
Multidimensional Flash Codes
Eitan Yaakobi, Alexander Vardy, Paul H. Siegel, and Jack K. Wolf

University of California, San Diego
La Jolla, CA 92093− 0401, USA

Emails: eyaakobi@ucsd.edu, avardy@ucsd.edu, psiegel@ucsd.edu, jwolf@ucsd.edu

Abstract— Flash memory is a non-volatile computer memory
comprised of blocks of cells, wherein each cell can take on
q different levels corresponding to the number of electrons it
contains. Increasing the cell level is easy; however, reducing a
cell level forces all the other cells in the same block to be erased.
This erasing operation is undesirable and therefore has to be
used as infrequently as possible. We consider the problem of
designing codes for this purpose, where k bits are stored using
a block of n cells with q levels each. The goal is to maximize
the number of bit writes before an erase operation is required.
We present an efficient construction of codes that can store an
arbitrary number of bits. Our construction can be viewed as an
extension to multiple dimensions of the earlier work of Jiang and
Bruck, where single-dimensional codes that can store only 2 bits
were proposed.

I. INTRODUCTION

Flash memories are, by far, the most important type of non-
volatile computer memory in use today. They are employed
widely in mobile, embedded, and mass-storage applications,
and the growth in this sector continues at a staggering pace.

A flash memory consists of an array of floating-gate cells,
organized into blocks (a typical block comprises 217 to 220

cells). Hot-electron injection [16] is used to inject electrons
into a cell, where they become trapped. The Fowler-Nordheim
tunneling [19] mechanism (field emission) can be used to
remove electrons from an entire block of cells, thereby dis-
charging them. The level or “state” of a cell is a function of
the amount of charge (electrons) trapped within it. Historically,
flash cells have been designed to store only two values
(one bit); however, multilevel flash cells are actively being
developed and are already in use in some devices [2], [7].
In multilevel flash cells, voltage is quantized to q discrete
threshold values, say 0, 1, . . . , q−1. The parameter q can range
from q = 2 (the conventional two-state case) up to q = 256.

The most conspicuous property of flash storage is its inher-
ent asymmetry between cell programming (charge placement)
and cell erasing (charge removal). While adding charge to a
single cell is a fast and simple operation, removing charge
from a cell is very difficult. In fact, flash memories do not
allow a single cell to be erased — rather only entire blocks
(comprising up to 220 cells) can be erased. Thus, a single-cell
erase operation requires the cumbersome process of copying
an entire block to a temporary location, erasing it, and then
re-programming all the cells except one. Moreover, since over-
programming (raising the charge of a cell above its intended
level) can only be corrected by a block erasure, in practice
a conservative procedure is used for programming a cell.

Charge is injected into the cell over numerous rounds; after
every round, the charge level is measured and the next-round
injection is configured, so that the charge gradually approaches
its desired level. All this is extremely costly in time and energy.

Codes designed to address this problem were first intro-
duced in [10], [11], [12], and are called floating codes. Here
we address these codes slightly differently under the name
of flash codes. Flash codes are a sweeping generalization of
write-once memory codes [4], [6], [18], designed to maximize
the number of times information can be rewritten before block
erasures are required. In a nutshell, the idea is to use n q-level
cells to store k < n log2q bits, thereby storing less bits than
possible (the rate of the flash code is k/(n log2q)). The bits are
represented in a clever way to guarantee that every sequence
of up to t writes (of a single bit) does not lead to any of the
n cells exceeding its maximum value q− 1. Recently, several
more papers have appeared [1], [3], [5], [8], [9], [13], [14],
[15], [17] that discuss coding techniques for this model of
flash memories.

Let us begin by giving a precise definition of flash codes.
An insightful way to do so is in terms of a pair of graphs
and a pair of mappings between these graphs. The first graph
is the familiar hypercube Hk. The vertices of Hk, called the
variable vectors, are the 2k binary vectors of length k, with
two such vertices α, β ∈ Fk

2 being adjacent iff dH(α, β) = 1
(dH(α, β) denotes the Hamming distance between α and β).
This graph constitutes the state transition diagram of the k
information bits. A single-bit write operation corresponds to
the traversal of an edge in Hk, and a sequence of t writes is
a walk of length t in Hk. To describe the second graph, set
Aq = {0, 1, . . . , q − 1}, and think of Aq as a subset of the
integers. Now consider the directed graph Gn whose vertices
are the qn vectors of length n over Aq , and are called the
cell state vectors. There is a directed edge from x ∈ An

q to
y ∈ An

q in Gn iff dH(x,y) = 1 and in the single position
i where x and y differ, we have yi = xi + 1. The graph
Gn is the state transition diagram of n flash memory cells.
Observe that there is a path from x to y in Gn iff yi≥xi for
all i = 1, 2, . . . , n, which reflects the condition that the charge
of memory cells can only increase. The graphs Hk and Gn are
illustrated in Figure 1 for the case k = 3, n = 2, and q = 8.

