two neighboring nodes exchange informatioﬁeration’ a node is cho_sen uniformly at random to brpadcast
at each iteration. At theth iteration, a nodes is chosen ItS Value. The nodes in the broadcast range of this node
uniformly at random; it chooses a neighber, randomly: calculate a weighted average of their own value apd th_e
and this pair of nodes “gossips and ¢ exchange values brqadcasted value, and they update Fhelr value with this
and perform the update, (k) = z;(k) = (zs(k—1)+a:(k— weighted average. In proadcast gossip, the value of the
1))/2, and all other nodes remain unchanged. Again, one c&oadcasting node is independently incorporated at each
show that under very mild conditions on the way a randorf€ighbor. Consequently, broadcast gossip does not peeserv
neighbory, is drawn, the values; (k) converge tqj at every the netwo_rk average at each |t_erat|on_. In thls_manner, broad
node [9]. Although other neighbors overhear the messagE&St 90ssip achieves a low variance (i.e., rapid convegenc
exchanged between the active pair of nodes, they do Ryt introduces b|a§: t.h.e value_to which broadcast gossip
make use of this information in existing randomized gOSSiE?onverges can be significantly different from the true agera
algorithms. The fact that nodes only exchange informatiofre€ [8] for further discussion).
with their immediate neighbors is attractive, from the poin Sundhar Ram et al. have also recently proposed a gen-
of view of simplicity and robustness to changing topologie§ra| class of incremental subgradient algorithms for dis-
and/or network conditions. However it also means that iffibuted optimization [17]. The focus of their study is on
typical wireless network topologies (grids or random gegunderstanding the effects of stochastic errors (e.g., due t
metric graphs [11]), information diffuses slowly acrosg th quantization) on convergence of consensus-like disibut
network. Boyd et al. [10] prove that for random geometri®Ptimization algorithms. They determine condltl_ons on the
graphs, randomized gossip requi@én?) transmissions to €ors that guarantee convergence of th? algorithm, but do
approximate the average consensus well not characterize convergence rates. _Nedlc and Ozdagler _ha
Slow convergence of randomized gossip motivated pglso proposed a distributed form of incremental subgradien
makis et al. to develop geographic gossip. Assuming ea@ptimization that generalizes the consensus framework [18
node knows its geographic location and the locations of itsh€ir problem formulation is much more general than ours,
neighbors, information can be exchanged with nodes beyoRY! for the specific formulation addressed in this paper, we
immediate neighbors. In [6], they show that these Iongeangfmh“?ve stronger results. By exploiting the form of our cost
transmissions improve the rate of convergence f@m?)to  unction, we are able to guarantee convergence to an optimal

roughly O(n?/2) transmissions. Although geographic gOSSiF_§qution and obtain tight bounds on the rate of convergence

is a significant improvement over randomized gossip in tern{@ t€rms of the network topology.
of number of transmissions, it comes at the cost of increased

complexity, since the network must now provide reliable4twoB. Paper Organization

way transmission over many hops. Messages which are los

) . . S The remainder of this paper is organized as follows. In
in transit potentially result in biasing the average cosssn pap g

Section Il we review the formal definition of the algorithm,
1 . . , . as outlined in [8]. In Section IIl, we derive a bound relating
Throughout this paper, when we refer to randomized gossipspecif- h f f GGE d ized . hich
ically mean the natural random walk version of the algorittwimere the the performance o to randomize gOSS_Ip, whnic _SUQ'
nodet;, is chosen uniformly from the set of neighbors at each iterati gests that GGE always outperforms randomized gossip. In

For random geometric graph topologies, which are of mox_ara'm to us, Section IV, we present a worst-case upper bound on the rate
Boyd et al. [10] prove that the performance of the naturabrdigm scales

identically to that of the optimal choice of transition padtiities, so there of convergence of GGE in terms qf a to.pology—dependent
is no loss in generality. constant. Results from numerical simulations are pregente



in Section V and Section VI summarizes the contributiongterpretation of GGE as a randomized incremental subgra-
of the paper. dient method [20]. First consider a constrained optimization

problem of the form:
Il. GREEDY GOSSIP WITHEAVESDROPPING(GGE)

We consider a network af nodes, and represent network min Z fi(x)
connectivity as a graphi = (V, E), with verticesV = velkr 4
{1,...,n}, and edge seE C V x V such that(i, j) € E if subjectto  z € X,

and only if nodeg and; directly communicate. We assume _ _ )
that communication relationships are symmetric and that tyvhere eachyfi(z) is a convex function, but not necessarily
graph is connected. Le¥; = {j : (i,j) € E} denote the dlfferent!able, andX is a n_on-empty_ convex sub_set qf
set of neighbors of node(not includingi itself). Each node R": An incremental subgradient algorithm for solving this
in the network has an initial valug;, and the goal of the optimization is an iterative algorithm of the form:

ossip algorithm is to use only local, broadcast exchanges
?o cor?verge towards a state wzere every node can calcug}ate v(k) =Pxle(k = 1) — arg(sk, 2(k = 1)), 2)

the averagg = %Z?:l yi- To initialize the algorithm, each nereq,, > 0is the step-sizey (s, z(k—1)) is a subgradient
node sets its gossip valge m(O) = y;, and broadcasts this ¢ f., atz(k—1), andPx[] projects its argument onto the
value to all of its immediate neighbors. _ set X. The algorithm is randomized when the component
At the kth iteration of GGE, a nodsy. is chosen uniformly ypdated at each iteratiosy, is drawn uniformly at random
at random from{1, ..., n}. This can be accomplished usingfom the set{1,...,n}, and is independent af(k — 1).
the asynchronous t.ime model_described in .[19], where eaglhe projection,Px[-], ensures that each new iteraték)
node “ticks” according to a Poisson clock with rate 1. In thgs feasible. Under mild conditions on the sequence of step
randomized gossip algorithms described in [¥Q]randomly  sjzes,a, and on the regularity of each component function
chooses a neighbor to gossip with. In the GGE algorithm,  r,(;), Nedi¢ and Bertsekas have shown that the randomized
gossips with a neighbor that is currently the most differenf,cremental subgradient method described above converges
from its own value. This choice is possible because eagh 5 neighborhood of the global minimizer [20].

node: maintains not only its own local variable; (k — 1), GGE is a randomized incremental subgradient algorithm
but also a copy of the most recent values at its neighborg,, ihe problem

zj(k — 1), for j € N;. More formally, s, identifies a node

t;, satisfyin - 1
* fying min max {—(xi — xj)Q} 3)
1 z€Rn Pl JEN; )
tkEargmax{—(a:sk(k—l)—xt(/{—l))Q}. " "
tGN]‘ 2 .
subjectto > =Y i (4)
When s, has multiple neighbors that are all equally (and =1 =1

maximally) different froms,,, it chooses one of these neigh- . _ N .
) b g wherey; is the initial value at nodé The objective function

bors at random. Th andt;, exchange values and perform - s .
the update o kX gevau P in (3) has a minimum value of 0 which is attained whgn=

x; for all ¢, j. Thus, any minimizer is a consensus solution.
1 Moreover, the constraint ", z; = Y., y; ensures that
o (k) = x4, (k) = = (s, (k — 1 k-1), @ Ver, raing_;_, i i=1Yi
Tou (k) = @4, (k) 2( a3 )+ 20 ) @) the unique global minimizer is the average consensus.
while all other nodesi ¢ {s,t;} maintain their values 10 connect the GGE update, (1), and the incremental
at z;(k) = x;(k — 1). Finally, the two nodess; and#,, Subgradient update, (2), let us defipg) such that
broadcast these new values so that their neighbors have 2o (k= 1) — 20, (k—1) for i = sy,

up-to-date information. This can be accomplished in two .
trznsmissionssk calculates its new value andpbroadcasts it, g:(k) = ~ (@i (k 1)0_ 2o (kb —1)) L?Lé;viike’
identifying ¢, as the gxchange partneg; broadcasts its new '(5)
value so all of its neighbours are aware _of the update.  Here subscripts denote components of the vegtdr). It
GGE updates can also be expressed in the form is easy to verify thay(k) is a subgradient of the function
2(k) = WO (kya(k — 1) Fa(@(k = 1)) = maxjen,, {3 (e, (k — 1) — z;(k — 1))},