An (n, k)q flash code C can now be specified in terms
of two maps: a decoding map ∆ and a transition map f .
The decoding map ∆ : An

q → Fk
2 simply indicates for each

cell state vector x ∈ V (Gn) the value of the variable vector
associated with the corresponding cell state vector. This map

ar
X

iv
:0

90
1.

07
02

v3
 [

cs
.I

T
]

 3
 A

pr
 2

00
9

101

001

100

000

010

111

011

110

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,1

1,1

2,1

3,1

4,1

5,1

6,1

7,1

0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

0,3 0,4 0,5 0,6 0,7

7,3 7,4 7,5 7,6 7,7

1,7

2,7

3,7

4,7

5,7

6,7

1,3 1,4 1,5 1,6

6,3 6,4 6,5 6,6

2,3

3,3

4,3

5,3

2,4 2,5 2,6

3,4

4,4

5,4

3,5 3,6

4,5

5,5

4,6

5,6

Fig. 1. State transition diagrams for k = 3 bits, and for n = 2 memory
cells with q = 8 levels.

can be, in principle, arbitrary, although it must be chosen
carefully in order to obtain flash codes with good performance.
For each α ∈ Fk

2 , let Gn(α) denote the set of vertices
x ∈ V (Gn) such that ∆(x) = α. With this, the transition map
f : E(Hk)×An

q → An
q ∪ {E} can be described as follows. For

every edge (α, β) ∈ E(Hk) and every vertex x ∈ Gn(α), the
value of f(α, β; x) is a vertex y ∈ Gn(β) such that yi≥xi

for all i (so that there exists a path from x to y in Gn).
Or, if no such vertex exists, f(α, β; x) = E indicating that
a block erasure is required. It is clear from the definition that
(∆, f) map walks in Hk onto directed paths in Gn, potentially
terminating in the block-erasure symbol E.

Definition 1: A flash code C(∆, f) guarantees t writes if
all walks of length t in Hk, starting at the vertex (0, 0, . . . , 0),
map onto valid paths in Gn, never producing the symbol E.

The weight of a cell state vector x ∈ An
q is defined to be

wx =
∑n

i=1 xi, and for convenience will be called the cell
state weight. We note that at each write operation the increase
in the cell state weight is at least one, and hence a trivial upper
bound for the number of writes, t, is n(q − 1).

Definition 2: If a flash code guarantees at least t writes
before erasing, then its write deficiency (or simply deficiency)
is defined to be δ = n(q − 1)− t.

In [12], a code for storing two bits is presented. The code
is constructed for arbitrary n and q and guarantees t = (n −
1)(q− 1) +

⌊
q−1
2

⌋
writes. A general upper bound on t which

holds for any k, `, n, q (` is the variable alphabet size, and
usually ` = 2) is presented as well, and assures that this two-
bits construction is optimal.

Theorem 1: [12] For any code that uses n q-level cells and
guarantees t writes before erasing, if n ≥ k(l − 1) − 1, then
t ≤ (n− k(l − 1) + 1) · (q − 1) +

⌊
(k(l−1)−1)·(q−1)

2

⌋
; if n <

k(l − 1)− 1, then t ≤
⌊

n(q−1)
2

⌋
.

This bound provides us also with a lower bound on the write
deficiency of flash codes.

Corollary 1: For any code that uses n q-level cells and
guarantees t writes before erasing, the code deficiency satisfies
δ ≥ (k(l − 1) − 1) · (q − 1) −

⌊
(k(l−1)−1)·(q−1)

2

⌋
if n ≥

k(l−1)−1, and δ ≥ n(q−1)−
⌊

n(q−1)
2

⌋
if n < k(l−1)−1.

Furthermore, the bound in [12] implies that for n large enough

the write deficiency of the code is not dependent on n.
Definition 3: Let q be a fixed number of cell levels, and k

a fixed number of variables. A family of (ni, k)q flash codes
Ci (where limi→∞ ni = ∞) that guarantees t(ni, q) writes
is called asymptotically optimal if

lim
i→∞

t(ni, q)
ni(q − 1)

= 1.

Asymptotically optimal constructions are presented in [12]
for storing two and three bits. These constructions are later
enhanced and generalized for 3 ≤ k ≤ 6 bits in [13].
Also, in [13] a new construction of codes, called indexed
codes, is presented and supports the storage of an arbitrary
number of variables. This construction, though shown to be
asymptotically optimal, has deficiency that is dependent on
the number of cells, n, and hence is still far from the lower
bound on the deficiency.