Employing a constant step sizg = % and this subgradient,

SkiSk

where WECGE (k) is a stochastic matrix withtVEGE (k) =
=1 2Subgradients generalize the notion of a gradient for noaesimfunc-

GGE _ WGGE _ WGGE _ 1 GE
Wsk,tk (k) = Wtk,sk (k) = Wtk,tk (k) = 2 W“ (k) . . . :
for all 4 ¢ {Sk,tk}, and 0 elsewhere. tions. The subgradient of a convex functigh at = is any vectorg that

satisfies f;(y) > fi(z) + gT(y — x). The set of subgradients of; at
. z is referred to as theubdifferentialand is denoted by f;(z). If f; is
A. GGE as an Incremental Subgradient Method continuous atr, thendf;(z) = {Vfi(z)}; i.e., the only subgradient of

Si K fi ivelv in derivi b déi at x is the gradient. A sufficient and necessary conditionfdrto be
Ince we make use of It extensively in deriving boundg minimizer of the convex functiorf; is that0 € 9f;(z*). See [20] and

on convergence performance, we now review, from [8], theferences therein.



the update (2) is identical to (1). The recursive update fawhere&;, = 0 if E[||WYSE(1:k — 1)2(0) — z||?] =0, and
GGE thus has the form otherwise,

1

#(k) = alk = 1) - 59(b) ©)

Note that the projection is unnecessary, because this & =
choice of subgradient and; ensure that the constraint

;:1 ?elja\% (xz(k —1)—a(k - 1)) )
n E[[WECE(L: k —1)z(0) — z||?]

S xi(k) = Yo, y; is satisfied at each iteration. With no () )
this formulation, we can derive a simple recursive relation Z ™I _Z (xi(k —1) —z;(k - 1))
ship relating the squared error at iteratfoto that at iteration _=t JEN:

k—11[8]: 2n E[|[WEEE(1 : k- 1)2(0) — z?]

. >0, 9)
lx(k) = 2% = llo(k = 1) = 59(k) - 2[*
1 wherex(k) = WECE(1 1 k)x(0).
_ 1) a2 1 2 2
= llzk =1) — 2] alk —1) =2, g(k)) + 4Hg(k)|| Remark 1: The analogous expression for randomized gos-

= otk = 1) — a1 = § g (k). 7y Sipis simply [10]

We made use of this result to prove the convergence theorem E[||W 5% (1 : k)z(0) — z||?] < ||z(0) — Z|*A (W)F.
in [8], and we will make further use of it in Section IV for

deriving rate of convergence results. (Note that here, the expectation is taken with respect tb bot

I1l. CONVERGENCERATE: GGEVS. RANDOMIZED random nodes chosen at each iterationand tx, whereas
GossIP in the expressions in the theorem, the only randomness is
in s;.) Sinceg; > 0 for all : = 1,...,k, this implies that

When we first proposed the GGE algorithm in [8], Weihe upper bound on GGE is uniformly upper bounded by the
were only able to characterize the convergence behawobl per bound for randomized gossip, for aay 0 and any

by demonstrating that GGE_converges almost surely to tr? putz(0). The upper bound for random gossip is tightyif

consensus value, as stated in the following theorem. denotes the eigenvector corresponding to the secondstarge
Theorem_ 1 Ustebay et al. [8]): Let z(k) denote the se- eigenvalue ofit/, then if 2(0) = cu» for some constant,

quence of iterates produced by GGE. Thefit) converges o nner bound holds with equality (in expectation).

to z almost surely a% tends to infinity. . -
T . y ag - . Remark 2: The form of the terms), also provides insight
In this section and the next, our aim is to provide a more

I , . Into which scenarios are less favorable for GGE. In general,
complete description of convergence behaviour by boundin . o

e know that randomized gossip is slow to converge on
the rate of convergence.