The rest of the paper is organized as follows. In Section II
we present another optimal construction for storing two bits. In
Section III we demonstrate the basic idea of how to represent
an arbitrary number of bits inside a multidimensional box. Our
main construction is given in Section IV. We construct codes
for efficient storage of bits such that the write deficiency does
not depend on the number of cells. Finally, conclusions and
an open problem are given in Section V.

II. ANOTHER OPTIMAL CONSTRUCTION FOR TWO BITS

The construction presented in [12] for storing two bits
using an arbitrary number of q-level cells is optimal. We
present here another optimal construction which we believe
is simpler. In this construction, the leftmost (rightmost) cells
of the memory correspond to the first (second) bit. In writing,
if we change the first (second) bit then we increase by one
the leftmost (rightmost) cell having level less than q − 1.
We repeat this process until the cells coincide and then the
only cell of level less than q − 1 represents the two bits.
In general, the cell state vector has the following form:
(q − 1, . . . , q − 1, xi, 0, . . . , 0, xj , q − 1, . . . , q − 1), where
0 < xi, xj ≤ q − 1. We present here the construction for odd
values of q, but it is easily modified to handle even values as
well.
Encoding: We consider the following cases:

1) There are at least two cells of level less than q − 1. If
we change the level of v1(v2) then we increase by one
the leftmost (rightmost) cell having level less than q−1.
If after this change there is only one cell of level less
than q− 1, then it has to represent two bits. We change
its level such that its residue modulo 4 corresponds
to the four possible variable vectors. If the cell level
has residue modulo 4 equal to 0, 1, 2, or 3, then the
corresponding variable vector is (0, 0), (0, 1), (1, 0), or
(1, 1), respectively.

2) There is only one cell of level less than q − 1. In this
case the cell represents both bits and we increase its
level to the correct residue modulo 4 according to the
new value of the variable vector.

Decoding: The equivalent cases are considered:
1) There are at least two cells of level less than q − 1.

Let i1(i2) be the index of the leftmost (rightmost) cell
having level less than q − 1. Then, we decode

v1 = xi1(mod 2), v2 = xi2(mod 2).

2) There is one cell of level less than q − 1, and it is the
i-th cell. Then we decode

v1 = b(xi(mod 4))/2c , v2 = (xi(mod 4))(mod 2).

3) All cells have level q − 1. We decode according to the
previous rule with xi = q − 1.

For even values of q, the construction is very similar. Again,
the last available cell represents two bits. However, now the
value of the two bits, given by the last available cell, is their
relative difference from the value of the two bits given by all
other cells. We note that since q is even, a cell of level q − 1
represents a bit of value 1 and not 0 as we had in the case
of odd q. Furthermore, if we use the last available cell up to
level q − 1 then it will be impossible to distinguish which
cell represents two bits in case all of them are at level q − 1.
Therefore, we use the last available cell only until level q−2.
This construction is optimal as well.

Theorem 2: If there are n q-level cells, then the code
described above guarantees at least t = (n−1)(q−1)+

⌊
q−1
2

⌋
writes before erasing.

Proof: As long as there is more than one cell of level
less than q−1, the cell state weight increases by one after each
write. This may change only after at least (n−1)(q−1) writes.
Let us assume that there is only one available cell of level less
than q − 1 after s = (n− 1)(q − 1) + j writes, where j ≥ 0.
Starting at this write, the different residues modulo 4 of this
cell correspond to the four possible variable vectors. Therefore,
at the s-th write, we also need to increase the level of the last
available cell so it will correspond to the variable vector at the
s-th write. For all succeeding writes, if we change the first bit
then the cell level increases by two. If however we change the
second bit then the increase in the cell level alternates between
one and three. Hence, if there are m writes to the last available
cell, then the cell level increases by at most 2m+ 1. Consider
the case where the last available cell starts representing the
two bits together. If its level, before it starts representing the
two bits together and after updating its level to correspond to
the variable vector at the s-th write, is x, then there are at least
b(q − 1− x)/2c more writes. Next, we consider all possible
options for the values of j and the variable vector at the s-th
write in order to calculate the number of guaranteed writes
before erasing.

1) Suppose j(mod 4) = 0, the value of both bits is 0, and
the level of the last available cell does not increase at
the s-th write. Hence, there are at least b(q − 1− j)/2c
more writes and a total of at least (n− 1)(q− 1) + j +
b(q − 1− j)/2c ≥ (n− 1)(q− 1) + b(q − 1)/2c writes.

2) Suppose j(mod 4) = 1, one of the bits has value 1 and
the other one 0. If the variable vector is (v1, v2) = (0, 1)

then at the s-th write the level of the last available
cell does not increase and if it is (v1, v2) = (1, 0)
then its level increases by one. There are at least
b(q − 1− (j + 1))/2c more writes, where j ≥ 1 and a
total of at least (n− 1)(q− 1) + j + b(q − 2− j)/2c ≥
(n− 1)(q − 1) + b(q − 1)/2c writes.

3) Suppose j(mod 4) = 2, the value of both bits is 0
and we increase the level of the last available cell
by two at the s-th write. Therefore, there are at least
b(q − 1− (j + 2))/2c more writes, where j ≥ 2 and a
total of at least (n− 1)(q− 1) + j + b(q − 3− j)/2c ≥
(n− 1)(q − 1) + b(q − 1)/2c writes.

4) Suppose j(mod 4) = 3, one of the bits has value 1
and the other one 0. If the variable vector is (v1, v2) =
(0, 1) then the level of the last available cell increases
by two, and if it is (v1, v2) = (1, 0) then we increase
by three the level of the last available cell at the s-
th write. Thus, there are at least b(q − 1− (j + 3))/2c
more writes, where j ≥ 3 and a total of at least (n −
1)(q − 1) + j + b(q − 4− j)/2c ≥ (n − 1)(q − 1) +
b(q − 1)/2c writes.

In any case, the guaranteed number of writes is (n − 1)(q −
1) +

⌊
q−1
2

⌋
.

III. BASIC MULTIDIMENSIONAL CONSTRUCTION

In this section we start the discussion of how to store an
arbitrary number of bits. We demonstrate a basic construction
for representing the bits inside a multidimensional box. The
main drawback of this construction is its relatively high write
deficiency that depends on the number of cells. In the next
section we will show an alternative construction with a better
deficiency.

Assume we want to store four bits using n q-level cells.
We represent the memory as a matrix of n1×n2 cells, where
n1n2 = n. In each column two bits are stored. The first and
second bits are stored using the left columns. The leftmost
column is used first, then the second leftmost and so on.
Similarly, the third and fourth bits are stored using the right
columns right-to-left. In each column we store the bits from
the opposite directions as in the previous two-bits construction.
However, in this case we don’t use the last available cell to
represent two bits, but leave it as a separation cell. Assume we
change the value of one of the first two bits, if it is possible to
update this change in the current column that represents these
bits, we do so. Otherwise, and if there is at least one more
column for separation, we use the next column. An example
of the memory state of this construction is demonstrated in
Figure 2(a). The worst case scenario for the number of writes
before erasing occurs when:

1) One column is used for separation.
2) Another column is only partially used and represents

one write operation. That is, there was only one write
to this column and still it is impossible to update the
current write in this column.

3) In two other previous columns there is one more cell
that is also only partially used and represents one write

(a)

(b)

Fig. 2. Figure 2(a) describes an example of the memory state for the
basic multidimensional construction, and Figure 2(b) demonstrates an example
for the worst case scenario of the guaranteed number of writes when it is
impossible to write the first bit.

operation.
Hence, the guaranteed number of writes is (n1−1)(n2−1)(q−
1)−((n1 − 1)(q − 1)− 1)−2 ((q − 1)− 1), where n1n2 = n.
Another example of the memory state that corresponds to the
worst case scenario is given in Figure 2(b).

The generalization of this construction to three dimensions
supports the storage of up to eight bits. Each plane stores four
bits. The lower planes represent the first four bits and the upper
planes represent the last four bits. In each plane we use the
previous construction in order to represent four bits. We can
use all the columns in each plane except for one that is left for
separation between the two groups of two bits in this plane.
Also, one more plane is used for separation between the two
groups of four bits. The equivalent worst case scenario for the
number of writes before erasing occurs as follows:

1) One plane is used for separation.
2) Another plane is partially used and represents only one

write operation.
3) In two previous planes there is one more column that

represents only one write and two more cells that
represent only one write as well.

Therefore, the guaranteed number of writes is (n1 −
1)(n2− 1)(n3− 1)(q− 1)− ((n1 − 1)(n2 − 1)(q − 1)− 1)−
2 ((n1 − 1)(q − 1)− 1)− 4((q− 1)− 1), where n1n2n3 = n.

In general, using a D-dimensional box we can store 2D bits,
and we can show that the number of guaranteed writes is

D∏
i=1

(ni − 1)(q − 1)−
D−1∑
i=1

2i−1

D−i∏
j=1

(nj − 1)(q − 1)− 1


− 2D−1 ((q − 1)− 1) ,

where n1n2 · · ·nD = n. It is also possible to show that
this code is asymptotically optimal. However, its deficiency
depends on n and therefore is not close enough to the lower
bound on the deficiency. Next, we will show how to modify
this construction in order to obtain a deficiency that is only
dependent on the number of bits k and the number of cell
levels q.

IV. ENHANCED MULTIDIMENSIONAL CONSTRUCTION

The last construction of flash codes demonstrates the idea
of how to use a multidimensional box in order to represent
multiple bits. Even though its asymptotic behavior is optimal,
there is still a large gap between its write deficiency and the
lower bound on the deficiency. The high deficiency mainly
results from the separation cell in each column, the separation
column in each plane, and in general from the separation
hyperplane in each dimension.