The following theorem establishes a general expressicgﬁndom geometric graphs [10], and so we hope {hat 0

for the bound on the mean-squared error of GGE afiter so that GGE achieves some improvement. Note that the

iterations. Moreover, it demonstrates that the upper bou rHagnltude OF; is essentially its numerator, which measures

on the MSE of GGE s less than or equal to the uppel”y 0L BOm 0 REEAD 8 08 SR, B0 U
bound on the MSE of randomized gossip. Recall from th P P y 9 P

discussion in Section Il and [10] that the update from th(fjrom thg same Iopa‘uon. There are two scena.nos.where the
(k — 1)-th to k-th gossip iteration can be expressed as gxpression forg, in (9) evaluates to 0. The first is when

linear recursion:(k) = W(k)z(k—1), whereWW (k) depends x(k._ 1) = 7, in which case a CONSensus has al_ready been
on the nodess, and . that gossip during iteratio. We achieved. The second, more interesting case is when the

. . . . difference between any two neighbors is constant across
denote the application of successive randomized gOSSIpthe network: i.e.(zi — 1;)> — ¢ for all j € A, and
updates byW 2 (1 : k) = Hle WEG(4). Likewise, let » 1C T = L) = C J i

GGE /1 . Lk Gob calli = 1,...,n. In this setting, being greedy does not
WERE(L = k) = T[jo, WZT7(j) denote the successive proyide any gain, since gossiping with any neighbor proside
application ofk GGE updates. Lell” = E[W "% (k)] denote the same amount of immediate improvement. Within the
the expected value of the randomized gossip matrix, and lgfass of such “constant difference” vectargk), that satisfy
A2(WW) denote the second largest eigenvaluéiof S ai(k) = ", 2;(0), the most challenging one is

Theorem 2:Let the algorithm inputz(0), be given, and the one chosen to maximizier (k) — z)|2. We will revisit
let z denote the corresponding average consensus Vecl@fis scenario later in the numerical simulations preseited
After £ iterations, the expected mean squared error of GGEection V and see that, indeed, this appears to be the worst-
is upper bounded as follows: case scenario for GGE.

E [|[WEEE(1 : k)2(0) — z]|?] Proof: [Proof of Theorem 2] We recall t_he known
convergence rate bounds for randomized gossip [10]:

k
< |l2(0) = z[* T (b2 (W) = &) ®) o
pai E[||WHC (1 : k)z(0) — z[|*] < A (W)" ||2(0) — z[|* (10)



and the related recursive relationship:

E[|[W"(1: k) (0) — z|]
= E[[WHC(1: k — 1)2(0) — 2[|?]

11 &< 1 2
Y

SkGNtk
<o (W)E[[WHEY(1: k- 1)2(0) — 7| ] (11)

edge in the network and hence, indirectly depends on the
network topology.

Since the greedy decision made in each iteration of GGE
depends on the gossip values at each nodg;), our
algorithm cannot be related back to a homogeneous Markov
chain. Consequently, the same machinery cannot be used to
characterize the rate of convergence for GGE. The goal of
this section is to bound the rate of convergence of GGE
through alternative means. To this end, our main result is

We can identify an equivalent relationship derived frompe following.
applyingk —1 steps of GGE followed by one step of random Theorem 3:Let ¢ = (V, E) denote the graph on which

gossip:
E[|[W (WO (12 k= 1)a(0) - 2]
= E[WES (12 k= 1)2(0) — ][]