The following construction of flash codes shows how to
improve the deficiency. In order to reduce the deficiency from
the extra separation hyperplane in the last dimension, the
length of each dimension, besides the last one, should be as
small as possible, for example we want to choose ni = 2, 3
for 1 ≤ i ≤ D − 1. We also want to store the bits differently
so that in each dimension it is possible to take advantage of all
cell levels before using the next dimension. Another advantage
of using small dimension lengths is that the rate of the code
(defined as k/(n log2q)) is enhanced as well. We show a
construction where each dimension length, other than the last
one, is two. If we want to store k = 2D binary bits then we
show how to store 2D−1 of them inside (D− 1)-dimensional
boxes of size n1 × n2 × · · · × nD−1 = 2× 2× · · · × 2. Then,
we use a D-dimensional box of size n1 × n2 × · · · × nD =
2 × 2 × · · · × 2 × nD, where nD ≥ 3, which consists of nD

(D − 1)-dimensional boxes. For convenience, we call every
multidimensional box, of any dimension, whose edges are of
length 2, a block.

The construction is recursive. We first present how to store
two bits using two-cell blocks. Then, we use this construction
in order to store four bits using two-dimensional four-cell
blocks of size 2 × 2. Using the four-bits construction, it is
possible to store eight bits in a three-dimensional eight-cell
blocks of size 2 × 2 × 2. In general, the construction for
storing 2i−1 bits in (i− 1)-dimensional blocks, where i ≥ 3,
is utilized in order to store 2i bits in i-dimensional blocks

of 2i cells each. We show in detail the basic constructions for
storing two and four bits as these constructions are the building
blocks for the arbitrary recursive construction. An analysis of
the construction deficiency is given as well and it is shown
that the write deficiency order is O(k2q).

Like the two-bits construction, this construction is presented
for odd values of q, and it is possible to modify it in order to
support even values. However, the deficiency is larger when q
is even.

A. Two-Bits Construction

Our point of departure for these codes is a basic construction
for storing two bits using blocks of two cells.
Encoding:

1) As long as the number of writes in the block is no greater
than q − 1:

a) If the first bit is changed then the left cell is raised
by one.

b) If the second bit is changed then the right cell is
raised by one.

2) Starting at the q-th write, it may happen that for some
cell state vectors of the block, it is possible to write only
one of the bits. In this case, if the other bit is changed
then a new block is used.

a) If the cell state vector of the block is of the form
(q− 1, x), where x < q− 1, then only the first bit
can be written to this block, and the level of the
second cell is raised by one.

b) If the cell state vector of the block is of the form
(x, q − 1), where x < q − 1, then only the second
bit can be written at the next write, and the level
of the first cell is raised by one.

c) If the cell state vector of the block is of the form
(x1, x2), where x1 < q − 1, x2 < q − 1, then
both bits can be written at the next step. If the
first (second) bit is changed then the second (first)
cell is raised by one.

Decoding:
1) If the cell state vector is of the form (x1, x2), where

0 ≤ x1, x2 ≤ q − 1, and x1 + x2 ≤ q − 1 then the
variable vector is

(v1, v2) = (x1(mod 2), x2(mod 2)).

2) If the cell state vector is of the form (x1, x2), where
0 ≤ x1, x2 ≤ q − 1, and x1 + x2 > q − 1 then the
variable vector is

(v1, v2) = (x2(mod 2), x1(mod 2)).

An example of this construction for q = 5 is given in Figure 3.
We note that as long as the number of writes is no greater than
q − 1 then it is possible to write both bits. Only at the q-th
write might it happen that writing will continue in the next
block.

By abuse of terminology we use the following definitions
for a block of any size:

Fig. 3. State diagram for flash codes storing two bits in a block of two 5-
level cells. The numbers in each block, above the block, and next to each edge
represent the cell state vector, variable vector, and the written bit, respectively.

1) A block is called empty if all its cells are at level zero.
2) A block is called full if all its cells are at level q − 1.
3) A block is called active if it is neither empty nor full.

Lemma 1: For the two-bits construction, at any write op-
eration, there are at most two active blocks and at most
A1 = (q − 1) + 2(q − 1) − 1 = 3(q − 1) − 1 levels that
are not used in these two blocks.

Proof: If a new block is used then the previous block
uses at least q−1 levels, and there are no more active blocks.
Therefore, at most q − 1 levels are not used in the previous
block and 2(q − 1)− 1 in the new block.

B. Four-Bits Construction

Next, the four-bits case is considered. We use blocks of four
cells. Each block is divided into two sub-blocks of two cells
each, and each such sub-block is a column that stores two bits
according to the previous construction. The block can either
store the first and second bits together or the third and fourth
bits together, i.e., it is impossible to store all four bits together
in the same block. If the block stores the first and second bits
then the sub-blocks are written left-to-right, and if the block
stores the third and fourth bits then the sub-blocks are written
right-to-left.

1, 2→ * *
* * ← 3, 4.

In this construction we have another distinction between
storing the first and second bits and the third and fourth bits.
Each sub-block represents two bits according to the previous
construction, but the order the bits are written in the sub-
blocks is changed. If the block represents the first and second
bits then both sub-blocks represent the bits in the same way:

1 1
2 2

However, if the block represents the third and fourth bits then
the representation order of the bits in the two sub-blocks is
changed as follows:

4 3
3 4

Encoding:
1) The block can either represent the bits 1, 2 or the bits

3, 4. In each sub-block (column) we use the previous
construction in order to represent two bits.

2) If the block represents the bits 1, 2, then we write the two
sub-blocks left-to-right, and the bits are stored similarly
in the two sub-blocks.

3) If the block represents the bits 3, 4, then we write the
two sub-blocks right-to-left. For the right sub-block we
represent the two bits where the third (fourth) bit is
considered to be the first (second) bit in the two bits
construction,

3↔ 1, 4↔ 2.

However, for the left sub-block we change the order of
the bits, i.e., the third (fourth) bit is considered to be the
second (first) bit in the two-bits construction,

3↔ 2, 4↔ 1.

4) If the block represents the bits 1, 2 (3, 4) then the right
(left) sub-block cannot be full before the left (right) sub-
block is full.

Decoding:
1) For every active block we first determine, according to

the encoding rules, whether it represents the bits 1, 2 or
3, 4:

a) If the right (left) sub-block is empty then the block
represents the bits 1, 2 (3, 4).

b) If the left (right) sub-block is full then the block
represents the bits 1, 2 (3, 4).

c) If both sub-blocks are active then according to the
decoding procedure of the two-bits construction we
can decide for each sub-block whether it is in a
state that enables to write both bits, only the first
bit or only the second bit.
i) If the right (left) sub-block is in a state that

enables to write both bits then the block repre-
sents the bits 1, 2 (3, 4).

ii) Assume the states of both sub-blocks enable
to write only one bit. If both bits from the
two sub-blocks are first bits or both bits are
second bits then the block represents the bits
3, 4. Otherwise, it represents the bits 1, 2.

2) If the block represents the bits 1, 2 or 3, 4, we can decode
their values from the two sub-blocks using the decoding
procedure of the two-bits construction.

3) The value of each bit is the XOR of its values from all
blocks.

An example of this construction for q = 3 is given in Figure 4.

Fig. 4. State diagram for flash codes storing four bits in a four-cell block.
The numbers in each block, above the block, and next to each edge represent
the cell state vector, variable vector, and the written bit, respectively

Lemma 2: For the four-bits construction, after any write
operation, there are at most six active blocks and at most
A2 = 2 ((q − 1) + 1 + 4(q − 1)− 1) = 10(q − 1) levels that
are not used in these four blocks.

Proof: For each pair of bits there are at most three active
blocks, a new block and two previous active blocks that could
not be full before starting the new block. In the two previous
blocks at most (q−1)+1 levels are not used, corresponding to
the case that the first sub-block does not use one level and the
second block does not use (q − 1) levels. For example, if the
blocks represent the first and second bits, the two previous
active blocks can be of the following form, that enables to
write only the second bit:

q − 1 q − 2
q − 1 q − 1

q − 1 0
q − 1 q − 1

In the new block at most 4(q − 1) − 1 levels are not used.
Therefore, there are at most six active blocks and at most
A2 = 2 · ((q − 1) + 1 + 4(q − 1)− 1) = 10(q − 1) levels that
are not used in these blocks.

C. Construction for Arbitrary Number of Bits

We are now ready to present the general construction of
flash codes storing an arbitrary number of bits. First, we briefly
describe how to represent eight bits and then give the general
construction.

In order to store eight bits we use a block of eight cells
which is a three-dimensional box of size 2×2×2. In fact, the
block consists of two sub-blocks of four cells each that can
be considered as two concatenated sub-blocks of size 2× 2.

* * * *
* * * *

Each block can either represent the bits 1, . . . , 4 or 5, . . . , 8
according to the following order:

1, . . . , 4→
1, 2
−→

3, 4
←−

5, 6
−→

7, 8
←−

* * * *
← 5, . . . , 8.

The bits 1, . . . , 4 (5, . . . , 8) write the two 2 × 2 sub-blocks
left-to-right (right-to-left). Each sub-block represents four bits
according to the four-bits construction. More rules are used
to decide whether the code represents the bits 1, . . . , 4 or
5, . . . , 8, and are described in detail below for the arbitrary
case.