-

SkGNtk
<X (W) E[WYEQ: k- 1)2(0) — z])?). (12)

we are gossiping, let(k) denote the vector of GGE values
after k iterations, and let denote the average vector. Then

Ellz(k) - 2lI”] < A(G)*||=(0) —z||?,
where A(G) is the graph-dependent constant defined as
1 llgo()]?
A = — 1— ="
© = w3 (1- 32

veV

With this relationship in hand, we can bound the error owhereg, (z) refers to a subgradient df, (), when viewing
the GGE algorithm by adding and subtracting the effects $6GE as an incremental subgradient algorithioreover,

making thek-th step a randomized gossip update:

E[||WEEE (1 : k)2(0) - 7)|%]
ik

= E[[|[WOSE(1: k —1)2(0) — 2)||%]
11 1 2
2 n th:1 |'/\/tk| Skezf\/tk (xsk (k 1) - xtk (k - 1))

Z (25, (k= 1) — 24, (k — 1))2

tr=1 |Mk| SkGNtk

< [Ae (W) = & E[IWE9E (1 : k — 1)z(0) — z||*]

(13)
Repeated application of this inequality from= 1,... k
yields the bound (8). [ ]

IV. GGE CONVERGENCERATE: WORSTCASE BOUND

The previous section related the performance of GGE k)
that of standard randomized gossip. In this section, we aee
more direct characterization of the GGE rate of convergen

idenote the error aftet iterations, and letN (k) =

g(k)||?
CBz(k—1) 7]

the e-averaging time for GGE is bounded above by
3loge !
foeld = g aGT
Remark 3:Note that the constamd(G) only depends on
the topology of the graph. This constant plays a role for GGE
similar to that played by the second-largest eigenvalue of W
for regular gossip algorithms.

Proof: [Proof of Theorem 3] The proof of the first part
of Theorem 3 is based on an approach introduced in [21], and
developed in [22] for analyzing data-adaptive algorith¥ivs.
begin by recalling the recursion for the mean squared error
of GGE afterk iterations expressed in (7):

(k) — 2 = (k= 1) = 2|* = 3 llg(k)|?
2
= (1 — _4”1‘(‘]?(,]61))“,5@“2‘) HZC(}{J — 1) — :E”Q,

where g(k) denotes the subgradient at iteratién(when
viewing GGE as a randomized incremental subgradient algo-
rithm), and is a random quantity, depending on which node
is activated at iteratiork. Let M (k) = ||x(k) — z|?

1 —

> denote the amount of contraction at iteration

in terms of properties of the underlying communicatiorf- Using these definitions and some successive conditioning,
topology. The rate of convergence for gossip algorithms &€ get

typically quantified in terms of the-averaging time,

: lz(k) — || }
Tuve(€) = sup mf{k:Pr — = >¢€)<e€;,.
(€)= sup (ao)—=1 =9

E[M(k)] = E[N(k)M(k—1)]
= E[E[N(k)M(k—1)|z(k —1)]]
E[M(k — 1)E[N (k)|z(k — 1)]]

Other gossip algorithms such as randomized gossip and
geographic gossip are easily related to a homogeneous '

Markov chain. If the probability transition matrix of this = M(O)E[E[N (1)[(0)] - --
chain isW, thenT,,.(¢) can be shown to scale as a function

of the second largest eigenvalue Bf [10]. In particular, topology by writing A(G), and A(G) is completely determined by the
T (e) 3loge”! . For randomized gossip, the matrix neighbourhood structure of the network because the maatioizis over all
_aver = log (W)~ o i z, and for a fixedz, the subgradients are determined by the neighbourhood
W depends on the choice of probabilities assigned to eastiucture.

E[N(k)[z(k = 1)]].

We explicitly note that this constant is a function of the eriyging



Note thatA(G) is defined in such a way th&[N (k)|x(k — We first compare the convergence rates of the three
1)] < A(G) for all k. Therefore, it follows that algorithms by examining the reduction they achieve in rel-
o k 12 ative error as a function of the number of transmissions

Ellle(k) — 2|7 < A(G)"[|=(0) — 2| communication complexity). Relative error is defined as

Next, we prove the second part of the claim: the bound of=(0)—z| - Since the number of transmissions per iteration

e-averaging time. To do this, we will use the bound we hav® different for each algorithm, this is a fairer comparison
just derived to develop an upper bound®r(||z(k) — Z|| > thap examining convergence ra.te relative to the _number
¢l|lz(0) — z|)), the probability that aftek: iterations we are ©Of iterations. Randomized gossip and GGE require two
still more than a factor of away from the initial error. By transmissions per iteration; geographic gossip has ablaria

applying Markov’s inequality and the bound we just derivediumber of transmissions, which depends on the number of

for E[||z(k) — z||?], we have hops petween the gossiping nodes. o
All figures show averages over 100 realizations of the
Pr(|lz(k) — z| > €l|=(0) — z]|) random geometric graph. We examine performance for four

— Pr(||lz(k) — 2| > E[x(0) — 2|%)  (14) differer_n_i_nitializationSx(O) in order to explc_>re the impact
2 of the initial values on performance. The first two of these
< w (15) cases are a Gaussian bumps field, and a linearly-varying field
€?||2(0) - |2 For these two cases, the initial valug0) is determined
< ePAG) (16) by sampling these fields at the locations of the nodes. The
remaining two initializations consist of the “spike” signa
constructed by setting the value of one random node to 1 and
: : - log A(G) T all other node values to 0; and a random initialization where
in the first part of our proposition, the bound &ifi|z(k) = each value is drawn from a Gaussian distributiéro, 1) of
z||?] is based on a worst-case one-step analysis, it is an UPRRKo mean and unit variance. The first three of these signals
bound on the mean squared error at iteration k, effectively\gare also used to examine the performance of geographic
lower bound on the rate of convergence. Therefore, we Onb’ossip in [6].
have an upper bound on theaveraging time for GGE; that = rigs. 1(a)-(d) show that GGE converges towards the aver-
i Tve(€) < ey B age at a much faster rate (both initially and asymptotigally
Theorem 3 provides a direct link between the rate ofyan randomized gossip for all initializations. The iritia
convergence of GGE and the underlying network topolog¥onvergence of GGE is faster than geographic gossip for
through the constant}(G). This motivates further study of z)| put the linearly-varying field, but asymptotically the
how A(G) scales for different classes of network topologieggorithms achieve a similar rate of reduction in relative
(e.g., random geometric graphs). Theoretically charesit® error. Out of these candidate initializations, the lingarl
how A(G) scales is a topic of ongoing research. The followyarying field is the worst case, as was anticipated from
ing section provides numerical simulations to support thghe convergence analysis conducted in Section IIl. For this
results presented above. Comparisons are provided to othfialization, the performance of GGE is very similar tath
randomized gossip algorithms, and the scaling behavior gf geographic gossip.
A(G) is investigated via simulation. We now compare the empirical average relative error for
the geometric graph with the bound developed in Theorem
3. In doing so, we focus on one specific realization of the
In this section we report the results of simulations con200-node random geometric graph. There is no closed-form
ducted to compare the performance of GGE with randomizesblution for A(G), so we solve the optimization problem
gossip [10] and geographic gossip [6] for a variety ofdentified in Theorem 3 numerically, using an incremental
state value initializations. We also compare the empisical subgradient algorithm. Since the cost function can be ex-
achieved convergence rates to the bound established gressed as a function (k) —z)/||xz(k) — Z||, without loss
Section IV and investigate how this bound behaves as tlu# generality, we can focus on the setting where- 0 and
number of nodes in the network grows. ||z(k)||* = 1. In this simplified setting, one can reformulate
In our experiments, we focus on a random geometrithe optimization as the minimization of a convex function
graph, constructed by distributing nodes uniformly at ranever a non-convex set of constraints. We approximate the
dom over the unit square. The transmission radius is ssblution to this minimization using a projected increménta
to y/2logn/n such that the random geometric graph isubgradient method. To avoid the problem of local minima
connected with high probability. This topology is a goodsince the constraint set is non-convex) we rerun the opti-
model for many wireless networks, including sensor netmization algorithm from multiple initial conditions.
works and (snapshots of) vehicular networks, which we Fig. 2 plots, for each of the four initializations af(0),
consider to be two of the most promising application domainthe relative error achieved by GGE as a function of the
for gossip algorithms [11]. In other simulation experinentnumber of iterations, averaged over 100 realizations of the
with different topologies, we observed similar compamativalgorithm. Also plotted is the bound identified by Theorem
behaviour, so we do not report the results here. 3, after substitution of the numerically-evaluatéd). For