For representing 2i bits, we assume that there is a con-
struction for storing 2i−1 bits in blocks of 2i−1 cells. We use
blocks of 2i cells that consist of two sub-blocks of 2i−1 cells.
We assume that for the 2i−1-bits construction there are at most
3 ·2i−2 active blocks and at most Ai−1 levels that are not used
in these blocks.
Encoding:

1) The block can either represent the bits 1, . . . , 2i−1 or the
bits (2i−1 +1), . . . , 2i according to the following order:

1 . . .

2i−1 → 1 . . . (2i−2 + 1) (2i−1 + 1) . . . (2i−1 + 2i−2

2i−2
−−−→ . . . 2i−1

←−−−−−− (2i−1 + 2i−2)
−−−−−−−−−−−→

+1) . . . 2i
←−−−−−−−

← (2i−1 + 1)
· · · 2i

In each sub-block, 2i−1 bits are represented according
to the recursive construction.

2) Assume the block represents the bits 1, . . . , 2i−1,
a) The sub-blocks are written left-to-right.
b) It is possible to use the right sub-block only if the

left sub-block is full.
3) Assume the block represents the bits (2i−1 + 1), . . . , 2i,

a) The sub-blocks are written right-to-left.
b) It is possible to use the left sub-block only if the

right sub-block is full.
c) The 2i−1 bits (2i−1+1), . . . , 2i are stored as if they

were the bits 1, . . . , 2i−1, where the (2i−1 +j) -th
bit, 1 ≤ j ≤ 2i−1 is considered to be the j-th bit.

Decoding:
1) For every active block we first determine, according

to the encoding rules, which group of 2i−1 bits it
represents. If the left (right) sub-block is full or active,
then the block represents the bits 1, . . . , 2i−1 ((2i−1 +
1), . . . , 2i).

2) If the block represents the bits 1, . . . , 2i−1 or (2i−1 +
1), . . . , 2i, we can decode their value from the two sub-
blocks using the decoding procedure of the 2i−1-bits
construction.

3) The value of each bit is the XOR of its values from all
blocks.

Lemma 3: For flash codes storing 2i bits, after any write
operation, there are at most 3 · 2i−1 active blocks and at most

Ai = 2Ai−1 + 3/4 · (q − 1)4i

levels that are not used in these blocks.
Proof: Each of the blocks that represents the bits

1, . . . , 2i−1 can be considered as a pair of sub-blocks con-
taining 2i−1 cells, such that each sub-block represents the bits
1, . . . , 2i−1. According to the recursive construction at most
3 · 2i−2 sub-blocks are active and at most Ai−1 levels are not
used in these sub-blocks. If all these sub-blocks happen to be
the left ones in their containing blocks then there are 3 · 2i−2

more sub-blocks that are empty, which are the corresponding
right sub-blocks in each block. In each such a sub-block, at
most 2i−1(q − 1) levels are not used. Hence, in these sub-
blocks at most

Bi = 3 · 2i−2 · (q − 1)2i−1 = 3/8 · (q − 1)4i

levels are not used. The same analysis is applied to the blocks
that represent the bits (2i−1 +1), . . . , 2i. Therefore, for all the
bits, there are at most 3 · 2i−1 active blocks and at most

Ai = 2Ai−1 + 2Bi = 2Ai−1 + 3/4 · (q − 1)4i

levels that are not used in these blocks.

D. Deficiency Analysis

Lemma 4: For i ≥ 2 we have

Ai = 3/2 · (q − 1)4i − 7/2 · (q − 1)2i.
Proof: We prove the correctness of the expression for Ai

by induction. According to Lemma 2, we have A2 = 10(q−1)
which is also given by this expression. Assume Ai−1 = 3/2 ·
(q − 1)4i−1 − 7/2 · (q − 1)2i−1, for i ≥ 3, then according to
Lemma 3

Ai = 2Ai−1 + 3/4 · 4i(q − 1)

= 2
(
3/2 · (q − 1)4i−1 − 7/2 · (q − 1)2i−1

)
+ 3/4 · 4i(q − 1)

= 3/2 · (q − 1)4i − 7/2 · (q − 1)2i.

Theorem 3: If the flash codes represent k = 2D bits then
the deficiency δD satisfies

δD = 2AD−1 + 1 = 3/4 · (q − 1)k2 − 7/2 · (q − 1)k + 1.
Proof: In order to represent k = 2D bits a D-dimensional

box of size 2×2×· · ·×2×nD is used. The multidimensional
box is considered as an array of nD (D − 1)-dimensional
boxes, called blocks. The first (last) 2D−1 bits are represented
using the blocks left-to-right (right-to-left), and there is one
block for separation. In each (D−1)-dimensional box we use
the construction to represent 2D−1 bits. Writing stops if we
need to start using a new block but it is the last separation
block. According to Lemma 3 at most AD−1 levels are not
used in the active blocks for each group of bits. Also, it is
impossible to use the last separation block, and hence at most
2AD−1 + 1 levels are not used in the worst case, where

2AD−1 + 1

= 2
(
3/2 · (q − 1)4D−1 − 7/2 · (q − 1)2D−1

)
+ 1

= 3/4 · (q − 1)4D − 7/2 · (q − 1)2D + 1

= 3/4 · (q − 1)k2 − 7/2 · (q − 1)k + 1.