To get an upper bound dh,.. (¢), first note thatr(||=(k) —
Z|| > €]|=(0) — Z||) < e provided thatk > 2%8<__ Since

V. NUMERICAL SIMULATIONS
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Fig. 1. A comparison of the performance of randomized gos3iBE, and geographic gossip for four initialization§0). Relative error versus number
of transmissions for (a) the Gaussian bump field, (b) thealigevarying field; (c) the spike distribution; and (d) theiferm random distribution. Results
are averaged over 100 realizations of the random geometghgand 100 runs of the algorithm per graph.

all but the linearly-varying field, GGE achieves a much mor&he bottom panel plots the-averaging timeT,,.(¢) for
rapid initial decrease in error than indicated by the bound.= 0.01 versus the number of nodes. Note that the averaging
After approximately 1000 iterations, the bound provides &ime is plotted in terms of the number of iterations per node.
good indication of the rate of decrease in error. We agaifior comparison purposes, the dotted line depigts. This
observe that the linearly-varying field is close to a worstprovides some experimental support for a conclusion theat th
case scenario for GGE, and it is only after approximatelgveraging time isD(n?/2), which implies a communication
one-thousand iterations that the experimental performancomplexity similar to geographic gossip. The errorbardatep
for this initialization begins to significantly diverge frothe the minimum, mean and maximum values obtained for the
bound. 50 simulated graphs for each

Finally, we examine how the communication complexity
scales with respect to the number of nodes in the network.
Figure 3 displays howA(G) and the theoretical bound In this paper we analyzed the convergence behaviour of
on the averaging time change as the number of nadesgreedy gossip with eavesdropping (GGE), an algorithm we
is increased. To obtain these data-points, we generated p®@posed in [8]. GGE takes advantage of the broadcast
random geometric graphs for each valuewpfind evaluated nature of wireless communications and provides fast and
numerically the A(G) value for each of these, using thereliable computation of average consensus. The theoretica
procedure detailed above. The top panel shows how tlentributions of this paper are (i) a bound on the mean-
values of A(G) change as the number of nodes increasesquared error aftek iterations of the GGE algorithm; (ii) a

VI. SUMMARY
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Fig. 2. A comparison of the theoretical bound on relativeoreand the Fig. 3. The scaling behaviour of(G) and the bound on the averaging
experimental performance of GGE for four initializatiorResults are for time T,.4(¢) for e = 0.01 as the number of nodesin the network grows.
one realization of the random geometric graph, averaged 1@ runs of 50 random geometric graphs were simulated for each plotitee:\ofr.. The
the algorithm. error bars depict the minimum, mean, and maximum valuesraateover
these 50 realizations. Top panel: Numerically-evaluateldes of A(G) as
a function ofn. Bottom panel: Bound on averaging tinig,,4(0.01) as a
. . function of n. Note that is plotted in terms of the number of iterations per
bound on the--averaging time of GGE; and (iii) a proof that ,oge. piotted for comparisr())n purposes as a dotted line isuthe 7./7. P

GGE always converges faster than randomized gossip and a
characterization of how the convergence rate differs.
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