For even values of q, we consider every two cells of level
q as one cell of level q′ = 2q − 1, and we can apply the
construction for odd values of q. The code deficiency becomes
3/2 · (q − 1)k2 − 7 · (q − 1)k + 1.

V. CONCLUSION

In [12], the problem of coding to minimize block erasures
in flash memories was first presented. In this work we show
an optimal construction of flash codes for storing two bits.
We believe that our construction is simpler than an earlier
optimal construction presented in [12]. Our main contribution
is an efficient construction of codes that support the storage
of any number of bits. We show that the order of the code
deficiency is O(k2q), which is an improvement upon the
equivalent construction in [13]. The upper bound in [12] on
the guaranteed number of writes implies that the order of the
lower bound on the deficiency is O(kq). Therefore, there is
a gap, which we believe can be reduced, between the write
deficiency orders of our construction and the lower bound.

ACKNOWLEDGMENT

The authors wish to thank Hilary Finucane and Michael
Mitzenmacher for pointing out errors in an earlier version of
the paper .

REFERENCES

[1] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asymmetric
multi-level memory,” in Proceedings IEEE International Symposium on
Information Theory, Nice, France, June 2007.

[2] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni (Editors), Flash memo-
ries, Boston: Kluwer Academic, 1999.

[3] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for multi-
level flash memories: correcting asymmetric limited-magnitude errors,”
in Proceedings IEEE International Symposium on Information Theory,
Nice, France, June 2007.

[4] G.D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inform. Theory, vol. 32, pp. 697-700,
October 1986.

[5] B. Eitan and A. Roy, “Binary and multilevel flash cells,” in Flash
Memories, P. Cappelletti, C. Golla, P. Olivo, E. Zanoni Eds. Kluwer,
pp. 91-152, 1999.

[6] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans.
Inform. Theory, vol. 30, pp. 470–480, September 1984.

[7] E. Gal and S. Toledo, “Algorithms and data structures for flash memo-
ries,” ACM Computing Surveys, vol. 37, no. 2, pp. 138–163, June 2005.

[8] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error correct-
ing techniques for new-generation flash memories,” in Proceedings of
The IEEE, vol. 91, no. 4, pp. 602-616, April 2003.

[9] M. Grossi, M. Lanzoni, and B. Ricco, “Program schemes for multilevel
flash memories,” in Proceedings of the IEEE, vol. 91, no. 4, pp. 594-601,
April 2003.

[10] A. Jiang, “Information storage in flash memories with floating codes,”
in Proceedings 45-th Annual Allerton Conference on Communication,
Control and Computing, Monticello, IL, September 2007.

[11] A. Jiang, “On the generalization of error-correcting WOM codes,” in
Proceedings IEEE International Symposium on Information Theory,
Nice, France, June 2007.

[12] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint infor-
mation storage in write asymmetric memories,” in Proceedings IEEE
International Symposium on Information Theory, Nice, France, June
2007.

[13] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in
Proceedings IEEE International Symposium on Information Theory,
Toronto, Canada, July 2008.

[14] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” in Proceedings IEEE International Symposium on
Information Theory, Toronto, Canada, July 2008.

[15] A. Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for rank
modulation,” in Proceedings IEEE International Symposium on Infor-
mation Theory, Toronto, Canada, July 2008.

[16] D. Kahng and S.M. Sze, “A floating-gate and its application to memory
devices,” Bell Systems Tech. J., vol. 46, no. 4, pp. 1288-1295, 1967.

[17] M. Mitzenmacher, Z. Liu, and H. Finucane, “Designing floating codes
for expected performance,” in Proceedings 46-th Annual Allerton Con-
ference on Communication, Control and Computing, Monticello, IL,
September 2008.

[18] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Infor-
mation and Control, vol. 55, nos. 1–3, pp. 1–19, December 1982.

[19] B. Van Zeghbroeck, Principles of semiconductor devices, e-book pub-
lished online at ece-www.colorado.edu/ bart/book, 1997.

	Introduction
	Another Optimal Construction for Two Bits
	Basic Multidimensional Construction
	Enhanced Multidimensional Construction
	Two-Bits Construction
	Four-Bits Construction
	Construction for Arbitrary Number of Bits
	Deficiency Analysis

	Conclusion
	References

